土工袋装桩型复合地基解析理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土工袋装桩型复合地基是一种新型的复合地基类型,不仅具有竖向增强体复合地基的典型特征,同时具有排水固结的加固效应,而且适合在非常软弱的土体中应用,有望成为一种更有效的软土地基处理技术,具有广阔的应用前景。本文以土工袋装桩型复合地基为研究对象,运用空间轴对称问题的相关理论,建立了土工袋装桩型复合地基应力应变分析和固结计算的解析理论,为土工袋装桩型复合地基的设计计算提供了科学合理的方法,以促进该种复合地基的推广应用。本文针对土工袋装桩型复合地基主要做了如下的一些工作:
     首先,在等应变条件下,采用由桩体、土工袋及其加固的桩周土体所构成的空间轴对称单元体模型,基于桩、袋、土均为线弹性体、忽略桩土自重的影响以及桩与土工袋和土工袋与土体界面处满足位移协调等必要的少数假设条件,分别应用位移法和应力法,推导了土工袋装桩型复合地基桩体和土体的径向位移和竖向位移、桩体和土体的各向应力以及土工袋围压的解析表达式。
     其次,在得到土工袋装桩型复合地基变形解析解的基础上,建立了在瞬时加载和非瞬时加载两种工况下土工袋装桩型复合地基固结问题的控制方程,并运用求解偏微分方程的相关方法,求得了控制方程的解答,进而得到了土工袋装桩型复合地基固结度的解析解答。
     最后,在所得到的关于土工袋装桩型复合地基变形和固结问题的解析解的基础上,分析了土工袋刚度、面积置换率、桩土模量比等参数对于其变形和固结的影响,对土工袋装桩型复合地基的工作性状做了较为详细的分析。
     本文所建立的关于土工袋装桩型复合地基变形和固结问题的解析理论,摒弃了传统理论中诸多的假设条件,是更完善的计算理论。严谨的解析理论有利于保障土工袋装桩型复合地基加固机理分析的科学性,研究成果为土工袋装桩型复合地基中的土工袋受力分析、固结性状分析等提供了合理的设计计算方法。
Geosynthetic-encased column (GEC) is one kind of new composite foundation type not only has typical composite foundation characteristic of the vertical enhanced body, simultaneously has the drained consolidation reinforcement effect. So it can become one more economical effective soft clay ground treatment method hopefully. In this paper, we receive GEC as the object of study, use the correlation theories of the space axial symmetry and establish the stress-strain analysis and the consolidation analytical theory of GEC. The result of this paper provides the scientific and reasonable method for the design calculation of GEC, and promotes this kind of composite foundation to be popularization and application. All the work done is as follows:
     Firstly, under the equal strain condition, based on all the materials are linear-elastic homogenous materials, the column-soil system on a smooth base and neglecting the weights of column and soils, we use spatial axial symmetry unit cell model which constituted by the column, geotextile and surrounding soils. Then using the deformation method and stress method, we receive the analytical elastic solution expression of the radial and vertical displacements and all stresses of the column and the soil, as well as that of hoop force of the geotextile encasement.
     Secondly, on the basis of the analytical solution for deformation, we establish the consolidation governing equations of the GEC in two kinds of operating conditions of instantaneous load and non-instantaneous load. Then applying the relevant methods of partial differential equations, we get the solutions of consolidation governing equations. So the analytical solutions of consolidation degree for the GEC are obtained.
     Finally, we detailedly analysis the working properties of the GEC by discussing the influence of the stiffness of geotextile, area replacement ratio, modulus ratio and other parameters on the deformation and consolidation problems of the GEC.
     The analytical theory of deformation and consolidation problems about GEC establishing in this paper is the more perfect more scientific. This paper banishes many hypothesis conditions which were used by the traditional theories; the rigorous analytical solution theory is advantageous to safeguard the scientific nature of reinforcement mechanism analysis of geotextile coated column-type composite foundation, the research results can provide reliable and reasonable design calculation method for hoop force and consolidation property of GEC.
引文
[1] Abdelkrima M. and de Buhan P. An elastoplastic homogenization procedure for predicting the settlement of a foundation on a soil reinforced by columns, European Journal of Mechanics - A/Solids, 2007, 26(4): 736-757.
    [2] Alamgir M., Miura N., Poorooshasb H. B. et al. Deformation analysis of soft ground reinforced by columnar inclusions. Computers and Geotechnics, 1996, 18(4): 267-290.
    [3] Alexiew D., Horgam G J. and Brokemper D. Geotextile Encased Columns (GEC): load capacity & geotextile selection. Thomas Telford, London, 2003, 81-90.
    [4] Alexiew D., Brokemper D. and Lothspeich S. Geotextile encased columns (GEC): load capacity geotextile selection and pre-design graphs. Contemporary Issues in Foundation Engineering, ASCE, GSR 2005: n131.
    [5] Ambily A. P. and Gandhi S. R. Behavior of Stone Columns Based on Experimental and FEM Analysis, Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4):405-415.
    [6] Ayadat T. and Hanna A.M. Encapsulated stone columns as a soil improvement technique for collapsible soil. Ground Improvement, 2005, 9(4): 137-147.
    [7] Balaam N. P. and Booker J. R. Effect of Stone Column Yield on Settlement of Rigid Foundations in Stabilized Clay. International Journal for Numerical and Analytical Methods in Geomechanics. 1985, 9(4): 331-351.
    [8] Balaam N. P. and Booker J. R. Analysis of rigid rafts supported by granular piles. International Journal for Numerical and Analytical Methods in Geomechanics. 1981, 5(4): 379-403.
    [9] Black J. A., Sivakumar V., Madhav M. R.et al. Reinforced Stone Columns in Weak Deposits: Laboratory Model Study. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2007, 133(9): 1154-1161.
    [10] Baumann V. and Bauer G. E. The Performance of Foundations on Various Soils Stabilized by the Vibro-compaction Method. Canadian Geotechnical Journal. 1974, 3(2): 509-530.
    [11] Bouassida M., de Buhan P. and Dormieux L. Bearing capacity of a foundation resting on a soil reinforced by a group of columns. Geotechnique, 1995,45(1): 25-34.
    [12] Brauns J. Die Anfangstraglast von Schottersaulen in Bindingen Untergrund. Die Bautechnik, 1978, 55(8): 263-271
    [13] Cho-Sen WU, Yung-Shan HONG. The behavior of a laminated reinforced granular column. Geotextiles and Geomembranes, 2008, 26(4): 302-316.
    [14] Cho-Sen WU, Yung-Shan HONG. Laboratory tests on geosynthetic-encapsulated sand columns. Geotextiles and Geomembranes, 2009, 27(2): 107-120.
    [15] Cho-Sen WU, Yung-Shan HONG, Hsien-Chin LIN. Axial stress-relation of encapsulated granular column. Comput Geotech, 2009. 36(2): 226-240.
    [16] Duncan J. M. and Chang C. Nonlinear analysis of stress and strain in soils. J Soil Mech Found Div, ASCE 1970,96(5): 1629-1653.
    [17] Eubanks R. A. and Sternberg E. On the Axisymmetric Problem of Elasticity Theory for A Medium With Transverse Isotropy. Journal of Rotional Mechanics and Analysis. 1954, Vol.3.
    [18] Geduhn M., Raithel M. and Kempfert H. G. Practical aspects of the design of deep geotextile coated sand columns for the foundation of a dike on very soft soils. 4th International Symposium on Landmarks in Earth Reinforcement, LANDMARKS IN EARTH REINFORCEMENT, 2001, VOL 1: 545-548.
    [19] Gibson R. E. and Anderson W. F. In-Situ Measurement of Soil Properties with the Pressuremeter. Civil Engineering and Public Works Review, 1961, 56(658): 15-18.
    [20] Goughnour R. R. Settlement of Vertically Loaded Stone Columns in Soft Ground, Proc. 8~(th) European Conf. on Soil Mechanics, and Foundations Engineering, Helsinki, Finland, Vol.1, 235-240.
    [21] Goughnour R.R. and Bayuk A.A. Analysis of stone column soil matrix interaction under vertical load. Proc. Int. Conference on Soil Reinforcement, Paris, 1979, Vol. 1.
    [22] Goughnour R. R. and Bayuk A. A. Analysis of stone column-soil matrix interaction under vertical load, Int. Conf. on Soil Reinforcement, Paris, 1979,271-277.
    [23] Greenwood D.A. Mechanical improvement of soils below ground surface. Ground Engineering Proceedings Conference Organized by the Institution of Civil Engineers, London, June 1970, pp.11-22.
    [24] Greenwood D. A. Load Tests on Stone Columns. In Deep foundation improvements: design, construction and testing, ASTM SPT 1089. Philadelphia: American Society for Testing and Materials, 1991,189-209.
    [25] Greenwood J.H. The creep of geotextiles. Proceedings of the 4~(th) International conference on geotextiles, geomembranes and related products, The Hagne, ed. Den Hoedt G.Balkema, Rotterdam, Netherlands, 1990, 645-650.
    [26] Guetif Z., Bouassida M. and Debats J. M. Improved Soft Clay Characteristics Due to Stone Column Installation. Computers and Geotechnics. 2007,34 (2): 104-111.
    [27] Han J. and Gabr M. A. Numerical Analysis of Geosynthetic Reinforced and Pile Supported Earth Platforms over Soft Soil. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 44-53.
    [28] Han J. and Ye S. L. A simplified solution for the consolidation rate of stone column reinforced foundation. Journal of Geotechnical and Geoenvironmental Engineering. 2001, 127(7): 597-603.
    [29] Han J. and Ye S. L. A theoretical solution for consolidation rates of stone column-reinforced foundations accounting for smear and well resistance effects. The International Journal of Geomechanics. 2002, 2 (2): 135-151.
    [30] Hughes J.M.O. and Withes N.J. Reinforcing Soft Cohesive Soils with Stone Columns, Ground Engineering, 1974, 3(7): 288-291.
    [31] Hughes J.M.O., Withers N.J. and Greenwood D.A. Field trial of the reinforcing effect of a stone column in soil. Geotechnique. 1975. 25(1): 31-44.
    [32] Indraratna B., Bamunawita C. and Khabbaz H. Numerical modeling of vacuum preloading and field applications. Canadian Geotechnical Journal, 2004,41(6): 1098-1110.
    [33] Joel G. and Abdelmalek. Improvement of soft soils using geogrid encased stone columns. Geotextiles and Geomembranes, 2009, 27 (3): 167-175.
    [34] Jorge C., and Casar S. Consolidation around stone columns. Influence of column deformation. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(7): 851-877.
    [35] Katti K., Katti A.R. and Naik S. Monograph to analysis of stone columns with and without geosynthetic encasement. CBIP Publication, New Delhi, 1993.
    [36] Kempfert H. G. Ground improvement methods with special emphasis on column-type techniques. Int. Workshop on Geotechnics of Soft Soils-Theory and Practice-SC MEP. 2003.
    [37] Kempfert H. G. and Raithel M. Experiences on Dike Foundations and Land Fills on Very Soft Soils. Technical Committee TC 36 Soft Soils Foundation Engineering. International Symposium on soft soils foundation engineering in Mexico 2002.
    [38] Kempfert H. G., Raithel M. and Jaup A. Model tests for analysis of the bearing and deformation behaviour of column foundations. 12th European Conference on Soil Mechanics and Geotechnical Engineering, GEOTECHNICAL ENGINEERING FOR TRANSPORTATION INFRASTRUCTURE, 1999:1521-1526.
    [39] Kousik D., Basudhar P. K. and Sarvesh C. Generalized Model for Geosynthetic-Granular Fill-Soft with Stone Columns. International Journal of Geomechanics, ASCE 2007, 7(4): 266-276.
    [40] Lee J. S. and Pande G. N. Analysis of stone-column reinforced foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 1998,22(12): 1001-1020.
    [41] Leknitskii S. G. Theory of Elasticity of an Anisotropic Body, MiR Publishers. 1984.
    [42] Madhavi Latha G., Rajagopal K. and Krishnaswamy N. R. Experimental and Theoretical Investigations on Geocell-Supported Embankments. International Journal of Geomechanics, 2006, 6(1): 30-35.
    [43] Malarvizhi S.N. and Ilamparuthi K. Load versus settlement of clay bed stabilized with stone and reinforced stone columns. In: Proceedings of GeoAsia-2004, Seoul, Korea, 2004: 322-329.
    [44] Meyerhof G. G. Ultimate bearing capacity of sand layer overlying clay. Can. Geotech. J. 1974, 3: 223-229.
    [45] Murugesan S. and Rajagopal K. Geosynthetic-encased stone columns:NumericaI evaluation. Geotextile and Geomembranes, 2006, 24(6): 349-358.
    [46] Murugesan S. and Rajagopal K. Model tests on geosynthetic-encased stone columns. Geosynthetics International, 2007, 14(6): 346-354.
    [47] Poulos H. G. and Davis E. R. Prediction of down-drag forces in end-bearing piles. Journal of Geotechnical Engineering Division, ASCE, 1975, 101(GT2): 189-204.
    [48] Priebe H. J. "Abschatzung des Setzungsverhaltens eines durch Stopfverdichtung verbesserten Baugrundes". Di e Bautechnik, 1976, 5: 160-162.
    [49] Priebe H. J. Die Bemessung von Rüttelstopfverdichtungen. Di e Bautechnik, 1995, 72, Heft 3: 183-191.
    
    [50] Priebe H. J. Design of vibro replacement. Ground Engineering, 2005, 38(1): 25-27.
    [51] Raithel M. The bearing and deformation behavior of geosynthetic-encased sand-columns (in German). Series, Geotechnics, University of Kassel, 1999, No. 6.
    [52] Raithel M. "Zum Trag-und Verformungsverhalten von geokunststoffummantelten Sandsaulen". Schrifenreihe Geotechnik, Universit at Gesamthochschule Kassel, Heft 6.
    [53] Raithel M. and Kempfert H. G. "Bemessung von geokunststo ffummantelten Sandsaulen". Di e Bautechnik, 1999, 76, Heft 11:983-991.
    [54] Raithel M. and Kempfert H.G. Calculation models for dam foundations with geotextile coated sand columns. In: Proceedings of the International Conference on Geotechnical & Geological Engineering, Melbourne, 2000.
    [55] Raithel M., Kempfert H. G. and Kirchner A. Geotextile- encased columns (GEC) for foundation of a dike on very soft soils. Proceedings of the Seventh International Conference on Geosynthetics, Nice, France, 2002: 1025-1028.
    [56] Raithel M., Kirchner A., Schade C., et al. Foundation of constructions on very soft soils with geotextile encased columns-state of the art. Innovation in Grouting and Soil Improvement, ASCE, GSP, 2005, nI36.
    [57] Rajasekaran G. and Rao S.N. Compressibility behavior of limetreated marine clay. Ocean Engineering, 2002, 29(5): 545-559.
    [58] Rampello S. and Callisto L. Predicted and observed performance of an oil tank founded on soil-cement columns in clayey soils. Soils and Foundations, 2003,43(4): 229-241.
    [59] Rajagopal K., Krishnaswamy N. R. and Latha G. M. Behavior of sand confined with single and multiple geocells. Geotextiles and Geomembranes, 1999, 17(3): 171-184.
    [60] Rao B. G. and Ranjan G. Settlement Analysis of Skirted Granular Piles. ASCE. 1985, 111(11): 1264-1283.
    [61] Shao S. L. and Francis B. G. Instrumentation for Vibro Stone Column Soil Improvement. Field Measurements in Geomechanics ASCE. 2007.
    [62] Shen S.L., Chai J.C., Hong Z.S. et al. Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotextiles and Geomembranes, 2005, 23(6): 463-485.
    
    [63] Tans A., Tjahyono and Oo K. K. Simplified Plane-Strain Modeling of Stone-Column Reinforced Ground.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2008,134(2):185-194.
    [64]Thorburn S.Building structures supported by stabilized ground.Geotechnique,1975,25(1):83-94.
    [65]Van Impe W.F.Soil improvement techniques and their evolution.Balkema.Rotterdam,Netherlands,1989:63-66.
    [66]Vesic A.S.Expansion of cavities in infinite soil mass.Journal of the Soil Mechanics and Foundations Division,ASCE,1972,98(3):265-290.
    [67]Wang X.S.and Jiao J J.Analysis of soil consolidation by vertical drains with double porosity model.International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(14):1385-1400.
    [68]Xie K.H.,Lu M.M.,Hu A.F.,et al.A general theoretical solution for the consolidation of a composite foundation.Computers and Geotechnics,2009,36(1-2):24-30
    [69]Yoshikuni H.Design and control of Construction in the Vertical Drain Method.Tokyo:Gihoudou,1979.
    [70]Zhang Y G,Xie K H and Wang Z.Consolidation analysis of composite ground improved by granular columns considering variation of permeability coefficient of soil.ASCE GeoShanghai International Cofference Special Publication,Ground Modification and Seismic Mitigation(GSP 152),2006.
    [71]陈森.弹性力学基础.北京:科学出版社,1981.
    [72]陈善明,陈云敏,吴世明.软土地基经水泥搅拌桩加固后的固结特性分析.工程勘察.1998,(4):24-26.
    [73]陈振建,盛崇文.满堂加固碎石桩地基承载力.水利水运科学研究.1987,3.
    [74]高有潮.射水成孔法袋装砂石桩.地基处理,1990,1(1):25-30.
    [75]郭蔚东,钱鸿缙.饱和黄土碎石桩地基沉降计算.土木工程学报.1989,22(2):13-21.
    [76]龚文惠.碎石桩复合地基中桩土应力比的试验研究.土工基础,2000,14(4):57-60.
    [77]龚晓南.高等土力学.杭州:浙江大学出版社,1996.
    [78]龚晓南主编.土塑性力学(第二版).杭州:浙江大学出版社,1999.
    [79]龚晓南主编.地基处理手册(第二版).北京:中国建筑工业出版社,2000.
    [80]龚晓南主编.土力学(第二版).北京:中国建筑工业出版社,2002.
    [81]龚晓南.复合地基理论及工程应用(第二版).北京:中国建筑工业出版社,2007.
    [82]韩杰,叶书麟,曾志贤.碎石桩加固沿海软土的试验研究.工程勘察,1990,18(5):1-6.
    [83]贺会团,张献民,赵维炳.瞬态瑞雷面波检测碎石桩复合地基承载力研究.岩土工程学报,2006,28(8):1039-1043.
    [84]黄小军,陈晨,边立杰.对一种振冲碎石桩复合地基沉降计算方法--Priebe法的改进.岩土工程技术,2008,22(3):145-147.
    [85]李广信主编.高等土力学.北京:清华大学出版社,2004.
    [86]刘飞,高全臣,赵延林.碎石桩、灰土桩复合地基桩土应力与变形模量关系试验研究.建井技术,2004,25(5):39-47.
    [87]刘和元,刘玉松.超长水泥土搅拌桩复合地基性状研究.东南大学学报(自然科学版).1999,29(2):63-69.
    [88]刘杰,张可能.柔性基础下群桩复合地基荷载传递规律及计算.岩土力学,2003,24(2):178-182.
    [89]刘杰,赵明华.碎石桩复合地基性状的弹塑性分析.岩土力学.2006,27(10):1678-1684.
    [90]刘杰,赵明华,何杰.碎石桩复合地基承载及变形性状研究.湖南大学学报(自然科学版),2007,34(5):15-19.
    [91]刘晓红,张永波.CFG桩与碎石桩组合桩复合地基在工程中的应用.山西建筑,2004.30(16):76-77.
    [92]卢萌盟.复杂条件下复合地基固结解析理论研究.杭州:浙江大学博士论文。2009.
    [93]卢萌盟,谢康和,王坤,齐添.考虑桩体内径向渗流的复合地基固结解.固体力学学报,2009.30(2):155-161.
    [94]倪士坎,潘秋元.土工织物袋装砂石桩加固软土地基.第五届全国土力学及基础工程学术会议论文选集.1987.
    [95]盛崇文.碎石桩复合地基的沉降计算.土木工程学报.1986,19(1).
    [96]石亦平,周玉蓉.ABAQUS有限元分析实例详解.北京:机械工业出版社,2006.
    [97]王金昌,陈页开.ABAQUS在土木工程中的应用.杭州:浙江大学出版社,2006.
    [98]王瑞春,谢康和.双层散体材料桩复合地基固结解析理论.岩土工程学报,2001,23(4):419-422.
    [99]王瑞春,谢康和.半透水边界的竖向排水井地基粘弹性固结分析.长江科学院院报.2001.18(6):33-36.
    [100]王瑞春,谢康和,关山海.变化荷载下散体材料桩复合地基固结解析解.浙江大学学报(工学版).2002,36(1):12-16.
    [101]王瑞春,谢康和,唐晓武.未打穿散体材料桩复合地基固结解析研究.公路交通科技.2004.21(6):12-16.
    [102]谢康和.砂井地基:固结理论、数值分析与优化设计.杭州:浙江大学博士论文.1987.
    [103]谢康和.复合地基固结理论研究现状与发展.地基处理.1993.4(3):1-14.
    [104]邢皓枫,龚晓南,杨晓军.碎石桩复合地基固结简化分析.岩土工程学报,2005,27(5):521-524.
    [105]邢皓枫,杨晓军,龚晓南.刚性基础下水泥土桩复合地基固结分析.浙江大学学报(工学版),2006,40(3):485-489.
    [106]徐少曼,陆国云.袋装砂石桩复合地基的桩土应力比及其变化规律.第六届全国土力学及基 础工程学术会议论文选集,1991:707-710.
    [107]徐少曼,陆国云.袋装砂石桩复合地基沉降计算.岩土工程师,1991,3(3):21-25.
    [108]徐至钧主编.振冲法和砂石桩法加固地基.北京:机械工业出版社,2005.
    [109]徐芝纶.弹性力学简明教程(第三版).北京:高等教育出版社,2002.
    [110]杨涛.路堤荷载下柔性悬桩复合地基的沉降分析[J].岩土工程学报,2000,22(6):741-743.
    [111]姚琪阳.碎石桩复合地基承载机理及优化设计研究.长沙:湖南大学土木工程学院.2004.
    [112]叶观宝,叶书麟.地基加固新技术.北京:机械工业出版社,1999.
    [113]俞茂宏.岩土类材料的统一强度理论及应用.岩土工程学报,1994,16(2):1-10.
    [114]曾又林,曹国兴.弹性力学空间轴对称问题通解的研究.应用力学学报,1989,6(3):123-126.
    [115]张定.散体材料桩复合地基的沉降分析与计算.铁道学报,1998,20(6):98-104
    [116]张土乔.水泥土的应力应变关系及搅拌桩破坏特性研究,浙江大学博士学位论文.1992.
    [117]张土乔,龚晓南,曾国熙.水泥土桩复合地基固结分析.水利学报.1991(10):32-37.
    [118]张先明,葛忻声,龚晓南.长短桩复合地基沉降计算探讨.地基处理理论与实践.北京:中国水利水电出版社.2002.
    [119]张仪萍,徐栋.柔性桩复合地基的沉降分析.浙江大学学报(工学版),2007,41(1):71-75.
    [120]张仪萍,俞亚南,周宏伟.桥头粉喷桩复合地基工后沉降原因分析.岩土工程.2006,27(6):1171-1174.
    [121]张玉国,谢康和,应宏伟,胡安峰.双面半透水边界的散体材料桩复合地基固结分析.岩土工程学报程学报,2005,27(3):305-307.
    [122]赵明,赵明华,陈昌富.确定碎石桩复合地基桩土应力比的一种新方法.湖南大学学报(自然科学版),2002,29(2):112-116.
    [123]赵明华,张玲,刘敦平.散体材料桩复合地基桩土应力比分析.中南大学学报(自然科学版),2007,38(3):555-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700