磁增强弧光等离子体CVD法沉积c-BN薄膜及其场发射特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation and Field Emission Characteristics of c-BN Thin Films by Magnetron Arc Enhanced Plasma CVD
  • 作者:赵春红
  • 论文级别:硕士
  • 学科专业名称:凝聚态物理
  • 中文关键词:c-BN薄膜 ; 场发射
  • 学位年度:2005
  • 导师:赵永年
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-05-01
摘要
本论文工作主要是采用一种新的自行设计的磁增强弧光等离子体化学气相沉积法(Magnetron enhanced arc plasma chemical vapor deposition)制备立方氮化硼(c-BN)薄膜及其场发射特性的研究。现已成功地在单晶硅上制备出了含量较高的立方氮化硼(c-BN)薄膜。同时研究了各个沉积参数(基底直流负偏压、弧光等离子体放电电流、气体流量比、沉积时间)对立方氮化硼薄膜的制备及其场发射特性的影响。制备出的薄膜用傅立叶红外(FTIR)光谱和X 射线衍射(XRD)谱来表征。
    基底负偏压对立方氮化硼薄膜的制备起着及其重要的作用。随着基底负偏压的变化,薄膜中立方相的含量也随之增加。当实验过程中不加任何负偏压时,Cl 对六角相的化学刻蚀就起着至关重要的作用。因此,我们在不加偏压的情况下,又研究了弧光等离子体放电电流、气体流量比以及沉积时间等参数对立方氮化硼薄膜制备的影响。改变弧光放电电流,薄膜中立方相的含量也随之改变。当弧光放电电流增加到某一值时,立方相的含量达到最大值。继续增加放电电流,立方相含量反而降低。改变气体流量比,同样薄膜中立方相的含量也随之改变。
    研究了立方氮化硼薄膜的场发射特性,发现BN 薄膜表面粗糙度对其场发射的性能有很大影响。当没有施加负偏压时,改变弧光等离子体放电电流、气体流量比以及薄膜厚度等条件,发现立方相含量的多少对其场发射性能也起一定的作用,立方相含量越高,场发射性能越好。
    最后,利用能带弯曲理论对立方氮化硼薄膜的场发射进行了探讨。
Cubic boron nitride (c-BN) having zinc blende type structure has attracted considerable attention because of unique properties. c-BN is a highly promising material for optical, electronic, chemical and mechanical applications, e.g., its hardness being second only to diamond, high thermal conductivity, high chemical and thermal stabilities, lower solubility in ferrous metals as cutting tools than diamond. In comparison to diamond, which is only p-type dopable, c-BN is n-and p-type dopable, therefore suitable to high temperature electronic devices and blue light-emitting diodes. In addition, it is well known that there have emerged many reports on the field emission properties of diamond film due to its characteristics such as high hardness, high heat conductivity, chemical stableness and negative electron affinity(NEA). It is considered an ideal material for field emission cathodes. The III-IV compounds cubic boron nitride(c-BN) have similar properties (NEA, or even better heat conductivity and stableness) to diamond. So a considerable effort has been devoted to development of cold cathodes as a key source for field emission flat panel displays and vacuum microelectronic devices. It is desirable to fabricate cold cathodes which achieve a high emission current operation at a low voltage.
    Recently, some physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods were employed for synthesizing c-BN films, including plasma-assisted CVD, ion plating, laser deposition, ion beam-assisted deposition and sputtering. For all these methods,
    energetic-particle bombardment of the substrate was found to be essential for the formation of the cubic phase of boron nitride. However, from the bombardment during film growth, the deposited c-BN films generally exhibited a high compressive stress, which was believed necessary to obtain a cubic phase. The high stress results in a limited maximum film thickness (several hundred nanometers) that can be deposited free from peeling. Up to now, it has not been possible to prepare c-BN films with high quality and sufficient thickness to be identified by Raman spectroscopy.
    In contrast to be deposition of diamond films, the growth mechanism of c-BN films by the currently successful deposition techniques may be dominated by physical effects at the surface or subsurface region regardless of the PVD or CVD. This difference is possibly due to the lack of an effective chemical reactant as hydrogen does in the diamond growth process by preferentially etching the sp2 components and stabilizing the sp3 structure. In this work, chlorine was introduced into the reactant gases, which was found to be very beneficial for the deposition of c-BN films at a lower or without effective substrate bias. Chlorine was maybe demonstrated to preferentially etch the hexagonal phase during deposition. Hydrogen was found necessary to produce solid boron nitride from gas phase and to balance excessive etching of chlorine. The growth of c-BN films in our system was believed to be a combined process of both chemical effects by chlorine and physical effects by ion bombardment. The chemical effects by chlorine played an important role in the formation of the cubic phase of boron nitride without any substrate bias. Therefore, the residual stress was intensively decreased.
    Cubic boron nitride films were deposited on silicon substrates by self-made magnetron enhanced arc plasma chemical vapor deposition in an Ar-N2-BCl3-H2 system (BCl3 was diluted 2% in N2 base). By this method, we have successfully deposited the higher c-BN thin film. The characterization of c-BN films was carried out by XRD, FTIR spectroscopy. The effect of direct current bias, plasma discharge current, gas flow ratio, thickness on the formation of c-BN films and field emission characteristics of c-BN ware investigated.
    The content of c-BN is increased with the increase of DC bias. An absorption band at about 1080cm-1 appears. The c-BN absorption dramatically increases with an increase of the bias voltage. According to the compressive stress model of deposition of c-BN films, the growth of c-BN needs certain stress. When the compressive stress in the films exceeds some a threshold, it accords with the balance condition of c-BN energetics, and commences on accelerating c-BN to form core and then grow. The c-BN content in the film is increased with the increase of stress. The compressive stress in the film due to the bombardment of energetic ions arisen from the substrate bias. The bigger is the substrate bias, the higher is the energy of the bombardment ions. As a result, it causes a bigger stress in the films to form c-BN phase. On the other hand, the chemical effect by chlorine plays some degree role in the formation of the cubic phase of boron nitride;The content of c-BN is increased with the increase of plasma discharge current. When the plasma discharge current enhances to 16A, the content of c-BN reaches a maximum. During deposition, we know that the density of plasma depended on the plasma discharge current. Nevertheless, the sample was
    deposited without substrate bias voltage. So, the chemical effects by chlorine played extreme important role in the formation of the cubic phase of boron nitride instead of relying mainly on ion bombardment. As a result, it can be concluded that the plasma discharge current is also an important factor for synthesizing c-BN;when the ratio of H2 / BCl3(N2)/ Ar was 1:1.5:5, it is to be favorable for the deposition of a high content,When little H2 was injected in the vacuum, it was found it was deficient to produce solid boron nitride from gas phase and to balance excessive etching of chlorine.
    The field emission characteristics of thin c-BN films were researched in this paper. The influences of deposition parameters on the field emission characteristics of c-BN thin films are very important. The surface morphology of the c-BN film plays an important role in the field emission characteristics of the film. For the films which have rougher surface, electrical field was enhanced because of tip effect. Potential barrier of surface is reduced and thinned, so it’s easier for electron to tunnel into vacuum. Experiment results indicate it have a lower threshold electric field and higher emission current density for sampling which has a rougher surface. With reduce of surface roughness, threshold electric field of c-BN film gets higher. The threshold electric field is 13V/μm, and the emission current density is 224μA/cm2 for c-BN film growth at substrate bias of -175V; Furthermore, the content of c-BN plays some important factor for field emission characteristics. The higher is the content of c-BN, the better is the field emission. The threshold electric field is 8V/μm, and the emission current density is 185μA/cm2 for c-BN film deposited at the arc current of 17A; The threshold electric field is
引文
[1] N. Patibandla, and K. Luthra, J. Electrochem. Soc. (1992) 139, 2558
    [2] R. Geick, C. H. Perry and G. Rupprecht, Phys. Rev., (1966) 146, 543
    [3] L. Vel, G. Demazeau and J. Etourneau, Cubic Boron Nitride: Synthesis, Physicochemical Properties and Applications, Mater. Sci. Eng., (1991)B 10, 149
    [4]Y.N.Zhao,B.Wang,S.Yu,Y.C.Tao,Z,He,D.M.Li,G.T.Zou,Preparation of c-BN films by RF sputtering and the relation of BN phase fofmation to the substrate bias and temperature,ThinSolidFilms(1998) 320:220-222
    [5] L. Vel, G. Demazeau and J. Etourneau, Cubic Boron Nitride: Synthesis, Physicochemical Properties and Applications, Mater. Sci. Eng., (1991) B 10, 149
    [6] H. Holleck, J. Vac. Sci. Technol. (1986) A 4 2661
    [7] R. C. Devries, in: R. E. Clausing (ed.), Diamond and Diamond-like Films and Coatings, Plenum Press, New York, (1991) P. 151
    [8] R. Haubner, B. Lux, Diamond Relat. Mater. (1993)2 1277
    [9] R. C. Devries, General Electric Company Corporate Research and Development Report No. (1972)72CRD178
    [10] P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, E. A. Pascoe, Lattice Infrared Spectra of Boron Nitride and Boron Monophosphide, Phys. Rev., (1967)155, 1039
    [11] R. H. Wentorf, Jr., J. Chem. Phys. (1962) 36, 1990
    [12] O. Mishima, in: J. J. Pouch, S. A. Alterovitz (eds.), Synthesis and Properties of Boron Nitride, Materials Science Forum, Vol.54/55, Trans Tech Publications, Brookfield, (1990)p. 313
    [13] W. A. Yarborough, J. Vac. Sci. Technol. (1991)A 9 1145
    [14] O. Mishima, K. Era, J. Tanaka, S. Yamaoka, Appl. Phys. Lett. (1988) 53, 962
    [15] 池元斌, 王立中, 徐洪山, 李明辉, 陈立学, 李树青, 陈宇飞, 纤锌矿型氮化硼及其应用研究(I), 高压物理学报( 1991),5, 275-285
    [16] 苏夷希, 巨新, 魏坤, 池元斌, 韩振甫, 石军岩, 邓杰, 施朝淑, 纳米纤锌矿氮化硼 的同步辐射真空紫外反射光谱与光学性质, 物理学报, ( 1994) 43, 1718-1725
    [18] M. Arakin and Y. Kuroyama, Shock synthesized and static sintered boron nitride cutting tool, Physica( 1986) B, 139&140, 819-821.
    [19] R. H. Wentorf, Jr., J. Chen. Phys. (1957) 26,956
    [20] V. N. Gashtold et al., Elektron. Tekh., (1970)12 , 58
    [21] K. Inagawa, K.Watanabe,H .Ohsone,K.Saitoh, and A.Itoh,J.Vac.Sci.Technol., (1987) A 5 2696
    [22] Benel Mekki M, Djouadi M A. Vapour phase deposition of cubic boron nitride thin films[J]. Thin solid films. (1999)(253): 89-95
    [23] ] Logothetidis S, Charitidis C. Recent results in cubic boron nitride deposition in Light of the sputter model[J]. Diamond and related materials, (1999) (8),410-414,
    [24]Y.N.Zhao,B.Wang,S.Yu,Y.N.Tao,Z.He,D.M.Li,G.T.Zou Thin Solid Films (1998)320 220-222
    [25] Barth K L, Lunke A. Influence of deposition parameters on boron nitride growth mechanisms in a hollow cathode ARE evaporation device[J]. Sur. & coat. Tech(.1997) 92, 96-103,
    [26] 廖克俊, 王万录. 高速生长cBN 薄膜[J]. 科学通报, (1995) 40 (13) 1184-1187.
    [27] Achiki T, et al. Review of cubic boron nitride thin films deposition[J]. J.Appl. Phys, (1996)79:4381
    [28] S.Matsumoto,W.J.Zhang,Jpn..J.Phys. (2000)39,L442
    [29] Utsumi T .IEEE Trans. Electron Devices, (1991)38:2276
    [30] Brodie Ivor.Proceedings of the IEEE, (1994)82:1006
    [31] Yamaguchi E .Journal of the SID, (1997) 5/4:345
    [32] Kwon S H,Yoo J S et al.Journal of the Electronchemical Socity, (2000)147(8):3120
    [33] 李德杰,王邦江,姚保纶。微细加工技术,1999(1):68[Li D J,Wang B J,Yao B L.Microfabrication Technology, 1999(1):68 (in Chinese)]
    [34] Zhirnov V V et al. Vac .Scl.Technol., (1997)A15(3):1733
    [35] Amaratunga G A J, Silva S R P. Appl.Phys.Lett., (1996)68:2529
    [36] de Heer W A et al .Science, (1995)268:845
    [37] Rinzler A et al.Science, (1995)269:1550
    [38] Driskill-Smith A A G, Hasko D G, AhmedH.Appl.Phys.Lett., (1999)75:2845
    [39] Adessi C, Devel M.Phys.Rev.B, (2000)62(20):R13314
    [40] Dean K, Chalamala B .Appl.Phys.Lett., (1999)75:3017
    [41] Wang Q et al .Appl Phys.Lett., (1997)70:3308
    [42] Choi W et al .Appl .Phys.Lett., (1999)75:3129
    [43] Park R K,et al .In:10th IVMC Technical Digest,[M]92
    [44] Imura H, Tsuida S, et al. IEDM’97,TECHNICAL Digest[M]
    [45] 赵永年,邹广田,王波,何志,朱品文,陶艳春,高等学校化学学报,(1998)19,1136
    [46] W. Zhu, G. P. Kochanski and S. Jin, Low-field electron emission from undoped nanostructured diamond, Science, (1998) 282, 1471-1473.
    [47] D. Hong and M. Aslam, Field emission from p-type polycrystalline diamond films, J. Vac. Sci. Technol. (1995)B, 13, 427-430.
    [48] A. Watanabe, M. Deguchi, M. Kitabatake, S. Kono, Field emission from diamond particles studied by scanning field emission microscopy, Ultramicroscopy, (2003)95(1-4), 145-151.
    [49] Z. B. Li, X. W. Liu, N. S. Xu, S. Z. Deng, J. Chen, M. M. Wu, S. Ren, J. Chen, F. L. Zhao, Resonant field emission through amorphous diamond thin films (a model study), Ultramicroscopy, (2003)95(1-4), 75-80.
    [50] S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, D. J. Yang, Q. Wang, Q. Zhou, J. Q. Li, Electron field emission from carbon nanotubes and undoped nano-diamond, Diamond Relat. Mater., (2003) 12(1), 8-14.
    [51] S. Gupta, B. L. Weiss, B. R. Weiner, L. Pilione, A. Badzian, G. Morell, Electron field emission properties of gamma irradiated microcrystalline diamond and nanocrystalline carbon thin films, J. Appl. Phys., (2002)92(6), 3311-3317.
    [52] X. Jiang, F. C. K. Au, S. T. Lee, Ultrahigh boron doping of nanocrystalline diamond films and their electron field emission characteristics, J. Appl. Phys., (2002) 92(5), 2880-2883.
    [53] C. -L. Chen, C. -S. Chen and J. -T. Lue, Field emission characteristic studies of chenmical vapor deposition diamond films, Solid-State Electronics, (2000)44, 1733-1741.
    [54] C. Bandis and B. B. Pate, Photoelectric emission from negtive electron-affinity diamond (111) surfaces: Excition breakup versus conduction-band emission, Phys. Rev. (1995)B, 52, 12056-12071.
    [55] P. Lerner, N. M. Miskovsky and P. H. Cutler, Model calculations of internal field emission and J-V characteristics of a composite n-Si and N-Diamond cold carhode source, J. Vac. Sci. Technol. (1998) B, 16, 900-905.
    [56] Z.-H. Huang, P. H. Cutler, N. M. Miskovsky and T. E. Sullivan, Calculation of electron field emission from diamond surfaces, J. Vac. Sci. Technol. (1995)B, 13, 526-530.
    [57] K. H. Park, S. Lee, K. H. Song, J. I. Park, K. J. Park, S. Y. Han, S. J. Na, N. Y. Lee and K. H. Koh, Field emission characteristics of detective diamond films, J. Vac. Sci. Technol. (1998)B, 16, 724-728.
    [58] M. W. Geis, J. C. Twichell, J. Macaulay, and K. Okano, Electron field emission from diamond and other carbon materials after H2, O2, and Cs treatment, Appl. Phys.Lett., (1995) 67, 1328-1330.
    [59] W. Zhu, G. P. Kochanski, S. Jin, L. Seibles, D. C. Jacobson, M. McCormack, and A. E. White, Electron field emission from ion-implanted diamond, Appl. Phys. Lett., (1995)67, 1157-1159.
    [60] V. V. Zhirnov, J. Liu, G. J. Wojak, J. J. Cuomo and J. J. Hren, Environmental effect on the electron emission from diamond surfaces, J. Vac. Sci. Technol. (1998) B, 16, 1188-1193.
    [61] T. Sugino, K. Kuriyama, C. Kimura and S. Kawasaki, Temperature dependence of field emission characteristics of phosphorus-doped polycrystalline diamond films, Appl. Phys. Lett., (1998)73, 268-270.
    [62] H. Ji, Z. S. Jin, C. Z. Gu, J. Y. Wang, X. Y. Lu, B. B. Liu, C. X. Gao, G. Yuan and W. B. Wang, Influence of diamond film thickness on field emission characteristics, J. Vac. Sci. Technol. (2000) B, 18, 2710-2713.
    [63] T. K. Ku, S. H. Chen, C. D. Yang, N. J. She, F. G. Tarntair, C. C. Wang, C. F. Chen, I. J. Hsieh, H. C. Cheng, Enhanced electron emission from phosphorus-and boron-doped diamond-clad Si field emitter arrays, Thin Solid Films, (1996) 290-291, 176-180.
    [64] J Liu, V. V. Zhirnov, A. F. Myers, G. J. Wojak, W. B. Choi,J. J. Hren, S. D. Wolter, M. T. McCluer, B. R. Stoner and J. T. Glass, Field emission characteristics of diamond coated silicon field emitters, J. Vac. Sci. Technol. (1995) B, 13, 422-426.
    [65] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov and N. Suetin,, Electron field emission for ultrananocrystallin diamond films, Appl. Phys., (2001)89, 2958-2967.
    [66] N. S. Xu, Y. Tzeng and R. V. Latham, A diagnostic study of the field emission characteristics of individual micro-emitters in CVD diamond films, J. Phys. D: Appl. Phys., (1994)27, 1988-1991.
    [67] N. S. Xu, Y. Tzeng and R. V. Latham, Similarities in the 'cold' electron emission characteristics of diamond coated molybdenum electrodes and polished bulk graphite surfaces, J. Phys. D: Appl. Phys. (1993) 26, 1776-1780.
    [68] W. Zhu, G. P. Kochanski, S. Jin, and L. Seibles, Defect-enhanced electron field emission from chemical vapor deposited diamond, J. Appl. Phys., (1995)78, 2707-2711.
    [69] J. D. Shovlin and M. E. Kordesch, Electron emission from chemical vapor deposited diamond and dielectric breakdown, Appl. Phys. Lett., (1994)65, 863-865.
    [70] J. W. Glesener and A. A. Morrish, Investigation of the temperature dependence of the field emission current of polycrystalline diamond films, Appl. Phys. Lett., (1996) 69, 785-787.
    [71] E. I. Givargizov, V. V. Zhimov And A. N. Stepanova, Microstructure and field emission of diamond particles on silicon tips, Appl. Surf. Sci., (1995)87/88, 24-30.
    [72] N. Pupeter, A. G?hl, T. Habermann, E. Mahner, G. Müller, H. Piel, Ph. Niedermann, and W. H?nni, Field emission measurements with μm resolution on chemical-vapor-deposited polycrystalline diamond films, J. Vac. Sci. Technol. (1996) B, 14(3), 2056-2059.
    [73] V. P. Mammana, T. E. A. Santos, A. P. Mammana, V. Baranauskas, H. J. Ceragioli, A. C. Peterlevitz, Field emission properties of porous diamond-like films produced by chemical vapor deposition, Appl. Phys. Lett., (2002) 81(18), 3470-3472.
    [74] F. Y. Chang, C. Y. Sun, H. F. Cheng and I. N. Lin, Enhancement on field emission characteristics of pulsed laser deposited diamondlike carbon films using Au precoatings, Appl. Phys. Lett., (1997) 70, 2111-2113.
    [75] C. -F. Chen, C. -H. Shen and C. -L. Jin, The Characterization of nitrogen content, diamond-like carbon field emission arrays using a magnetic filtered arc method, Thin Solid Films, (2000)377-378, 326-330.
    [76] C. –M. Lin, S. –J Chang, M. Yokoyama, L. -N. Lin, Thermal stability in diamond-like carbon coated planar electron field emission arrays, J. Vac. Sci. Technol. (2000)B, 18, 2424-2426.
    [77] D. S. Mao,X. wang,W. Li, X. H. Liu, Q. Li, J. F. Xu and K. Okano, Electron field emission from a patterned diamond-like carborn flat thin film using a Ti interfacial layer, J. Vac. Sci. Technol. (2000)B, 18, 2420-2423.
    [78] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58.
    [79] T. W. Ebbesen and P. W. Ajayan, Large-scale syntheisi of carbon nanotubes, Nature, (1992) 358, 220-222.
    [80] Y. T. Feng, S. Z. Deng, J. Chen, N. S. Xu , Effect of carbon nanotube structural parameters on field emission properties, Ultramicroscopy, (2003)95(1-4), 93-97.
    [81] A. Mayer, N. M. Miskovsky, P. H. Cutler, Transfer-matrix simulations of field emission from a metallic (5,5) carbon nanotube, Ultramicroscopy, (2002)92(3-4), 215-220.
    [82] G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, O. Zhou, Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode, Appl. Phys. Lett., (2002) 81(2), 355-357.
    [83] V. Meunier, C. Roland, J. Bernholc, M. B. Nardelli, Electronic and field emission properties of boron nitride/carbon nanotube superlattices, Appl. Phys. Lett., (2002)81(1), 46-48.
    [84] I. Alexandrou, M. Baxendale, N. L. Rupesinghe, and G. A. J. Amaratunga., Field emission properties of nanocomposite carbon nitride films, J. Vac. Sci. Technol. (2000) B, 18, 2698-2703.
    [85] P. G. Collins and A. Zettj, A sample and robust electron beam source from carbon nanotubes, Appl. Phys. Lett., (1996)69(13), 1969-1971.
    [86] N. S. Xu, Y Chen, S. Z Deng, J Chen, X C Ma and E G Wang, Vacuum gap dependence of field electron emission properties of large area multi-walled carbon nanotube films, J. Phys. D: Appl. Phys., (2001)34, 1597-1601.
    [87] M. Kasu and N. Kobayashi, Large electron field emission from high-quality heavily Si-Doped AlN grown by MOVPE, J. Cryst. Growth, (2000)221, 739-742.
    [88] M. Kasu and N. Kobayashi, Spontaneous ridge-structure formation and large field emission of heavily Si-doped AlN, Appl. Phys. Lett., (2001)78, 1835-1837.
    [89] M. Kasu and N. Kobayashi, Field-emission characteristics and large current density of heavily Si-doped AlN and AlxGa1-xN (0.38≤x<1), Appl. Phys. Lett., (2001)79, 3642-3644.
    [90] D. Kang, V. V. Zhirnov, R. C. Sanwald, J. J. Hren and J. J. Cuomo, Field emission from ultrathin coatings of AlN on Mo emitters, J. Vac. Sci. Technol. (2001) B, 19, 50-54.
    [91] A. F. Belyanin, P. V. Pashchenko, B. V. Spitsyn, A. N. Blaut-Bachev, L. L. Bouilov, V. V. Zhirnov, L. V. Bormatova and E. I. Givargizov, Field emitters based on Si tips with AlN coating, Diamond Relat. Mater., (1998) 7, 692-694.
    [92] D. Chen, S. P. Wong, W. Y. Cheung, W. Wu, E. Z. Luo, J. B. Xu, I. H. Wilson, and R. W. M. Kwok, Electron field emission from SiC/Si heterostructures synthesized by
    carbon implantation using a metal vapor vacuum arc ion source, Appl. Phys. Lett.,
    (1998)72, 1926-1928.
    [93] W. Czarczynski, P. Kieszkowski, S. Lasisz, R. Paszkiewicz, M. Tlaczala, Z. Znamirowski and E. Zolnierz, Field emission from GaN on Si substrate, J. Vac. Sc. Technol. (2001)B, 19, 47-49.
    [94] M. Nagao, Y. Fujimori, Y. Gotoh, H. Tsuji and J. Ishikawa, Emission characteristics of ZrN thin film field emitter array fabricated by ion beam assisted deposition technique, J. Vac. Sci. Technol. (1998)B, 16, 829-832.
    [95] S. –Y. Kang, J. H. Lee, Y. –H. Song, Y. T. Kim, K. I. Cho and H. J. Yoo, Emission characteristics of TiN-coated field emitter arrays, J. Vac. Sci. Technol. (1998) B, 16, 871-874.
    [96] F. Ducroquet, P. Kropfeld, O. Yaradou and A. Vanoverschelde, Fabrication and emission characteristics of GaAs tip and wedge-shaped field emitter arrays by wet etching, J. Vac. Sci. Technol. (1998) B, 16(2), 787-789.
    [97] J. C. Tucek, A. R. Krauss, D. M. Gruen, O. Auciello, N. Moldovan, D. C. Mancini, S. Zurn and D. Polla, Development of edge field emission cold cathodes based on low work function Cu-Li alloy coatings, J. Vac. Sci. Technol. (2000) B, 18, 2427-2432.
    [98] Sogino T, Tagawa S. Effect of oxygen plasma trentment on field emission characteristics of boron-nitride films[J] Appl Phys Lett, (1999)74:889-891
    [99] T. Sugino and H. Hieda, Field emission characteristics of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition, Diamond Relat. Mater., ( 2000)9, 1233-1237.
    [100] T. Sugino, K. Tanioka, S. Kawasaki and J. Shirafuji, Electron emission from nanocrystalline boron nitride films synthesized by plasma-assisted chemical vapor deposition, Diamond Relat. Mater., ( 1998)7, 632-635.
    [101] T. Sogino, S. Kawasaki, K. Tanioka and J. Shirafuji, Electron emission from boron nitride coated Si field emitters, Appl. Phys. Lett., .( 1997)71, 2704-2706
    [102] T. Sugino, K. Tanioka, S. Kawasaki and J. Shirafuji, Characterization and Field Emission of Sulfur-Doped Boron Nitride Synthesized by Plasma-Assisted Chemical
    Vapor Deposition, Jpn. J. Appl. Phys., ( 1997)36, L463-L466.
    [103] C. Kimura, T. Yamamoto, T. Hori et al., Field emission characteristics of BN/GaN structure, Appl. Phys. Lett., ( 2001)79(27), 4533-4535.
    [104] T. Sogino and S. Tagawa, Effect of oxygen plasma treatment on field emission characteristics of boron-nitride films, Appl. Phys. Lett., ( 1999)74, 889-891.
    [105]T. Sugino,Y. Etou, S. Tagawa and T. Ando, Field emission characteristics of boron nitride films, J. Vac. Sci. Technol. ( 2000)B, 18, 1089-1092.
    [106] K. P. Loh, I. Sakaguchi, M. N. Gamo, S. Tagawa, T. Sugino and T. Ando, Surface conditioning of chemical vapor deposited hexagonal boron nitride film for negative electron affinity, Appl. Phys. Lett., ( 1999)74, 28-30.
    [107]M.J.Powers,M.C.Benjamin,L.M.Porter,R.J.Nemamich,R.F.Davis,J.J.Cuomo,G.L.Doll,and S.J.Harris,APPL.Phys.Lett. (1995)67,3912
    [108]R.W.Pryor,Appl.Phys.Lett. (1996)68,1802
    [109]H.H.Busta,R.W.Pryor,J. Appl.Phys(1997).82,5148
    [110]R.W.Pryor,L.Li ,and H.H.Basta,Mater.Res. Soc.Symp.Proc(1996).416,425
    [111]H.H.Busta,R.W.Pryor,J.Vac.Sci.Technol. (1998)B16(3),1207
    [112]T.Sugino,K.Tanioka,S.Kawasaki, and J.Shirafuji,Jpn.J.Phys.,Part (1997)2 36,L463
    [113]T.Sugino,S.Kawasaki,K.Tanioka,and J.Shirafuji,Appl.Phys.Lett. (1997)71,2704
    [114]Y.Yokota,S.Tagawa and T.Sugino,J.Vac.Sci.Technol. (1999)B 17(2), 642
    [115]A.H.Jayatissa,F.Sato,N.Sato,N.Saito,K.Sawada,T.Masuda,andY.Nakanishi,J.Vac.Technol. (1999)B17(1),237
    [116]C.Ronning,A.D.Banks,B.L.Mccarson,R.Schlesser,Z.Sitar,R.F.Davis,B.L.Ward,and R.J.Nemanich,J.Appl.Phys. (1998)84,5046
    [117]C.Kimura,T.Yamamoto,T.Sugino,J.Vac.Sci.Technol. (2001)B19(3),1051
    [118]M.Ye,M.P.Delplancke-Ogletree, Formation of cubic boron nitride thin films using ECR plasma enhanced CVD,Diamond and Related Materials (2000)9 1336-1341
    [119]Xiying Ma,Jinshun Yue,Deyan He,Guanghua Chen,Materials Letters (1998)36 206-209
    [120]Gu Guang-Rui,Wu Bao-Jia,Jin Feng-Xi,Li Quan-Jun,Li Zhe-Kui,ZHENG Wei-Tao, ZHAO Yong-Nian ,Jin Zeng-Sun,CHIN.PHYS.LETT, (2005)V22,N4,981
    [121]GU Guang-Rui,LI Ying-Ai,TAO Yan-Chun,HE Zhi,LI Jun-Jie,YIN Hong,LI Wei-Qing, ZHAO Yong-Nian, Influence of thickness on field emission characteristics of nanometer boron nitrude thin films,CHIN.PHYS.LETT, (2003)V20,N6,947
    [122]Kolitsch.Effects of titanium and Incorporations on the Structure of boron nitride thin films[J].Diamond and related materials, (1999)4:389-390
    [123]Syuichi Watanaable and Shojiro Miyake.Tranmission electron microscopy study of c-BN films deposited on a Si substrate[J].Appl.Phys.Lett. (1995)66(12):1478-1480
    [125]Weiqing Li,Guangrui Gu,Zhi He,Wei Feng,Lihua Liu,Chunhong Zhao,Yongnian Zhao,Influence of heat treatment on field emission characteristics of boron nitride thin films,Applied Surface Science, (2005)239 432-436
    [126]M.Capitelli,M.Dilonardo,E.Molinari,Chem.Phys.20,(1997)417-429
    [127]J.Dotan,W.Lindinger,J.Chem.Phyd.76,(1982)4972-4977
    [128] Fowler R H and Nordeim L M .1928 Proc R soc ,[M]London A 173
    [129]Spindt C A ,et al. J vac Sci Technolgy,[J] (1993)B :387
    [130]Okano K, et al .Nature,[J] (1993)381:140
    [131]zhu W ,et al .J Appl Phys [J] 2707(1997)
    [132]Collins P G ,Zettl A.Appl Phys Lett.[J] 69:1969(1996)
    [133] 薛增泉, 吴全德, 电子发射与电子能谱, 北京大学出版社, 1993.
    [134] H. H. Busta and R. W. Pryor, Electron emission from a laser ablated and laser annealed BN thin film emitter,J. Appl. Phys., 82:5148-5153.( 1997)
    [135] I. Brodie and P. R. Schwoeber, Vacuum microelectronic devices, Proceedings of The IEEE, 82(7):1006-1034.( 1994)
    [136]Waters Richard ,Zeghbreck Bart Van .Appl.Phys. Lett.,75:2410(1999)
    [137]Lang N D,Yacoby A,Imry Y. Phys .Rev.Lett., 63:1499(1989)
    [138]Adessi Ch,Devel M.Ultramicroscopy, 85:215(2000)
    [139]Bachelet G,Hamann D, Schluter M.Phys.Rev.B 26:4199(1982)
    [140]Lucas A,Vigneron J ,Bonon J et al .J.Phys.,C9:125(1984)
    [141]Han S,Ihm J .Phys.Rev .B, 61:9986(2000)
    [142]高本辉,崔素言,真空,科学出版社(1983)
    [143]I.Brodie ,and P.R.Schwoeber,Vaccum microelectronics devices,Proceedings of IEEE,82,1006(1994)
    [144]C.Kimura ,T.Yamamoto and T.Sugino,Field emission characteristics of boron nitride films deposition on Si substrates with cubic boron nitride crystal grains ,J.Vac .Sci.Technol. (2001)B,19:1051-1054
    [145]Powers M J,Benjamin M C,Porter L M,et al. Observation of a negative electron affinity for boron nitride[J]. Appl Phys Lett, (1995)67:3912-3914
    [146]Mieno M ,Yoshida T .Preparation of cubic boron nitride films by radio frequency bias sputtering [J]. Sur Coat Tech , (1992)52:87-92
    [147]Pryor P W .Carbon-deped boron nitride cold cathodes[J]. Appl Phys Lett, (1996)68:1802-1804
    [148]Sogino T ,Kawasakis,Tanioka K ,et al Electron emission from boron nitride coated Si field emitters[J] Appl Phys Lett ,71:2704-2706
    [149]Kimura C,Yamamoto T,Sugino T .Field emission characteristics of boron nitride films deposition Si substrates with cubic boron nitride crystal grains[J].J Vac Sci Technol (2001) B ,19:1051-1054
    [150]罗恩泽等。电子元件,[J] 第九期:1-7(1994)
    [151]C.Schaffnit,L.Thomas,F.Rossi,R.Hugon,Y.Pauleau ,Plasma diagnostics of r.f.PACVD of boron nitride using a BCl3-N2-H2-Ar gas mixture,Surface and Coatings Technology (1998)98 1262-1266
    [152]Hangsheng Yang,Chihiro Iwamoto,Toyonobu Yoshida,High-quality cBN thin films prepared by plasma chemical vapor deposition with time-dependent biasing technique,Thin Solid Films (2002)407 67-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700