口蹄疫病毒干扰RNA转基因小鼠模型的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:口蹄疫是由口蹄疫病毒引起的一种偶蹄动物急性、高度传播性疾病,由于口蹄疫病毒存在7个血清型和70多个亚型,各型间不存在交叉保护作用,所以用疫苗和传统的自然育种方法很难控制此病。而且此病近年来在无口蹄疫国家的爆发给发病国和邻近国家造成巨大的经济损失。因此,研究并发展新的抗病毒方法以控制口蹄疫是非常必要的。RNA干扰(RNAi)是广泛存在于生物体内的由21-23nt小双链RNA诱导序列特异性的转录后的基因表达沉默现象,RNAi对基因表达的调控、病毒感染的防护、基因转座的控制等都具有重要的意义。RNAi从发现开始就受到病毒学研究者的高度重视,被认为是抗病毒感染最有效的方法之一。许多学者以人工诱导RNAi的方式进行了病毒复制的干扰研究,并取得了良好的进展。为了发展控制口蹄疫的新方法,本研究对口蹄疫病毒的体内外复制进行了RNA干扰的探索,在此基础上,构建了靶向口蹄疫病毒的siRNA的转基因小鼠模型,并对所得的转基因鼠进行抗病毒的评价。为RNAi应用于口蹄疫病毒的基因功能研究以及口蹄疫的防治积累了必要的实验数据,为动物的抗病育种提供一条新的思路。
     方法:对7个血清型的FMDV基因组序列进行同源性比较后,初步筛选7个siRNA作用的靶位点。根据siRNA表达载体pSilencer 5.1–H1 Retro对插入序列的要求,设计合成了7个针对FMDV的shRNA表达序列的DNA序列。构建针对以上靶序列的siRNA表达载体。选择其中针对高保守的2B、3D区重组质粒瞬时转染BHK-21单层细胞后接种O、A、AsiaI型口蹄疫病毒检测在细胞水平上表达的siRNA对病毒复制抑制效果;将重组质粒注射乳鼠后用5 LD50和20 LD50的O型、AsiaI型FMDV感染观察小鼠死亡情况;在对细胞水平病毒繁殖有一定效果的基础上,利用显微注射法构建了靶向口蹄疫病毒2B、3D区的siRNA的转基因小鼠模型。为了检测siRNAs抗病毒的活性,我们对F1代成年鼠直接皮下接种0.5 ml 100 LD50 AsiaI FMDV口蹄疫病毒,72h后小鼠经眼眶放血处死,及时取其心脏、肝脏、脾脏、肺脏和肾脏制备常规病理切片,同时观察病变。用免疫组织化学染色法来评价转基因小鼠对口蹄疫病毒的抵抗作用。
     结果:经酶切和序列测定,正确构建了靶向FMDV的siRNA表达载体,分别命名为:pSi-FMDV1、pSi-FMDV2、pSi-FMDV3、pSi-FMDV4、pSi-FMDV5、pSi-FMDV6、pSi-FMDV7。用大量制备的重组质粒pSi-FMD2、pSi-FMD3转染BHK-21单层细胞后接种病毒,结果发现,与对照组相比,实验组细胞出现细胞病变现象的程度要轻;不同时间段收集的细胞上清液测得的TCID50值比对照有一定程度的降低。注射重组质粒后对小鼠攻毒可使小鼠模型发病率降低,小鼠的死亡数减少。
     在以上基础上将上述两个包含有整个表达框的siRNA片段经显微注射法构建了转基因小鼠模型。FMD2基因共注射506枚受精卵,移植到23只假孕母鼠输卵管内,其中17只怀孕,产仔104只。FMD3基因共注射469枚受精卵,移植到22只假孕母鼠输卵管内,其中9只怀孕,产仔55只。所有F0代小鼠经PCR检测,结果共有6只为阳性。转基因亲代小鼠与正常异性健康小鼠交配后,其后代鼠经PCR检测,有20%-30%遗传获得转基因;转基因小鼠之间进行交配后,100%的后代鼠遗传获得转基因。目前,FMD2基因传代到F3代。FMD3基因已经传至F6代,仍有20%左右转基因阳性小鼠检出。转基因小鼠外表未见任何异常。
     对F1代成年鼠直接感染口蹄疫病毒,感染后的转基因小鼠取组织制备石蜡切片,与正常小鼠感染后的组织切片比较病理变化的程度;同时对切片进行免疫组织化学染色,检测转基因小鼠体内表达的siRNA对病毒复制的抑制效果。结果表明:与对照相比,转基因小鼠攻毒后各组织器官病变轻微;其中,脾脏的脾小体明显增大,显示转基因小鼠体内细胞免疫功能加强;免疫组织化学结果显示,在对照组小鼠的脾脏、肝脏和肾脏中有病毒粒子的存在。而在转基因小鼠,只在脾脏和肝脏中可见少量的阳性病毒粒子。结论:以上结果表明设计的siRNA在细胞水平上和个体水平上都对口蹄疫病毒复制有一定的抑制效果;为大家畜的抗病育种提供了一个思路。
Object: Foot-and-mouth disease (FMD),whose etiological agent is foot-and-mouth disease virus (FMDV), is an acute and highly contagious disease occurring in cloven-hoofed animals. FMDV has 7 serotypes and over 70 subtypes. Owing to the absence of reciprocal protection among all the serotypes, it is difficult to control FMD through vaccination and impossible to eliminate FMD by conservative natural breeding. A recent occurrence of a large epidemiogenesis has made the development of emergency antiviral strategies essential for preventing outbreaks of FMD.
     RNA interference(RNAi)refers to the process of sequence-specific, posttranscriptional gene silencing (PTGS) conserved in a wide range of eukaryotic organisms from plants to mammals,which is induced by 21- to 23-nucleotide (nt) siRNA that demonstrates sequence homology to the silenced gene. It is an important mechanism of cellular defense and differentiation regulation and plays an important role in the regulation of gene expression,the prevention of viral infection and the control of gene transposition. siRNA has showed its potential antiviral abilities in cultured mammalian cells and animals,and has been used as a new powerful tool for gene-specific therapeutics for viral disease. With the progressions of the research about RNAi,some investigations have been performed successfully to inhibit the replication of viruses. To develop new methods for controlling FMD, In this work, we describe the use of RNAi in inhibiting virus replication in BHK-21cells and suckling mice. On the foundation,FMDV siRNAs transgenic mice model were prepared and the resistance to replication of FMDV was evaluated, which offers an insight into the use of RNAi in animal breeding for disease resistance and necessary experimental data for study on gene function of FMDV and prevention of FMD by RNAi.
     Methods: Firstly,7 target sequences aimed at the FMDV mRNAs of the construction proteins were designed,the insert DNA sequences were synthesized respectively and their expression vector were constructed based on the plasmid pSilencer 5.1-H1 Hygro(Ambion).Two recombinant plasmids targetted to conservative 2B、3D regions were transfected to BHK-21 cell monolayer.The inhibition of siRNAs to FMDV replication was detected on transfected cell ,which were inoculated with O、A、AsiaI FMDV; Suckling mice were infected with 5 LD50 and 20 LD50 O、A FMDV after injected with two plasmids and the death numbers were observed; On the foundation,transgenic mice of FMDV siRNAs were prepared by microinjection. To test the anti-FMDV activity of the siRNAs, we challenged F1 positive transgenic mice with 0.5 ml 100 LD50 AsiaI FMDV by a peritoneal injection. All saline-treated mice were control group. 72h after the viral challenge,the mice were executed by exanguinating from fossa orbitalis and the heart,liver,spleen,lung,kidney were cut and fixed by 10% formaline.Routine pathological section were prepared and the pathologic change was observed by microscope. The resistance to FMDV infection of transgenic mice was evaluated by immunohistochemistry assay.
     Results: By identification, FMDV siRNA expression vectors were constructed and they were named: pSi-FMDV1、pSi-FMDV2、pSi-FMDV3、pSi-FMDV4、pSi-FMDV5、pSi-FMDV6、pSi-FMDV7. It was demonstrated that transfection of BHK-21 cells with the 2 siRNA-expressing plasmids --pSi-FMD2、pSi-FMD3-- could induce a lower CPE compared with the controls. Further, the TCID50 of the FMDV serotypes A, O, and Asia 1 detected in supernatants collected from cells transfected with FMDV-specific siRNA-expressing plasmids was lower than that of control cells. In addition, when challenged by 5 LD50 or 20 LD50 of the FMDV serotypes A, O, or Asia 1 after injecting FMDV-specific siRNA-expressing plasmids, 10–40% suckling mice could resist virus infection. On the foundation,transgenic mice of FMDV siRNAs were prepared by microinjection.The positive integration rate of F0 was low,while that of F1、F2、F3、F4 were 10%-20%.At present F6 transgenic mice were passaged and the phenotype of offspring had no any abnormality. From the results of H.E staining of different pathological section,compared with control,the pathologic change of transgenic mice was light or almost normal.Especially, the splenic corpuscle of transgenic mice augmented and macrophage、epithelioid cell node in junction of white pulp and red pulp increased obviously.The results of immunohistochemistry showed that FMDV could be detected in liver,spleen,kidney of control mice and the number of virus in spleen was large.However,FMDV only could be detected in spleen and liver of transgenic mice and the number was little,compared with control.
     Conclusion: The results showed that the siRNAs targetted to FMDV can inhibit virus replication in vitro and in vivo at some degree,which offered an insight into the use of RNAi in large livestock breeding for disease resistance.
引文
[1] 谢庆阁,翟中和主编.畜禽重大疫病免疫防制研究进展.北京:中国农业科技出版社,1996,l-31.
    [2] Bachrach H L.Foot-and-Mouth disease virus,properties,molecular biology and immunogenicity.in:Romberger J A(Ed).Beltsvilld Symposia in Agricultural Research.I.Virology in Agriculture.Allanheld,Osmun,Montclair NJ.1977,3-32.
    [3] Belsham G J.Distinctive features of foot-and-mouth disease virus,a member of the picornavirus family;aspects of virus protein synthesis,protein processing and structure.Prog Biophys Mol Biol.1993,60:241-260.
    [4] Brooksby J B.Portaiys of virues:Foot-and-Mouth disease virus.Intervirology,1982,18:1-23.
    [5] Brown F.Structure-function relationships in the picornaviruses.in:Perez-Bercoff R(Ed).The molecular Biology of picornaviruses.New York:Plenum Press,1977,49-72.
    [6] Domingi E,Mateu M G,Martinez M A,et al.Genetic variability and antigenic diversity of foot-and-mouth disease virus.in:Kurstak E,Marusyk RG,Murpht SA(Eds)Applied Virology research.Vol 2. New York:Plenum publishing Corp,1990,233-266.
    [7] Sellers R F.Quantitative aspects of the spread of foot-and-mouth disease.Vet Bul.1971,41:431-439.
    [8] Burrows R,Mann J A,Garland A J,et al.The pathogenesis of natural and simulated natural foot-and-mouth disease infection in cattle.J Comp Pathol,1981,91:599-609.
    [9] Salt J S.The carrier state in foot and mouth disease virus.An immunological review.Br Vet J,1993,149:207-223.
    [10] Gebauer F,de la Torre J C,Gomes I,et al:Rapid selection of genetic and antigenic variants of foot-and-mouth disease virus during persistence in cattle.J Virol.1988,62:2041-2049.
    [11] 庄任礼。中国动物检疫。1998,15(3):49-50。
    [12] 农业部畜牧兽医司。家畜口蹄疫及其防制。北京:中国农业科技出版社,1994。
    [13] 郭志儒,金宁一。2001 年英国口蹄疫流行回顾。中国兽医学报,2002,22(1):80-81.
    [14] 卢永干。1997 年台湾省口蹄疫流行概况。中国兽医科技,1998,28(5):43。
    [15] http://www.nff.org.au/pubs/fnm-apr 01 asp
    [16] Foot-and-mouth disease-UK(67),http://www.promedmail.org
    [17] http://www.defra.gov.UK/foot and mouth/cases/index:html
    [18] http://www.fao.org/ag/AGA/AGAH/EU FMD/Nes/2001UKE 18.pdf
    [19] UK FMD news,the pig site Newsletter,28th Nov,2001.http://www.the pig site.com
    [20] http://argument.independent.co.UK/leading-articles/story.jsp?story=107504
    [21] http://www.ananova.com/your news/story/sm-461479.html
    [22] Spier RE.FMD in the UK-the 2001 outbreak,What if?Vaccine,2001,19:4339-4341.
    [23] Doel, T. R.. FMD vaccines. Virus Res. 2003, 91:81–99.
    [24] Bergmann, I. E., V. Malirat, E. Neitzert, E. Beck, N. Panizzuti, C. Sanchez, and A. Falczuk. Improvement of a serodiagnostic strategy for foot-and-mouth disease virus surveillance in cattle undersystematic vaccination:a combined system of an indirect ELISA 3ABC with an enzyme-linked immunoelectrotransfer blot assay. Arch. Virol. 2000. 145:473–489.
    [25] De Diego, M., E. Brocchi, D. Mackay, and F. De Simone. The nonstructural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. Arch.Virol. 1997.142:2021–2033.
    [26] Bachrach, H. L., D. M. Moore, P. D. McKercher, and J. Polatnick. Immune and antibody responses to an isolated capsid protein of foot-andmouth disease virus. J. Immunol. 1975. 115:1636–1641.
    [27] Kleid, D. G., D. Yansura, B. Small, D. et al. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science .1981. 214:1125–1129.
    [28] DiMarchi, R., G. Brooke, C. Gale, et al. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 1986. 232:639–641.
    [29] Francis, M. J., G. Z. Hastings, F. Brown, J. et al. Immunological evaluation of the multiple antigen peptide (MAP) system using the major immunogenic site of foot-and-mouth disease virus. Immunology 1991. 73:249–254.
    [30] Nargi, F., E. Kramer, J. Mezencio, J. et al. Protection of swine from foot-and-mouth disease with one dose of an all-D retro peptide.Vaccine 1999. 17:2888–2893.
    [31] Kitson, J. D., K. L. Burke, L. A. Pullen,et al. Chimeric polioviruses that include sequences derived from two independent antigenic sites of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies against FMDV in guinea pigs. J. Virol. 1991. 65:3068–3075.
    [32] Wong, H. T., S. C. Cheng, E. W. Chan,et al.. Plasmids encoding foot-and-mouth disease virus VP1 epitopes elicited immune responses in mice and swine and protected swine against viral infection. Virology 2000.278:27–35.
    [33] Wong, H. T., S. C. Cheng, F. W. Sin,et al.A DNA vaccine against foot-and-mouth disease elicits an immune response in swine which is enhanced by co-administration with interleukin-2. Vaccine 2002. 20:2641–2647.
    [34] Wigdorovitz, A., D. M. Perez Filgueira, N.et al. Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1. Virology 1999.264:85–91.
    [35] Tami, C., O. Taboga, A. Berinstein, J. I.et al. Evidence of the coevolution of antigenicity and host cell tropism of foot-and-mouth disease virus in vivo. J. Virol. 2003.77:1219–1226.
    [36] Bachrach, H. L. Foot-and-mouth disease. Annu. Rev. Microbiol. 1968.22: 201–244.
    [37] Brooksby, J. B. Portraits of viruses: foot-and-mouth disease virus. Intervirology 1982. 18:1–23.
    [38] McKenna, T. S., J. Lubroth, E. Rieder, B. Baxt, and P. W. Mason. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J. Virol. 1995.69:5787–5790.
    [39] Baranowski, E., C. M. Ruiz-Jarabo, F. Lim, and E. Domingo. Foot-and-mouth disease virus lacking the VP1 G-H loop: the mutant spectrum uncovers interactions among antigenic sites for fitness gain.Virology 2001. 288:192–202.
    [40] Taboga, O., C. Tami, E. Carrillo, J. I.et al. A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. J. Virol. 1997. 71:2606–2614.
    [41] Zhao, Q., J. M. Pacheco, and P. W. Mason. Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J. Virol. 2003.77:3269–3280.
    [42] Chinsangaram, J., P. W. Mason, and M. J. Grubman. Protection of swine by live and inactivated vaccines prepared from a leader proteinasedeficient serotype A12 foot-and-mouth disease virus. Vaccine 1998.16:1516–1522.
    [43] Mason, P. W., M. E. Piccone, T. S. McKenna, J. Chinsangaram, and M. J. Grubman. Evaluation of a live-attenuated foot-and-mouth disease virus as a vaccine candidate. Virology 1997. 227:96–102.
    [44] 崔治中。中国兽药杂志。1997,1:53-58。
    [45] 谢文凯。微生物通报。2000,27(1):7075-7077。
    [46] Rueckert, R. R. Picornaviridae: the viruses and their replication,. In B. N. Fields, D. M. Knipe, and P. H. Howley (ed.), Fields virology, 1996.3rd ed. 609–654.Lippincott-Raven, Philadelphia, Pa.
    [47] Grubman, M. J. The 5'end of foot-and-mouth disease virion RNA contains a protein covalently linked to the nucleotide pUp. Arch. Virol. 1980. 63:311–315.
    [48] Grubman, M. J., B. H. Robertson, D. O. Morgan, D. M. Moore, and D.Dowbenko. Biochemical map of polypeptides specified by foot-and-mouth disease virus. J. Virol. 1984.50:579–586.
    [49] Robertson, B. H., M. J. Grubman, G. N. Weddell,et al. Nucleotide and amino acid sequence coding for polypeptides of foot-and-mouth disease virus type A12. J. Virol. 1985.54:651–660.
    [50] Beck, E., S. Forss, K. Strebel, R. Cattaneo, and G. Feil. Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Res. 1983. 11:7873–7885.
    [51] Clarke, B. E., D. V. Sangar, J. N. Burroughs,et al. Two initiation sites for foot-and-mouth disease virus polyprotein in vivo. J. Gen. Virol. 1985. 66:2615–2626.
    [52] Cao, X., I. E. Bergmann, R. Fullkrug, and E. Beck. Functional analysis of the two alternative translation initiation sites of foot-and-mouth disease virus. J. Virol. 1995. 69:560–563.
    [53] Piccone, M. E., E. Rieder, P. W. Mason, and M. J. Grubman. The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. J. Virol. 1995.69:5376–5382.
    [54] Guarne, A., B. Hampoelz, W. Glaser, X.et al. Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. J. Mol. Biol. 2000. 302:1227–1240.
    [55] Cowan, K. M., and J. H. Graves. A third antigenic component associated with foot-and-mouth disease infection. Virology 1966. 30:528–540.
    [56] Lowe, P. A., and F. Brown. Isolation of a soluble and template dependent foot-and-mouth disease virusRNA polymerase. Virology 1981. 111:23–32.
    [57] Newman, J. F., B. Cartwright, T. R. Doel, and F. Brown. Purification and identification of the RNA-dependent RNA polymerase of foot-and-mouth disease virus. J. Gen. Virol. 1979. 45:497–507.
    [58] Robertson, B. H., D. O. Morgan, D. M. Moore ,et al. Identification of amino acid and nucleotide sequence of the foot-and-mouth disease virus RNA polymerase. Virology 1983. 126:614–623.
    [59] Andino, R., G. E. Rieckhof, P. L. Achacoso, and D. Baltimore. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 1993. 12:3587–3598.
    [60] Barton, D. J., B. J. O’Donnell, and J. B. Flanegan. 5'cloverleaf in poliovirus RNA is a cis-acting replication element required for negativestrand synthesis. EMBO J. 2001.20:1439–1448.
    [61] Xiang, W., K. S. Harris, L. Alexander, and E. Wimmer. Interaction between the 5'-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. J. Virol. 1995. 69:3658–3667.
    [62] Escarmis, C., M. Toja, M. Medina, and E. Domingo. Modifications of the 5' untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture. Virus Res. 1992. 26:113–125.
    [63] Gamarnik, A. V., and R. Andino. Two functional complexes formed by KH domain containing proteins with the 5_-noncoding region of poliovirus RNA. RNA 1997. 3:882–892.
    [64] Escarmis, C., J. Dopazo, M. Davila, et al. Large deletions in the 5'-untranslated region of foot-and-mouth disease virus of serotype C. Virus Res. 1995.35:155–167.
    [65] Jang, S. K., H. G. Krausslich, M. J. Nicklin,et al. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 1988. 62:2636–2643.
    [66] Pilipenko, E. V., A. P. Gmyl, S. V. Maslova,et al. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 1992. 68:119–131.
    [67]. Pilipenko, E. V., S. V. Maslova, A. N. Sinyakov, and V. I. Agol. Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res. 1992.20:1739–1745.
    [68] Gutierrez, A., E. Martinez-Salas, B. Pintado, and F. Sobrino. Specific inhibition of aphthovirus infection by RNAs transcribed from both the 5'and the 3' noncoding regions. J. Virol. 1994. 68:7426–7432.
    [69] Saiz, M., S. Gomez, E. Martinez-Salas, and F. Sobrino. Deletion or substitution of the aphthovirus 3'NCR abrogates infectivity and virus replication. J. Gen. Virol. 2001.82:93–101
    [70] Brown, C. C., M. E. Piccone, P. W. Mason,et al. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J. Virol. 1996. 70:5638–5641.
    [71] Dunn, C. S., and A. I. Donaldson. Natural adaption to pigs of a Taiwanese isolate of foot-and-mouth disease virus. Vet. Rec. 1997. 141:174–175.
    [72] Huang, C.-C., M.-H. Jong, and S.-Y. Lin. Characteristics of foot-and-mouth disease virus in Taiwan. J. Vet. Med. Sci. 2000. 62:677–679.
    [73] Nunez, J. I., E. Baranowski, N. Molina, C. M. et al. A single amino acid substitution in nonstructuralprotein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig. J. Virol. 2001. 75:3977–3983.
    [74]. Martinez-Salas, E., J. C. Saiz, M. Davila,et al. A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translation in vivo. J. Virol. 1993. 67:3748–3755.
    [1] Jackson DA, Symons RH, Berg P, Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA.1972. 69: 2904–2909.
    [2] Cohen SN, Chang AC, Boyer HW, Helling RB, Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA .1973.70:3240–3244.
    [3] Jaenisch R, Fan H, Croker B, Infection of preimplantation mouse embryos and of newborn mice with leukemia virus: tissue distribution of viral DNAandRNAand leukemogenesis in the adult animal.Proc Natl Acad Sci USA.1975. 72: 4008–4012.
    [4] Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature .2002.420: 520–562.
    [5] Wilmut I, Schnieke AE, McWhir J,et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997.385: 810–813.
    [6] Polejaeva IA, Campbell KH, New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology .2000. 53: 117–126.
    [7] Varmus, H., Retroviruses. Science .1998. 240:1427–1435.
    [8] Chan, A.W.S., Homan, E.J., Ballou, L.U.et al. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc. Natl. Acad. Sci. USA.1998. 95:14028–14033.
    [9] Clark J, Whitelaw B, A future for transgenic livestock. Nat Rev Genet .2003. 4: 825–833.
    [10] Gordon JW, Ruddle FH, Integration and stable germ line transmission of genes injected into mouse pronuclei. Science. 1981.214: 1244–1246.
    [11] Palmiter RD, Brinster RL, Hammer RE,et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature .1982. 300: 611–615.
    [12] Hammer RE, Pursel VG, Rexroad CE, et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature.1985.315: 680–683.
    [13] Krimpenfort P, Rademakers A, Eyestone W, et al. Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (NY) .1991. 9:844–847.
    [14] Keefer CL, Production of bioproducts through the use of transgenic animal models. Anim Reprod Sci .2004.82–83: 5–12.
    [15] Clark AJ, Bissinger P, Bullock DW, et al. Chromosomal position effects and the modulation of transgene expression. Reprod Fertil Dev.1994.6:589–598.
    [16] Seidel GE, Jr., Resource requirements for transgenic livestock research. J Anim Sci. 1993. 71: 26–33.
    [17] Shim H, Gutierrez-Adan A, Chen LR,et al. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod .1997. 57: 1089–1095.
    [18] Saito S, Sawai K, Ugai H, et al. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun.2003.309: 104–113.
    [19] Brinster R.L and Mary R.A. Germ-line transmission of donor haplotype following sperm atogonial transplantation. Proc.Nad.Acad.Sci.USA.1994,91:11303-11307
    [20] Naito M. Production of germ line chimeric chickens with high transmission rate of donor-derived gamete produced by transfer of primordial germ cell. Mol.Reprod.Dev.1994, 39:153-161.
    [21] Lavitrano, M., Camaioni, A., Fazio, V.M.,et al. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell .1989. 57, 717–723.
    [22] Horan, R., Powell, R., McQuaid, S.,et al. Association of foreign DNA with porcine spermatozoa. Arch. Androl. 1991. 26, 83–92.
    [23] Sperandio, S., Lulli, V., Bacci, M.L.,et al. Sperm-mediated DNA transfer in bovine and swine species. Anim. Biotechnol. 1996. 7, 59–77.
    [24] Bachiller, D., Schellander, K., Peli, K.,et al. Liposome-mediated DNA uptake by sperm cells. Mol.Reprod. Dev. 1991. 30, 194–200.
    [25] Rottmann, O.J., Antes, R., Hoefer, P.,et al. Liposome mediated gene transfer via spermatozoa into avian egg cells. J. Anim. Breed Genet. 1992. 109, 64–70.
    [26] Maione, B., Lavitrano, M., Spadafora, C.,et al. Sperm-mediated gene transfer in mice. Mol. Repod.Dev. 1998.50, 406–409.
    [27] Gandolfi, F., Terqui, M., Modina, S.,et al. Failure to produce transgenic offspring by intra-tubal insemination of gilts with DNA treated sperm. Reprod. Fertil. Dev. 1996.8, 1055–1060.
    [28] Schellander, K., Peli, J., Schmall, F.,et al. Artificial insemination in cattle with DNA-treated sperm.Anim. Biotechnol. 1995. 6, 41–50.
    [29] Brackett BG, Baranska W, Sawicki W,et al..Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA .1971. 68: 353–357.
    [30] Hochi, S., Ninomiya, T., Mizuna, A.et al. Fate of exogenous DNA carried into mouse eggs by spermatozoa. Anim. Biotechnol. 1990. 1, 25–30.
    [31] Kuznetsov, A.V., Kuznetsov, I.V..The binding of exogenous DNA pRK3lacZ by rabbit spermatozoa, its transfer to oocytes and expression in preimplantation embryos. Ontogenez.1995. 26, 300–309.
    [32] Fainsold, A., Frumpkin, A., Rangini, Z.,et al. Chicken homeogenes expressed during gastrulation and the generation of transgenic chicken. In: Proceedings of the EMBO-EMBL Symposium, Mol. Biol. Vertebrate Dev. 1990. 31.
    [33] Kroll, K., Amaya, E., 1996. Transgenic Xenopus embryos from sperm nuclear transplantation reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183.
    [34] Perez, A., Solano, R., Castro, R.,et al. Sperm cells mediated gene transfer in cattle. Biotechnol. Aplicada . 1991.8, 90–94.
    [35] Felgner, P.L., Gadek, T.R., Holm, M.,et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci.USA .1987. 84, 7413–7417.
    [36] Reiss, M., Jastreboff, M.M., Bertino, J.R.,et al. DNA-mediated gene transfer into epidermal cells usingelectroporation. Biochem. Biophys. Res. Commun. 1986. 137, 244–249.
    [37] Inoue, K., Yamashita, S., Hata, J.,et al. Electroporation as a new technique for producing transgenic fish. Cell Diff. Dev. ,1990.29, 123–128.
    [38] Gagne, M.B., Pothier, F., Sirad, M.-A., Electroporation of bovine spermatozoa to carry foreign DNA in oocytes. Mol. Reprod. Dev. 1991.29, 6–15.
    [39] Whitmer, K.J., Calarco, P.G., HIV-1 expression during early mammalian development. AIDS. 1992. 6, 1133–1138.
    [40] Wurst, W., Joyner, A.L., Production of targeted embryonic stem cells clones. In: Joyner, A.L. (Ed.), Gene Targeting: A Practical Approach. Oxford University Press, Oxford, 1993.pp. 33–61.
    [41] Sanford, J.C., DeVit, M.J., Russel, J.A.,et al. An improved, helium-driven biolistic device. Tech. J. Meth. Cell Mol. Biol. 1991. 3, 3–16.
    [42] Biewenga, J.E., Destre, O.H.J., Schrama, L.H., Plasmid-mediated gene transfer in neurons using the biolistics technique. J. Neuro. Meth. 1997.71, 67–75.
    [43] Jiao, S., Cheng, L., Wolff, J., Yang, N., Particle bombardment-mediated gene transfer and expression in rat brain tissues. Biotechnology .1993. 11, 497–502.
    [44] Wilmut, I., Schneieke, A.E., McWhir, J.M.,et al. Viable offspring from fetal and adult mammalian cells. Nature .1997. 385, 810–813.
    [45] Kasinathan P, Knott JG, Moreira PN, et al. Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro. Biol Reprod 2001.64:1487–1493.
    [46] Iguma LT, Lisauskas SF, Melo EO, et al. Development of bovine embryos reconstructed by nuclear transfer of transfected and non-transfected adult fibroblast cells. Genet Mol Res .2005. 4: 55–66.
    [47] Melo EO, Sousa RV, Iguma LT,et al. Isolation of transfected fibroblast clones for use in nuclear transfer and transgene detection in cattle embryos. Genet Mol Res. 2005.4:812–821.
    [48] Schnieke AE, Kind AJ, Ritchie WA, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science.1997.278: 2130–2133.
    [49] Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science.1998. 280: 1256–1258.
    [50] Kues WA, Niemann H, The contribution of farm animals to human health. Trends Biotechnol .2004. 22:286–294.
    [51] McCreath KJ, Howcroft J, Campbell KH, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature .2000. 405: 1066–1069.
    [51] Polejaeva IA, Campbell KH, New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology. 2000. 53: 117–126.
    [53] Kasinathan P, Knott JG, Wang Z,et al.Production of calves from G1 fibroblasts. Nat Biotechnol 2001.19: 1176–1178.
    [54] Gibbons J, Arat S, Rzucidlo J, et al. Enhanced survivability of cloned calves derived fromroscovitine-treated adult somatic cells. Biol Reprod .2002.66: 895–900.
    [55] Sullivan EJ, Kasinathan S, Kasinathan P, et al. Cloned calves from chromatin remodeled in vitro. Biol Reprod .2004. 70: 146–153.
    [56] Wall RJ, Kerr DE, Bondioli KR, Transgenic dairy cattle: genetic engineering on a large scale. J Dairy Sci .1997. 80: 2213–2224.
    [57] Miller HI, As biotech turns 20. Nat Rev Drug Discov 2002. 1: 1007–1008.
    [58] Dyck MK, Lacroix D, Pothier F,et al.Making recombinant proteins in animals – different systems, different applications. Trends Biotechnol.2003.21: 394–399.
    [1] Napoli C,Lemieux C,Jorgensen R.Introduction of chimeric chalcone synthase gene into Petunia results in reversible cosuppression of homologous genes in trans.Plant Cell,1990,2:279-289.
    [2] Van Blokland R,vander Geest N,Mol JNM,Kooter JM.Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover.Plant J,1994,6:861-877.
    [3] Ingelbrecht I,Van Houdt H,Van Montagu M,Depicker A.Post-transcriptional silencing of reporter transgenes in tobacco correlates with DNA methylation.Proc.Natl.Acad.Sci.USA,1994,91:10502-10506.
    [4] Vander Krol AR,Mur LA,Beld M,Mol JNM,Stuitje AR.Flavanoid genes in petunia:addition of limited number of gene copies may lead to a suppression of gene expression.Plant Cell,1990,2:291-299.
    [5] Kooter JM,Matzke MA,Meyer P.Listening to silent gene:transgene silencing,gene regulation and pathogen control.Trends Plant Sci,1999,4:340-347.
    [6] Hannon G J.RNA Interference.Nature,2002,418:244-251.
    [7] Cogoni C,Irelan JT,Schumacher M,Schmidhauser TJ,Selker EU,Macino G. Transgene silencing of al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interaction or DNA methylation.EMBO J,1996,15:3153-3163.
    [8] Guo S , Kemphues KJ . par21 , a gene required for establishing polarity in C. elehans embryos , encodes a putative Ser/ Thr ki2nase that is asymmetrically distributed [J ] . Cell ,1995 ,81 :611- 620.
    [9] Fire A , Xu S , Montgomery MK, et al . Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans[J ] . Nature ,1998 ,391 :806 - 811.
    [10] Bender J.A vicious cycle:RNA silencing and DNA methylation in plants.Cell,2001,106:129-132.
    [11] Bernstein E,Caudy AA,Hammond SM,Hannon GJ.Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature,2001,409:363-366.
    [12] Fagard M,Vaucheret H.(Trans)gene silencing in plants:how many mechanisms?Annu.Rev.Plant Physiol.Plant Mol.Biol,2000,51:167-194.
    [13] Wassenegger M,Pelissier T.A model for RNA-mediated gene silencing in higher plants.Plant Mol.Biol,1998,37:349,362.
    [14] Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, Ji X. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 2001; 9: 1225-1236.
    [15] Hammond SM,Candy AA,Hannon GJ.Post-transcriptional gene silencing by double-stranded RNA [J].Nat Rev Gen,2001,2:110-119.
    [16] Hutvagner G, Zamore PD. A microRNA in a multipleturnover RNAi enzyme complex. Science 2002; 297: 2056-2060.
    [17] Hutvagner G, Zamore PD. RNAi: nature abhors a doublestrand.Curr Opin Genet Dev 2002; 12: 225-232.
    [18] Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002; 297: 2053-2056.
    [19] Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev 2003; 17: 438-442.
    [20] Novina C D, Murray M F, Dykxhoorn D M, et al. siRNA-directed inhibition of HIV-1 infection.Nat Med, 2002,8(7):681~686.
    [21] Jacque J-M, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference.Nature, 2002,418: 435~438 (doi:10.1038/nature00896).
    [22] Lee N S,Bauer G,Rossi J.Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.Nat Biotechnol,2002,20(5):500-505.
    [23] Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells.Nature,2002,418: 430~434(doi:10.1038/nature00873).
    [24] Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi).Oncogene, 2002,21(37):5716-5724.
    [25] Sui G H,Soohoo C,Shi Y,et a1.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells..Proc Natl Acad Sci,2002,99(8):5515-5520.
    [26] Alisky JM, Davidson BL: Towards therapy using RNA interference. Am J Pharmacogenomics, 2004; 4: 45-51.
    [27] Lieberman J, Song E, Lee SK, Shankar P: Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends Mol Med, 2003; 9: 397-403.
    [28] O′Neil N J, Martin R L, Tomlinson M L,et al.RNA-mediated interference as a tool for identifying drug targets.Am J Pharmacogenomics, 2001,1(1):45~53.
    [29].Williams BR.Role of the double-stranded RNA activated proteinkinase (PKR) in cell regulation.Biochem Soc Trans.1997,25:509-513.
    [30].Yu JY,DeRuiter sl,Turner DL.RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Rev A cad Sci USA, 2002,99:6047-6052.
    [31].DonzeO,and Picard. RNA interference in mammalian cells using siRNAs synthesized with T7RNA polymerase.Nucleic Acid Res, 2002,30:46.
    [32] Paddison PJ,Caudy A,Bernstein E et al. Short hairpin RNAs(shRNAs) induce seqoence-specific silencing in mammalian cells.Genes Rev.2002,16:948-958.
    [33] Myers,J.W.,JonesJ.T.,Meyer T.etal.Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing.Nat,Biotechnol.2003,21:324-328.
    [34] Paddison PJ and Hannon GJ.RNA interference:the new somatic cell genetics?Cancer cell,2002,2:17-23.
    [35] Sledz CA,Holko M,de Veer MJ et al.Activation of the interferon system by short-interfering RNAs.Nat Cell Boil, Vol.2003,5:834-839.
    [36] Bridge AG,Pebernard S,Ducraux A et al.Induction of an interferon response by RNAi vectors inmammalian cells.Sci STKE,Vol,.2003,34:263-264.
    [37] Jackson AL, Linsley PS: Noise amidst the silence: off-target effects of siRNAs? Trends Genet, 2004; 20: 521–24.
    [38] Sledz CA, Holko M, de Veer MJ et al: Activation of the interferon system by short-interfering RNAs. Nat Cell Biol, 2003; 5: 834–39.
    [39] Doench JG, Sharp PA.Specificity of microRNA target selection in translational repression.Genes Dev.2004,18:504-511.
    [40] Carmell MA,Zhang L,Conklin DS et al.Germline transmission of RNAi in mice.Nat Struct Biol.2003,10:91-92.
    [41] Kunath T,Gish G,Lickert H et al.Transgenic RNA interfernce in ES cell-derived embryos recapitulates a genetic null phenotype.Nat Biotechnol.2003,21:559-561.
    [442] Robision DA,Dillon CP,Kwiatkowski AV et al.A lentivirus-based system to functionally silence genes primary mammalian cells,stem cells and transgenic mice by RNAinterference.Nat Genet.2003,33:401-406.
    [43] Clarke PA, te Poele R, Workman P: Gene expression microarray technologies in the development of new therapeutic agents. Eur J Cancer,2004; 40, 2560–91
    [44] Cogoni,C.&Masino,G.Homology-dependent gene silencing in plants and fungi:a number of variations on the same theme.Curr.Opin.Microbiol.1999,2,657-662.
    [45] Dalmay, T., Hamilton, A., Rudd, S.et al. An RNA-dependent RNA polymerase gene in Arabidopsisis required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell.2000,101, 543–553.
    [46] Sijen, T. et al.On the role of RNA amplification in dsRNA-triggered gene silencing.Cell,2001,107, 465–476.
    [47] Zeng, Y. & Cullen, B. R. RNA interference in human cells isrestricted to the cytoplasm.RNA.2002,8, 855–860.
    [48] Chiu, Y. L. & Rana, T. M. RNAi in human cells: basic structural and functional features of small interfering RNA.Mol.Cell.2002,10:549–561.
    [49] Stein, P., Svoboda, P., Anger, M. & Schultz, R. M.RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase.RNA.2003,9:187–192.
    [50] Kawasaki, H. & Taira, K. Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells.Nucleic Acids Res. 2003,31:700–707.
    [51] Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3′overhangs efficiently suppress targeted gene expression in mammalian cells.Nature Biotechnol. 2002,20:497-500.
    [52] Svoboda, P., Stein, P. & Schultz, R. M. RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA.Biochem.Biophys.Res.Commun. 2001,287:1099-1104.
    [53] Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and induciblegenetic interference by double-stranded RNA encoded by transgenes.Nature Genet.24, 180–183 (2000).
    [54] Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA.Nature Biotechnol. 2000,18:896–898.
    [55] Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells.Science.2002,296:550–553.
    [56] McManus, M. T., Petersen, C. P., Haines, B. B.,et al. A. Gene silencing using micro-RNA designed hairpins.RNA.2002,8:842–850.
    [57] Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells.Proc.Natl Acad.Sci.USA.2002,99:1443–1448.
    [58] Paul, C. P., Good, P. D., Winer, I. & Engelke, D. R. Effective expression of small interfering RNA in human cells.Nature Biotechnol. 2002,20:505–508.
    [59] Sui, G.et al.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc.Natl Acad.Sci.USA. 2002,99:5515–5520.
    [60] Paule, M. R. & White, R. J. Survey and summary: transcription by RNA polymerases I and III.Nucleic Acids Res. 2000,28:1283–1298.
    [61] Myslinski, E., Ame, J. C., Krol, A. & Carbon, P. An unusually compact external promoter for RNA polymerase III transcription of the human H1 RNA gene.Nucleic Acids Res. 2001,29:2502–2509.
    [62] Stewart, S. A.et al.Lentivirus-delivered stable genesilencing by RNAi in primary cells.RNA9, 493–501 (2003).
    [63] Qin, X. F., An, D. S., Chen, I. S. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5.Proc.Natl Acad.Sci.USA.2003,100:183–188.
    [64] Naldini, L.et al. In vivogene delivery and stable transduction of nondividing cells by a lentiviral vector.Science.1996,272:263-267.
    [65] Svoboda, J., Hejnar, J., Geryk, J., Elleder, D. & Vernerova, Z.Retroviruses in foreign species and the problem of provirus silencing.Gene.2000,261:181-188.
    [66] Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M. & Le Deist, F.A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency.N.Engl.J.Med.2003,348:255–256.
    [67] Noguchi, P. Risks and benefits of gene therapy. N.Engl.J.Med. 2003,348:193–194.
    [68] Marshall, E. Gene therapy: second child in French trial is found to have leukemia.Science.2003,299: 320.
    [69] Gordon, J. W. Production of transgenic mice.Methods Enzymol. 1993,225:747-771.
    [70] Hasuwa, H., Kaseda, K., Einarsdottir, T. & Okabe, M. Small interfering RNA and gene silencing in transgenic mice and rats.FEBS Lett. 2002,532:227-230.
    [71] Grimm, D., Pandey, K., and Kay, M.A. Adenoassociated virus vectors for short hairpin RNAexpression. Methods Enzymol. 2005.392:381–405.
    [72] Grimm, D., and Kay, M.A. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr. Gene Ther. 2003.3:281–304.
    [73] Cavazzana-Calvo, M., and Fischer, A. Gene therapy for severe combined immunodeficiency: are we there yet? J. Clin. Invest. 2007. 117:1456–1465.
    [74] Herzog, R.W. Immune responses to AAV capsid: are mice not humans after all? Mol. Ther. 2007. 15:649–650.
    [75] Grimm, D., et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006.441:537–541.
    [76] Chen, C.C., et al. Long-term inhibition of hepatitis B virus in transgenic mice by doublestranded adeno-associated virus 8-delivered short hairpin RNA. Gene Ther. 2007. 14:11–19.
    [77] Gartel, A.L., and Kandel, E.S. RNA interference in cancer. Biomol. Eng. 2006. 23:17–34.
    [78] Pai, S.I., et al. Prospects of RNA interference therapy for cancer. Gene Ther. 2006. 13:464–477.
    [79] Takeshita, F., and Ochiya, T. Therapeutic potential of RNA interference against cancer. Cancer Sci. 2006. 97:689–696.
    [80] Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D.Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors.Science.2002,295:868–872.
    [81] Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs.Methods.2002,26:199–213.
    [82] Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.Cell.2002,110:563–574.
    [83] Wu RH, Cheng TL, Lo SR, et al. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAimediated gene silencing in mammalian cells. J Gene Med .2007; 9:620-634.
    [84] Henriksen JR, Lokke C, Hammero M,et al. Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines. Nucleic Acids Res 2007; 35: e67.
    [85] Li L, Lin X, Staver M, et al. Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Res 2005; 65: 7249-7258.
    [86] Yu J, McMahon AP. Reproducible and inducible knockdown of gene expression in mice. Genesis 2006; 44: 252-261.
    [87] Bumcrot, D., Manoharan, M., Koteliansky, V., and Sah, D.W. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2006.2:711–719.
    [88] Grimm, D., and Kay, M.A. Therapeutic short hairpin RNA expression in the liver: viral targets and vectors. Gene Ther. 2006. 13:563–575.
    [89] Davidson, B.L., and Boudreau, R.L. RNA interference: a tool for querying nervous system functionand an emerging therapy. Neuron. 2007.53:781–788.
    [90] Raoul, C., Barker, S.D., and Aebischer, P. Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene Ther. 2006.13:487–495.
    [91] Campochiaro, P.A. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 2006. 13:559–562.
    [92] Bitko.V.& Barik.S.Phenotypic silencing of cytoplasmic genes using sequence specific double-stranded short interfering RNA and its application in the reverse genetics of wild-type negative-strand RNA virus. .BMC Microbiol.2001,1:34.
    [93] Jacque,J.M.,Triques.K & Stewenson,M.Modulation of HIV-1replication by RNA interference. .Nature. 2002,418:435-438.
    [94] McCaffrey,A.P. ea tl.RNA interference in adult mice..Nature, 2002,418:38-39.
    [95] Lewis,D.L.,Hagstrom,J.E.,Loomis,A.G.,et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. .Nature Genet. 2002,32:107-108..
    [96] Dougherty JP, Temin HM. Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication. J. Virol 1988;62:2817–2822.
    [97] Leider JM, Palese P, Smith FI. Determination of the mutation rate of a retrovirus. J. Virol 1988;62:3084–3091.
    [98] Gitlin L, Stone JK, Andino R. Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J. Virol 2005;79:1027–1035.
    [99] Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol 2002;76:9225–9231.
    [100] Soldan SS, Plassmeyer ML, Matukonis MK, Gonzalez-Scarano F. La Crosse virus nonstructural protein NSs counteracts the effects of short interfering RNA. J. Virol 2005;79:234–244.
    [101] Wu HL, Huang LR, Huang CC, Lai HL, Liu CJ, Huang YT, Hsu YW, Lu CY, Chen DS, Chen PJ. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant.Gastroenterology 2005;128:708–716.
    [102] Thimmappaya B, Weinberger C, Schneider RJ, Shenk T. Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 1982;31:543–551.
    [103] Strijker R, Fritz DT, Levinson AD. Adenovirus VAI-RNA regulates gene expression by controlling stability of ribosome-bound RNAs. EMBO J 1989;8:2669–2675.
    [104] Lu S, Cullen BR. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J. Virol 2004;78:12868–12876.
    [105] Krug RM, Yuan W, Noah DL, Latham AG. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 2003;309:181–189.
    [106] Lichner Z, Silhavy D, Burgyan J. Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J. Gen. Virol 2003;84:975–980.
    [107] Davies MV, Chang HW, Jacobs BL, Kaufman RJ. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol 1993;67:1688–1692.
    [108] Chang J, Provost P, Taylor JM. Resistance of human hepatitis delta virus RNAs to dicer activity. J. Virol 2003;77:11910–11917.
    [109] Casey JL, Gerin JL. Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA. J. Virol 1995;69:7593–7600.
    [110] Polson AG, Bass BL, Casey JL. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 1996;380:454–456.
    [1] Nykanen A,Haley B,Zamore PD.ATP requirement and small interfering RNA structure in the RNA interference pathway.Cell,2001,107:309-321.
    [2] Elbashir SM,Lendeckel W,Tuschl T.RNA interference is mediated by 21-and 22-nucleotide RNAs.Genes Dev,2001,15:188-200.
    [3] Roger J Pomerantz.RNA interference meets HIV-1:Will silence be golden? Nature medicin,2002,8(7):659-660.
    [4] Bryan R.Cullen,RNA interference:antiviral defense and genetic tool.Nature immunology,2002,3(7):597-599.
    [5] Moiz Kitabwalla,Ruth M.Ruprecht.RNA interference-a new weapon against HIV and beyond.N Engl J Med,2002,347(17):1364-1367.
    [6] Martinez MA,Gutierrez A,Armand-Ugon M,et al.Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication.AIDS,2002,16:2385-2390.
    [7] Kapadia SB,Brideau-Andersen A,Chisari FV.Interference of hepatitis C virus RNA replication by short interfering RNAs.Proc Natl Acad Sci USA,2003,100:2014-2018.
    [8] Wilson JA,Jayasena S,Khvorova A,et al.RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells.Proc Natl Acad Sci USA,2003,100:2783-2788.
    [9] Yokota T,Sakamoto N,Enomoto N,et al.Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs.EMBO Rep,2003,4:1-7.
    [10] Cottrell TR,Doering TL.Silence of the strands:RNA interference in eukaryotic pathogens.Trends Microbiol,2003,11:37-43.
    [11] Malhotra P,Dasaradhi PVN,Kumar A,et al.Double-stranded RNA-mediated gene silencing of cysteine proteases (falcipain-1 and-2)of Plasmodium falciparum.Mol.Microbiol,2002,45:1245-1254.
    [12] McRobert L,McConkey GA.RNA interference(RNAi)inhibits growth of Plasmodium falciparum.Mol.Biochem.Parasitol,2002,119:273-278.
    [13] Al-Anouti F,Quach T,Ananvoranich S.Double-stranded RNA can mediate the suppression of uracil phosphoribosyltransferase expression in Toxoplasma gondii. Biochem.Biophys.Res.Commun,2003,302:316-323.
    [14] Elbasshi SM,Harborth J,Lendeckel W,et al.Duplexes of 21-nucleotide RNAs meditate RNA interference in cultured mammalian cells.Nature,2001,411:494-498.
    [15] Far R.Kretschmer-Kazemi and G.Sczakiel.The activity of siRNA in mammalian cells is related to structural target accessibility:a comparison with antisense oligonucleotides.Nucleic Acids Res,2003,31(15):4417-4424.
    [16]Ambion siRNA Target Finder[http://www.ambion.com/techlib/misc/siRNA_finder.html]
    [1] GrubmanMJ ,Baxt B. Foot and mouth disease [J ]. ClinMicrobiol Rev ,2004 ,17 :465 - 493.
    [2] Knowles N J ,Samuel P R.Molecular epidemiology of foot and mouth disease virus [J ].Virus ,2003 ,91 :65 - 80.
    [3] Robson K J,Harris I J,Brown F. An assessment by compermon hybridization of the sequence homology between the RNAs of the seven serotypes of FMDV.[J].J Gen Virol,1997,37(2):271-276.
    [4] Petit M C ,Benkirane N ,Guichard G,et al . Solution structure ofa retroinverso peptide analogue mimicking the foot and mouth disease virus major antigen site structural basis for its antigenic cross reactivity with the parent pepide[J ]1J Biol Chem ,1999 ,274 :3686 – 36921
    [5] Vance, V., and H. Vaucheret. 2001. RNA silencing in plants–defense and counter-defense. Science 292:2277–2280.
    [6]、Gitlin, L. & Andino, R. 2003.Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing. J. Virol. 77, 7159–7165.
    [7] Fire, A. 1999. RNA-triggered gene silencing. Trends Genet. 15:358–363.
    [8] Leib, D. A., M. A. Machalek, B. R. Williams, R. H. Silverman, and H. W.Virgin. 2000. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc. Natl. Acad. Sci. USA 97:6097–6101.
    [9] Stark, G. R., I. M. Kerr, B. R. Williams, R. H. Silverman, and R. D.Schreiber. 1998. How cells respond to interferons. Annu. Rev. Biochem. 67:227–264.
    [10] Cullen, B. R. 2002. RNA interference: antiviral defense and genetic tool.Nat. Immunol. 3:597–599.
    [11] Zamore, P. D., T. Tuschl, P. A. Sharp, and D. P. Bartel. 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33.
    [12] Shlomai, A., and Y. Shaul. 2003. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 37:764–770.
    [13] Song, E., S. K. Lee, J. Wang, N. Ince, N. Ouyang, J. Min, J. Chen, P. Shankar, and J. Lieberman. 2003. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9:347–351.
    [14] Jiang, M., and J. Milner. 2002. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21:6041–6048.
    [15] Pfeffer, S. et al. 2005.Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269-276
    [16] Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M. & Ganem, D. 2005.SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells.Nature 435, 682–686
    [17] Cullen, B.R. 2005.RNAi the natural way. Nat. Genet. 37, 1163–1165.
    [18] Katze, M.G., He, Y. & Gale, M.G., Jr. 2002.Viruses and interferon: a fight for supremacy.Nat. Rev. Immunol. 2, 675–687.
    [19] Shlomai A,Shaul Y.Inhibition of hepatitis B virus expression and replication by RNAinterference.Hepatology,2003,37:764-770.
    [20] Czauderna F,Santel A,Hinz Met al.Inducible shRNA expression for application in a prostate cancer mouse model.Nucleic Acids Res,2003,31(21):e127.
    [21] Park, W.-S., Miyano-Kurosaki, N., Hayafune, M.,et al. 2002. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res 30, 4830–4835.
    [22] Capodici, J., Kariko′ , K. & Weissman, D. 2002. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 169, 5196–5201.
    [23] Stram, Y. & Molad, T. 1997. A ribozyme targeted to cleave the polymerase gene sequences of different foot-and-mouth disease virus (FMDV) serotypes. Virus Genes 15, 33–37.
    [24] Weizao Chen, Weiyao Yan, Qingyun Du,etal.2004. RNA Interference Targeting VP1 Inhibits Foot-and-Mouth Disease Virus Replication in BHK-21 Cells and Suckling Mice. Journal of Virology, July 2004, p. 6900–6907.
    [25] Ronen Kahana,1 Larisa Kuznetzova,1 Arie Rogel etal.2004. Inhibition of foot-and-mouth disease virus replication by small interfering RNA. Journal of General Virology (2004), 85, 3213–3217.
    [26] McCaffrey AP,Nakai H,Pandey K,et al.Inhibition of hepatitis B virus in mice by RNA interference.Nat Biotechnol,2003.21:639-644.
    [1] Gardner R L. Mouse chimeras obtained by the injection of cellsinto the blastocyst . Nature ,1968 ,220 (167) :596-597.
    [2] Smithies O , Gregg R G, Boggs S S , et al.Insertion of DNA sequences into the human chromosomal beta globin locus by homologous recombination. Nature ,1985 ,317 (6034) : 230~234.
    [3] Kittler R,Buchholz F.RNA interference : gene silencing in the fast lane. Seminars in Cancer Biology ,2003,13(4):259-265.
    [4] Hasuwa H, Kaseda K, Einarsdottir T ,Okabe M. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett ,2002,532(1-2):227-230.
    [5] Kunath T , Gish G, Lickert H, et al. Transgenic RNA interference in ES cell derived embryos recapitulates a genetic null phenotype . Nature Biotechnol ,2003,21(5):559-561.
    [6] Shinagawa T , Ishii S. Generation of Ski-knockdown mice by expressing a long doublestrand RNA from an RNA polymerase II promoter. Genes & Development ,2003,17 (11):1340-1345.
    [7] Chen Y, Stamatoyannopoulos G, Song C Z. Down regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res ,2003,63 (16) :4801-484.
    [8] Matsukura S , Jones P A , Takai D. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucl Acids Res ,2003,31(15):e77.
    [9] Sarkar S N , Das H K. Regulatory roles of presenilin and nicastrin in neuronal differentiation during in vitro neurogenesis. J Neurochem 2003 ,87 (2) :333-343.
    [10] van der Weyden L , Adams D J , Bradley A. Tools for targeted manipulation of the mouse genome. Physiol Genomics ,2002 ,11(3) :133-164.
    [11] Wiznerowicz M, Trono D. Conditional suppression of cellular genes : lentivirus vector mediated drug inducible RNA interference. J Virol , 2003 ,77 (16) :8957-8961.
    [12] Kunath T,Gish G,Lickert H et al.Transgenic RNA interfernce in ES cell-derived embryos recapitulates a genetic null phenotype.Nat Biotechnol.2003,21:559-561.
    [13] Robision DA,Dillon CP,Kwiatkowski AV et al.A lentivirus-based system to functionally silence genes primary mammalian cells,stem cells and transgenic mice by RNA interference. Nat Genet.2003,33:401-406.
    [14] Mingqiu Liu, Weizao Chena, Zheng Ni.Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome. Virology .2005,336:51– 59.
    [15] Teresa de los Santos,Qiaohua Wu,Sonia de Avila Botton etal.Short hairpin RNA targeted to the highly conserved 2B nonstructural protein coding region inhibits replication of multiple serotypes of foot-and mouth diease virus.Virology, 2005,335:222-231.
    [16] Gordon JW, Scangos GA , Ploskin DJ ,et al.Genetic transformation of mouse embryo by microinjection of purified DNA[J ] . Proc Natl Acad Sci USA ,1980 ,77 :7380 - 7384.
    [17] Brigid Hogan,Rosa Beddington,Frank Costantini,etal.Manipulating the Mouse Embryo.A laboratory Manual Second Editioo.Cold Spring Harbor Laboratory Press 1994:227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700