新型番荔枝酰胺衍生物FLZ对去血清培养损伤星形胶质细胞的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的FLZ是番荔枝叶提取物番荔枝酰胺的合成衍生物,前期研究表明,该化合物在脑缺血模型上具有神经保护作用。但FLZ对星形胶质细胞的作用研究尚少。近年研究表明,星形胶质细胞在中枢神经系统疾病中具有重要的生理和病理意义。去血清培养是体外用于模拟脑缺血的常用模型之一。S100B是一种主要表达在星形胶质细胞中的Ca2+结合蛋白,在急性中风、心脏停搏、蛛网膜下腔出血中也表现出敏感、特异性强的生物标记物特点。在去血清培养损伤引起的星形胶质细胞氧化应激过程中,S100B参与其中。胞外S100B作用于细胞膜受体可引起活性氧簇(reactive oxidative speciies,ROS)生成,并由此对细胞造成氧化应激损伤。因此本论文旨在研究FLZ对去血清培养引起的星形胶质细胞S100B过量分泌的作用,以及FLZ在由此引发的星形胶质细胞氧化应激中的作用。
     方法在去血清培养的原代大鼠脑皮层星形胶质细胞模型上,以MTT法检测细胞存活率,Hoechst 33342染色后观察细胞核形态变化,ELISA方法检测细胞培养液中S100B蛋白含量,DCFDA法检测细胞内ROS生成。生化法检测超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活力,及丙二醛(MDA)与谷胱甘肽(GSH)含量。
     结果去血清培养致星形胶质细胞存活率显著下降(P<0.001),FLZ(1×10-7mol/L、3×10-7 mol/L、1×10-6 mol/L、3×10-6 mol/L可提高去血清培养条件下星形胶质细胞的存活率。去血清培养致原代培养的大鼠脑皮层星形胶质受损细胞核明显增多(P<0.001), FLZ各浓度均可减轻去血清培养造成的大鼠脑皮层星形胶质细胞核受损状况(P<0.001)。去血清培养4 h内,模型组星形胶质细胞培养液中S100B含量持续升高,4 h后与正常对照组相比明显增多(P<0.001).FLZ(1×10-7 mol/L,1×10-6 mol/L)组星形胶质细胞S100B分泌量缓慢升高,4 h后分泌量显著低于模型组(P<0.001)。模型组细胞内ROS含量较正常对照组升高4.11倍,FLZ (1×10-7 mol/L-3×10-6 mol/L)可显著的减少去血清培养造成的星形胶质细胞内ROS的过度生成。去血清培养致原代星形胶质细胞内SOD活力明显下降(P<0.001),脂质过氧化产物MDA明显增多(P<0.001),GSH含量明显降低(P<0.001),GSH-Px的活性升高P<0.01)。FLZ(3×10-7 mol/L-3×10-6 mol/L)可增加SOD活力,改善率分别为21%,41%,73%;减少MDA过量生成,改善率分别为39%,45%,63%;升高GSH含量,升高率分别为25%,33%,63%。(?)FLZ在1×10-7 mol/L、3×10-7 mol/L浓度下可逆转去血清损伤造成的GSH-Px活性变化,而1×10-6 mol/L和3×10-6 mol/L组对GSH-Px活性无明显影响。
     结论去血清培养致原代大鼠脑皮层星形胶质细胞损伤,FLZ对去血清培养损伤星形胶质细胞有明显的保护作用。FLZ通过减少去血清培养引起的S100B过度分泌从而降低ROS过度生成,增强细胞自身抗氧化系统,减轻去血清培养星形胶质细胞引起的氧化应激损伤。
Objective Compound FLZ is a synthesized squamosamide derivative shows neuroprotective effects on rat ischemia model according to early research. However little is known about its effects on astrocytes yet. Serum deprivation is a common model mimic the ischemia situation in vitro. Recently studies shows that astrocytes play an important role in the physiology and pathology of multiple central nervous system diseases. S100B is an astrocyte-specific Ca2+ binding protein when expressed in brain. S100B showed the sensitive and specific properties as a biomarker in acute stroke, cardiac arrest and subarachnoid hemorrhage. According to early results, S100B is involved in the serum deprivation induced astrocytic oxidative stress. The extracellular S100B could induce reactive oxidative species production through binding to membrane receptors, and thereupon induce oxidative injury intracellularly. Since its significance in the clinical diagnosis of multiple nervous system diseases of S100B, this thesis is focused on the effects of FLZ on serum deprivation induced astrocytic over secretion of S100B, and effects of FLZ on the followed oxidative stress induced by S100B over secretion.
     Methods Astrocytes were cultured under normal and serum-deprived condition. Firstly, the optimal concentrations of FLZ exerting protective effects against serum deprivation injury was determined by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Then, the morphological changes of cell nuclei were observed under fluorescence microscope after Hoechst 33342 staining. The level of secreted S100B was determined by ELISA. Furthermore, reactive oxygen species (ROS) in cultures was measured by fluorescence probe DCFDA. Finally, activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), concentrations of malondialdehyde (MDA) and glutathione (GSH) were determined using biochemical methods.
     Results Serum deprivation caused cell viability decrease significantly (P< 0.001, vs. control group), and FLZ (I×10-7 mol/L、3×10-7 mol/L、I×10-6 mol/L、3×10-6 mol/L) treatment could increase the cell viability by 80%,69%,42% and 34%, respectively. Serum deprivation increased astrocytic nuclei damage significantly (P< 0.001), and FLZ treatment attenuated the nuclei damage of primary cortical astrocytes cultures with improvement rates of 66%,82%,85%,97%, respectively. After 4 h serum deprivation, the medium S100B content of model group increased continuously and significantly (P< 0.001) vs. control group. Meanwhile, the extracellular S100B level of FLZ (1×10-7 mol/L, 1×10-6 mol/L) treated primary astrocytes increased slowly and significantly (P< 0.001) lower than model group. The intracellular ROS levels of model group rose to 4.11 fold of control group, FLZ (1×10-7 mol/L-3×10-6 mol/L) significantly attenuated the overproduction of ROS induced by serum deprivation. Cultured under serum deprivation circumstance significantly decreased the astrocytic SOD activity (P< 0.001) and GSH content (P< 0.001), meanwhile increased the MDA production (P< 0.001) and GSH-Px activity (P<0.01). FLZ (3×10-7 mol/L-3×10-6 mol/L) increased the SOD activity by 21%,41% and 73% respectively, reduced the MDA overproduction by 39%,45% and 63% respectively, and raised the GSH content by 25%,33% and 63%, respectively. FLZ (1×10-7 mol/L & 3×10-7 mol/L) could reverse the serum deprivation induced GSH-Px activity changes, while GSH-Px activities in the higher dose-treated groups were not affected by FLZ.
     Conclusion Serum deprivation could decrease the cell viability of primary cortical astrocytes significantly, and FLZ showed protective effects against serum deprivation induced cell damage. FLZ decreased the overproduction of ROS through attenuating the extracellular S100B level. FLZ demonstrated anti-oxidative effects to protect the serum-deprived astrocytes by inhibiting MDA over production, GSH level and SOD activity attenuation, and GSH-Px activity elevation. In conclusion, FLZ showed (?)tive effects of serum deprivation induced primary cortical astrocytes damage through decrease S100B production and enhance cellular anti-oxidative system.
引文
[1]杨小江,孙南君,郑启泰.番荔枝化学成分研究.药学学报,1992,(03):185-190.
    [2]季小慎.番荔枝酰胺的全合成研究.药学学报,1993,(06):428-431.
    [3]Feng W, Wei H, Liu GT. Pharmacological study of the novel compound FLZ against experimental Parkinson's models and its active mechanism. Mol Neurobiol, 2005,31(1-3):295-300.
    [4]葛文頔,马波,李伟,等.新型化合物FLZ抑制血管性痴呆模型大鼠脑内低氧诱导因子过表达.基础医学与临床,2010,(11):1138-1142.
    [5]Zhang D, Zhang JJ, Liu GT. The novel squamosamide derivative (compound FLZ) attenuated 1-methyl,4-phenyl-pyridinium ion (MPP+)-induced apoptosis and alternations of related signal transduction in SH-SY5Y cells. Neuropharmacology,2007,52(2):423-9.
    [6]Zhang D. Zhang JJ, Liu GT. The novel squamosamide derivative FLZ protects against 6-hydroxydopamine-induced apoptosis through inhibition of related signal transduction in SH-SY5Y cells. Eur J Pharmacol,2007,561(1-3):1-6.
    [7]Fang F, Liu GT. Novel squamosamide derivative (compound FLZ) attenuates Abeta25-35-induced toxicity in SH-SY5Y cells. Acta Pharmacol Sift 2008,29(2):152-60.
    [8]Barres BA. The mystery and magic of glia:a perspective on their roles in health and disease. Neuron,2008,60(3):430-40.
    [9]Marenholz I. Heizmann CW. Fritz G. S100 proteins in mouse and man:from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun.2004.322(4):1111-22.
    [10]Elting JW, de Jager AE. Teelken AW. et al. Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci.2000,181(1-2):104-10.
    [11]Goncalves D. Karl J. Leite M. et al. High glutamate decreases S100B secretion stimulated by serum deprivation in astrocytes. Neuroreport.2002.13(12):1533-5.
    [12]Huttunen HJ. Kuja-Panula J. Sorci G. et al. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem,2000.275(51):40096-105.
    [13]Stohs SJ. The role of free radicals in toxicity and disease. J Basic Clin Physiol Pharmacol, 1995.6(3-4):205-28.
    [14]Termini J. Hydroperoxide-induced DNA damage and mutations. Mutat Res. 2000.450(1-2):107-24.
    [15]王咏梅.自由基与谷胱甘肽过氧化物酶.解放军药学学报,2005,(05):369-371.
    [16]Eng LF. Ghirnikar RS. Lee YL. Glial fibrillary acidic protein:GFAP-thirty-one years (1969-2000). Neurochem Res.2000.25(9-10):1439-51.
    [17]Anderson CM. Swanson RA. Astrocyte glutamate transport:review of properties, regulation. and physiological functions. Glia.2000.32(1):1-14.
    [18]Sohn S. Kim EY. Gwag BJ. Glutamate neurotoxicity in mouse cortical neurons:atypical necrosis with DNA ladders and chromatin condensation. Neurosci Lett.1998.240(3):147-50.
    [19]Atabay C. Cagnoli CM. Kharlamov E. et al. Removal of serum from primary cultures of cerebellar granule neurons induces oxidative stress and DNA fragmentation:protection with antioxidants and glutamate receptor antagonists. J Neurosci Res.1996.43(4):465-75.
    [20]Dugan LL. Kim-Han JS. Astrocyte mitochondria in in vitro models of ischemia. J Bioenerg Biomembr,2004,36(4):317-21.
    [21]Ding Y. Kantarci A, Hasturk H. et al. Activation of RAGE induces elevated 02-generation by mononuclear phagocytes in diabetes. J Leukoc Biol.2007,81 (2):520-7.
    [22]Sorci G. Bianchi R, Riuzzi F. et al. S100B Proteia A Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. LID-656481 [pii], Cardiovasc Psychiatry Neurol, 2010.2010.
    [1]Fredholm BB, Chen JF, Cunha RA, et al. Adenosine and brain function. Int Rev Neurobiol, 2005,63:191-270.
    [2]Boison D. Adenosine and epilepsy:from therapeutic rationale to new therapeutic strategies. Neuroscientist,2005.11(1):25-36.
    [3]Ribeiro JA. What can adenosine neuromodulation do for neuroprotection. Curr Drug Targets CNS Neurol Disord.2005.4(4):325-9.
    [4]Wiesner JB. Ugarkar BG Castellino AJ. et al. Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J Pharmacol Exp Ther.1999.289(3):1669-77.
    [5]Zimmemann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol,2000.362(4-5):299-309.
    [6]Kowaluk EA, Jarvis MF. Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs.2000.9(3):551-64.
    [7]Huber A. Padrun V. Deglon N. et al. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A.2001.98(13):7611-6.
    [8]Pak MA. Haas HL. Decking UK. et al. Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocaropal slices. Neurophannacology. 1994.33(9):1049-53.
    [9]Dunwiddie TV. Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci.2001.24:31-55.
    [10]Gouder N. Scheurer L. Fritschy JM. et al. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci.2004.24(3):692-701.
    [11]Dunwiddie TV. Adenosine and suppression of seizures. Adv Neurol.1999.79:1001-10.
    [12]Moshe SL. Seizures early in life. Neurology.2000.55(5 Suppl 1):S15-20; discussion S54-8.
    [13]Wong M. Advances in the pathophysiology of developmental epilepsies. Semin Pediatr Neurol. 2005.12(2):72-87.
    [14]Studer FE. Fedele DE. Marowsky A. et al. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience.2006.142(1):125-37.
    [15]Fedele DE. Gouder N. Guttinger M. et al. Astrogliosis in epilepsy leads to overexpression of adenosine kinase. resulting in seizure aggravation. Brain.2005.128 (Pt 10):2383-95.
    [16]Winn HR. Welsh JE. Berne RM. et al. Changes in brain adenosine during bicuculline-induced seizures:effect of altered arterial oxygen tensions. Trans Am Neurol Assoc.1979.104:239-41.
    [17]Miller LP, Hsu C. Therapeutic potential for adenosine receptor activation in ischeinic brain injury. J Neurotrauma,1992,9 Suppl 2:S563-77.
    [18]Onodera H, Sato G, Kogure K. Quantitative autoradiographic analysis of muscarinic cholinergic and adenosine A1 binding sites after transient forebrain ischemia in the gerbil. Brain Res,1987,415(2):309-22.
    [19]Dragunow M, Faull RL. Neuroprotective effects of adenosine. Trends Pharmacol Sci, 1988.9(6):193-4.
    [20]Fedele DE, Li T, Lan JQ. et al. Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol,2006.200(1):184-90.
    [21]Kochanek PM, Vagni VA, Janesko KL, et al. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cercb Blood Flow Metab, 2006.26(4):565-75.
    [22]Pignataro G, Maysami S, Studer FE, et al. Downregulation of hippocampal adenosine kinase after focal ischemia as potential endogenous neuroprotective mechanism. J Cereb Blood Flow Metab.2008,28(1):17-23.
    [23]3rd LJJ. Alexander KM. Jarvis MF. et al. Inhibition of adenosine kinase during oxygen-glucose deprivation in rat cortical neuronal cultures. Neurosci Lett. 1998,252(3):207-10.
    [24]Hosli L. Hosli E. Uhr M. et al. Electrophysiological evidence for adenosine receptors on astrocytes of cultured rat central nervous system. Neurosci Lett.1987,79(1-2):108-12.
    [25]Santicioli P. Del BE, Tramontana M. et al. Adenosine inhibits action potential-dependent release of calcitonin gene-related peptide-and substance P-like immunoreactivities from primary afferents in rat spinal cord. Neurosci Lett.1992.144(1-2):211-4.
    [26]Salter MW. De Koninck Y. Henry JL. Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol.1993.41(2):125-56.
    [27]Li J. Perl ER. Adenosine inhibition of synaptic transmission in the substantia gelatinosa. J Neurophysiol.1994.72(4):1611-21.
    [28]Sawynok J. Sweeney MI. White TD. Classification of adenosine receptors mediating antinociception in the rat spinal cord. Br J Pharmacol.1986.88(4):923-30.
    [29]Reeve AJ. Dickenson AH. The roles of spinal adenosine receptors in the control of acute and more persistent nociceptive responses of dorsal horn neurones in the anaesthetized rat. Br J Pharmacol.1995.116(4):2221-8.
    [30]Herrick-Davis K. Chippari S. Luttinger D. et al. Evaluation of adenosine agonists as potential analgesics. Eur J Pharmacol.1989.162(2):365-9.
    [31]Yarbrough GG McGuffin-Clineschmidt JC. In vivo behavioral assessment of central nervous system purinergic receptors. Eur J Pharmacol.1981.76(2-3):137-44.
    [32]Ahlijanian MK. Takemori AE. Effects of (-)-N6-(R-phenyIisopropyi)-adenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur J Pharmacol.1985.112(2):171-9.
    [33]2nd KGJ. DeLandcr GE. Spinally-mediated antinociception is induced in mice by an adenosine kinase-. but not by an adenosine deaminase-. inhibitor. Life Sci. 1992.51(19):PL171-6.
    [34]Yamamoto T. Yaksh TL. Spinal pharmacology of thermal hyperesthesia induced by constriction injury of sciatic nerve. Excitatory ami no acid antagonists. Pain.1992.49(1):121-8.
    [35]Lavand'homme PM, Eisenach JC. Exogenous and endogenous adenosine enhance the spinal antiallodynic effects of morphine in a rat model of neuropathic paia Pain,1999,80(1-2):31-6.
    [36]Sollevi A. Adenosine for pain control. Acta Anaesthesiol Scand Suppl,1997,110:135-6.
    [37]Segerdahl M, Irestedt L, Sollevi A. Antinociceptive effect of perioperative adenosine infusion in abdominal hysterectomy. Acta Anaestliesiol Scand,1997.41(4):473-9.
    [38]Cronstein BN, Naime D, Firestein G The antiinflammatory effects of an adenosine kinase inhibitor are mediated by adenosine. Arthritis Rheum,1995,38(8):1040-5.
    [39]Bong GW. Rosengren S. Firestein GS. Spinal cord adenosine receptor stimulation in rats inhibits peripheral neutrophil accumulation. The role of N-methyl-D-aspartate receptors. J Clin Invest 1996,98(12):2779-85.
    [40]Porkka-Heiskanen T. Alanko L, Kalinchuk A. et al. Adenosine and sleep. Sleep Med Rev, 2002,6(4):321-32.
    [41]FELDBERG W, SHERWOOD SL. Infections of drugs into the lateral ventricle of the cat. J Physiol.1954,123(1):148-67.
    [42]Dunwiddie TV, Worth T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Then 1982.220(1):70-6.
    [43]Radulovacki M. Adenosine sleep theory:how I postulated it. Neurol Res.2005.27(2):137-8.
    [44]Alam MN, Szymusiak R. Gong H. et al. Adenosinergic modulation of rat basal forebrain neurons during sleep and waking:neuronal recording with microdialysis. J Physiol,1999.521 Pt 3:679-90.
    [45]Basheer R. Strecker RE. Thakkar MM. et al. Adenosine and sleep-wake regulation. Prog Neurobiol.2004,73(6):379-96.
    [46]Mackiewicz M. Nikonova EV. Zinunennann JE. et al. Age-related changes in adenosine metabolic enzymes in sleep/wake regulator.-areas of the brain. Neurobiol Aging. 2006,27(2):351-60.
    [47]Radek RJ. Decker MW, Jarvis MF. The adenosine kinase inhibitor ABT-702 augments EEG slow waves in rats. Brain Res.2004.1026(1):74-83.
    [48]Gomtsyan A. Didomenico S. Lee CH. et al. Synthesis and biological evaluation of pteridine and pyrazolopyrimidine based adenosine kinase inhibitors. Bioorg Med Chem Lett. 2004.14(16):4165-8.
    [49]McGaraughty S. Cowart M. Jarvis MF. Recent developments in the discovery of novel adenosine kinase inhibitors:mechanism of action and therapeutic potential. CNS Drug Rev. 2001.7(4):415-32.
    [50]McGaraughty S. Cowart M. Jarvis MF. et al. Anticoimilsant and antinociceptive actions of novel adenosine kinase inhibitors. CurrTop Med Chem.2005.5(1):43-58.
    [51]Yamada Y. Goto H. Ogasawara N. Purification and properties of adenosine kinase from rat brain. Biochim Biophys Acta.1980.616(2):199-207.
    [52]Yamada Y. Goto H. Ogasawara N. Adenosine kinase from human liver. Biochim Biophys Acta. 1981.660(1):36-43.
    [53]Jarvis MF. Yu H. Kohlhaas K. et al. ABT-702 (4-amino-5-(3-bromophenvl)-7-(6-morpholinopyridin-3-yl)pyrido[2.3-d]pyrimidine). a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties:I. In vitro characterization and acute antinociceptive effects in the mouse. J Pharmacol Exp Ther. 2000.295(3):1156-64.
    [54]Marin RM, Franchini KG, Rocco SA. Analysis of adenosine by RP-HPLC method and its application to the study of adenosine kinase kinetics. J Sep Sci,2007,30(15):2473-9.
    [55]Ugarkar BQ DaRe JM, Kopcho JJ. et al. Adenosine kinase inhibitors.1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. J Med Chein, 2000,43(15):2883-93.
    [56]Etherington LA, Patterson GE, Meechan L, et al. Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology,2009,56(2):429-37.
    [57]Miller LP. Jelovich LA. Yao L, et al. Pre-and peristroke treatment with the adenosine kinase inhibitor,5'-deoxyiodotubercidin, significantly reduces infarct volume after temporary occlusion of the middle cerebral artery in rats. Neurosci Lett,1996,220(2):73-6.
    [58]Kowaluk EA. Mikusa J. Wismer CT, et al. ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2.3-d]pyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties. II. In vivo characterization in the rat. J Pharmacol Exp Ther.2000,295(3):1165-74.
    [59]Ugarkar BG. Castellino AJ. DaRe JS. et al. Adenosine kinase inhibitors.3. Synthesis, SAR, and antiinflammatory activity of a series of 1-lvxofuranosyl nucleosides. J Med Chem, 2003,46(22):4750-60.
    [60]Boison D. Scheurer L, Zumsteg V. et al. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A.2002.99(10):6985-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700