电能质量扰动的自动识别和定位相关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电力系统容量不断扩大,各种分布式发电单元逐步接入电网,同时各种大功率的非线性负载,如各种整流设备,电弧炉和开关电源使用不断增加,造成公用电网电能质量日益恶化。而各种不同的电子设备对电压扰动敏感性有增无减,造成了整个电力系统的电能质量越来越受到关注。
     基于此提出了综合电能质量测试平台的构架,前端的电能质量监测仪可以实现电能质量稳态指标的计算和显示,并且具有扰动触发单元,一旦监测到电能质量扰动就可以触发记录单元,记录扰动期间的数据,并将其通过变电站通讯系统传输到电能质量分析中心,以便利用傅立叶变换、小波变换、模糊专家系统、谱估计等信号处理方法进行分析,得到更多关于电能质量扰动的信息。本文针对配电系统电能质量扰动监测中波形特征参数的计算、电能质量扰动自动分类以及投切电容的自动辨识和定位进行了全面而深入的研究,取得了如下成果:
     本文提出了一种基于滑动窗RMS值和小波变换的电压骤降起止时刻的检测方法。电压骤降是配电系统最普遍的电能质量扰动问题,而电压骤降的主要特征通过骤降的电压RMS值和骤降的时间间隔表征其特性。电压RMS值可以通过直接计算得到,而电压骤降起止时刻的精确检测由于在骤降结束区间波形变化平缓,很难实现。提出的方法充分考虑了电压骤降实际波形的特征,采用滑动窗RMS方法确定电压骤降起止时刻的范围,然后在小波分解尺度d1中采用正态分布三倍标准偏差阈值确定相关的奇异点,而电压骤降的起止时刻对应着小波变换的奇异点,因此通过在确定的范围内搜索小波变换奇异点可以精确地检测骤降的起止时刻。
     本文提出了基于小波变换和改进型模糊专家系统的电能质量扰动分类方法。电能质量扰动的检测、定位和分类是电能质量分析的重要方面,特别是扰动分类可以辨识电能质量扰动类型,便于统计配电系统的主要扰动,为电网改善提供实时数据。提出的方法首先利用傅立叶变换、小波变换以及RMS值等计算电能质量扰动信号的特征量,将计算的特征矢量输入到模糊专家系统,通过if-then实现输入到输出的转化,从而可以有效地实现振荡暂态、短时断电、骤降、骤升、电压波动和闪变、谐波、脉冲和陷波等电能质量扰动的自动分类,识别率达到99%。模糊专家系统基于统计研究和专家知识得到特征量的成员函数和规则基,采用模糊推理实现电能质量扰动分类。考虑噪声和谐波对已有模糊专家分类系统的影响,本文通过对隶属函数的改进和增加模糊推理规则基,改善了模糊专家系统在噪声和谐波两种扰动情况的分类识别率,达到了95.25%。
     针对电能质量振荡暂态特性难以提取的问题,提出了基于模极大值小波域和总体最小二乘法-旋转不变技术的信号参数估计(TLS-ESPRIT)算法,可以实现投切电容的振荡辨识和投切电容的方位确定。小波变换的模极大值对应信号的奇异点实现振荡起止时刻确定,从而得到振荡区间的持续时间。TLS-ESPRIT算法是一种基于子空间的高分辨率信号分析方法,直接以振荡区间的数据构成的数据矩阵为基础,把信号空间分解为信号子空间和噪声子空间,能够高精度地估计振荡信号各分量的频率、阻尼比、振幅和相位等信息。根据估计的主导振荡频率分量的电压和电流的相位角关系就可以确定投切电容相对于测量点的方位。
Power quality is paid more attention due to the prolification of power system volume and the interaction of grid with all kinds of distributed generation in recent year. At the same time the power grid is deteriorated by massive utilization of high-power nonlinear load, such as rectifier equipment, arc furnace and switching power supply. However, electronics instruments and equipments desensitize against power quality disturbance increasingly.
     A framework about power quality monitoring platform based wavelet transform is proposed in this paper. The power quality testing instrument is setup in the site to measure the voltage and current waveform and calculate the concerned stable parameters and display the results, the trigger unit is designed in the instrument to record the disturbance data once the detected power quality disturbance. The recorded disturbance waveform data will transmit to the power quality analysis center to be processed furthermore by Fourier, wavelet transform, fuzzy expert sytem and spectrum esimation method, then with the calculated result to detect, location, classify the power quality problem and draw the characteristic parameter of different type power quality disturbance, even to performing equipment sensitivity study during power quality events and so on. The main work and achievements is following:
     Voltage sag as the most common power quality disturbances are characterized by several parameters, including but not limited to sag duration and depth. The root mean square (RMS) can calculate directly from waveform but an accurate determination of fault inception and clearing times is difficult due to the sag ends are generally smoother transitions than the fault inceptions. The proposed method use the windowed RMS calculation method determine the scope of the sag start and end times initially, then detect the singular point use the three times standard deviations of mean value as thresholds in the level of d1 of the wavelet transform, after all the singular points of wavelet transform are corresponding to power quality disturbance points. So the proposed method is reasonable and correct to detect the start and end times of sags accurately in the specified scope. A recommendation is made for the best overall wavelet choice. The procedure is fully described, and the results are compared with other method for determining sag duration, such as the specified RMS voltage and fractal method.
     An automated detection and classification method for transient power quality disturbances in which the wavelet transform is integrated with fuzzy expert system is proposed in the fourth chapter. The detection, location and classification of power quality disturbances are the important task for power quality research, especially the power quality disturbances recognition is useful for providing the real time data for improvement of distribution power system based on the statistics power quality disturbances character. The RMS calculation, Fourier transform and wavelet transform are utilized to obtain unique features for the disturbance signal. The extracted features vector are input the fuzzy expert system based on fuzzy theory by applying theory of artificial intelligent, database and fuzzy theory for making a decision regarding the types of the disturbances. The classified accuracy rate are 99% for various transients events such as voltage sags, swell, interuptions, switching transient, impulse, flicker, harmonics, and notches and so on. The proposed method modified the membership function and increased the fuzzy-rule base under the condition of noise and harmonics. The improved classification method can attain the classified accuracy rate 95.25% for the power quality disturbances signal polluted by noises and harmonics.
     Power system oscillatory transient is one of the most common power quality disturbance problems in transimmision and distribution grid. The modulus maximum wavelet domain and total least squares-estimation of signal parameter via rotational invariance techniques (TLS-ESPRIT) are applied to oscillatory transient waveforms to extract the relevant parameters and distinguish the direction of switching capacitor. The beginning and ending points of the oscillatory transients can be located by the modulus maximum wavelet domain, then TLS-ESPRIT which is one of the model-based spectrum estimation approach decomposed into signal subspace and noise subspace from data matrix that is directly make up of measured data within disturbance intervals by singular value decomposition (SVD), and truncate the eigenvectors so that the oscillatory transients frequency components, damping factors, amplitude and phase can be obtained by eigenvalue calculation under the condition of TLS. By evaluating the phase difference of voltage and current at the time and frequency of interest and at different spatial points, one can identify the direction of transient disturbance energy flow in order to pinpoint the location of the switched capacitor.
引文
[1]程浩忠,艾芊编著.电能质量.北京:清华大学出版社, 2006, 9
    [2] U. S. -Canada Power System Outage Task Force. Interim report: Cause of the August 14th Blackout in the United States and Canada. November 2003
    [3] Dugan R. C., Mcgranghan M. F, Beaty H. W, Electrical Power System Quality. New York: McGraw Hill, 1996
    [4] D. B. Vannoy, M. F. McGranaghan, and S. M. Halpin, et al. Roadmap for power-quality standards development. IEEE Trans. on Industry Application, 2007, 43(2): 412-421
    [5] IEEE Std 1159. IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE std 1159-1995
    [6] IEC 61000-4-30, ELECTROMAGNETIC COMPATIBILITY (EMC) Part 4-30: Testing and Measurement Techniques - Power Quality Measurement Methods
    [7] GB12325-90电能质量供电电压允许偏差[S].北京:中国标准出版社, 1993
    [8] GB12326-2000电能质量电压波动和闪变[S].北京:中国标准出版社, 1995
    [9] GBT14549-1993电能质量公用电网谐波[S].北京:中国标准出版社, 1993
    [10] GBT15543-1995电能质量三相电压允许不平衡度[S].北京:中国标准出版社, 1995
    [11] GBT15945-1995电能质量电力系统频率允许偏差[S].北京:中国标准出版社, 1995
    [12] GBT 18481-2001电能质量暂时过电压和瞬态过电压[S].北京:中国标准出版社, 2001
    [13]凌玲.几种电能质量指标的监测算法研究[硕士学位论文].浙江大学图书馆, 2006. 5
    [14] IEC Std. 61000-4-30 Power quality measurement methods[S], 2003
    [15] IEC Std. 61000-4-7 Electromagnetic compatibility (EMC)-part 4: Testing and measurement techniques—section VII: General Guide on harmonics and interharmonics measurements and instruments, for power supply systems and equipment connected thereto[S]. 1991
    [16] IEC Std. 61000-4-15 Flicker meter functional and design specification[S]. 2003
    [17] IEEE Std 1159. 1-2003, IEEE Guide For Recorder and Data Acquisition Requirements for Characterization of Power Quality Events
    [18] IEEE Std 1159. 2-2003, IEEE Power Quality Event Characterization
    [19] IEEE Std 1159. 3-2003, IEEE Recommended Practice for the transfer of power quality data
    [20]王继东.电力系统暂态电能质量问题研究: [博士学位论文].天津大学图书馆, 2005. 3
    [21] Dale S. L. Dolan, Peter W. Lehn. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow. IEEE Trans. on Energy Conversion, 2006, 21(3): 717-724
    [22] M. I. Marei, Ehab F. EI-Saadany, and M. M. A. Salama. A novel control algorithm for the DG interface to mitigate power quality problems. IEEE Trans. on Power Delivery, 2004, July 19(3): 1384-1392
    [23]许树楷,宋强,刘文华等.配电系统大功率交流电弧炉电能质量问题及方案治理研究.中国电机工程学报, 2007, 27(19): 93-98
    [24] C. Vilar, J. Usaola, H. Amaris. A frequency domain approach to wind turbines for flicker analysis. IEEE Trans. on Energy Conversion, 2003, 18(2): 335-341
    [25] J. G. Mayordomo, R. Asensi. A frequency domain approach for modeling DC arc furnaces under fluctuating conditions. IEEE Trans. on Power Delivery, 2007, 22(3): 1722-1735
    [26] A. E. Emanuel. Summary of IEEE standard 1459: Definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, orunbalanced conditions. IEEE Trans. Ind. Appl., 2004, 40(3): 869–876
    [27] R. Iuzzolino, W. G. K. Ihlenfeld. High-Accuracy methods and measurement procedures for power quality parameters using the digital synchronous sampling technique. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 426-430
    [28] I. Budovsky and G. Hammond. Precision measurement of power harmonics and flicker. IEEE Trans. Instrum. Meas., 2005, 54(2): 483-487
    [29] Tao Lin, A. Domijan. On power quality indices and real time measurement. IEEE Trans. Power Delivery, 2005, 20(4): 2552-2562
    [30] H. W. Furst, M. Pigl, and J. Baier. An analog method for detecting super-imposed power line voltage disturbance. IEEE Transactions on Instrumentation and Measurement, 1994, 43(6): 889-893
    [31] A. McEachern. A system for capturing and presenting short duration voltage surges on ac power lines. IEEE Transactions on Instrumentation and Measurement, 1989, 39(1): 38-41
    [32] M. Artioli, G. Pasini, and L. Peretto et al. Low-cost DSP-based equipment for the real-time detection of transients in power systems. IEEE Transactions on Instrumentation and Measurement, 2004, 53( 4): 933-939
    [33] L. Peretto, M. Artioli, and G. Pasini, et al. Performance analysis and optimization of a robust algorithm for voltage transients detection. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 2244-2252
    [34] N. Kandil, V. K. Sood, K. Khorasani, et al. Fault identification in an AC-DC transmission system using neural networks. IEEE Transactions on Power Systems, 1992, 7(2): 812-819
    [35] Abdel-Galil T. K., El-Saadany E. F., Salama M. M. Power quality event detection using Adaline. Electric Power Systems Research, 2003, 64(2): 137-144
    [36] Qian Ai, Yuguang Zhou, Weihua Xu. Adaline and its application in power qualitydisturbances detection and frequency tracking. Electric Power Systems Research, 2007, 64(2): 1462-469
    [37]周玉光,艾芊,顾丹珍等.自适应线性神经元在电能质量扰动诊断和频率跟踪中的应用.上海交通大学学报, 2005, 39(12): 2072-2077, 2087
    [38] Mallat SG. Theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693
    [39]陈祥训. Bd小波的滤波参数与小波变换快速算法.电网技术, 1999, 23(8): 44-50
    [40]陈祥训.对几个小波基本概念的理解.电力系统自动化, 2004, 28(1): 1-6
    [41]薛蕙,杨仁刚,罗红等.利用小波变换分析配电网电能质量扰动.电网技术, 2003 27(7): 60-65
    [42] M. Karimi, H. Mokhtari, and M. R. Iravani. Wavelet based on-line disturbance detection for power quality application. IEEE Trans. Power Del., 2000, 15(10): 1212-1220
    [43] H. Mokhtari, M. K. Ghartemani, and M. R. Iravani. Experimental performance evaluation of a wavelet-based on-line voltage detection method for power quality application. IEEE Trans. Power Del., Jan. 2002, 17(1): 161-172
    [44] L. Angrisani, P. Daponte, M. D’Apuzzo, and A. Testa. A measurement method based on the wavelet transform for power quality analysis. IEEE Trans. Power Del., 1998, 13(4): 990-998
    [45] D. C. Robertson, O. I Camps, J. S. Mayer, et al. Wavelets and electromagnetic power system transients. IEEE Trans. on Power Delivery, l996, 11(2): 1050-1058
    [46] G. T. Heydt, A. W. Galli. Transient power quality problems analyzed using wavelets[J]. IEEE Trans. on Power Delivery, 1997, 12(2): 908-915
    [47] A. M. Gaouda, M. M. A. Salama, M. R. Sultan, and A. Y. Chikhani. Power quality detection and classification using wavelet-multiresolution signal decomposition.IEEE Trans. Power Del., Oct. 1999, 14(4): 1469-1476
    [48]马振国,李鹏,杨以涵等.基于小波多分辨率分析法的电能质量检测.华北电力大学学报, 2003, 30(3): 13-16
    [49]周文晖,李青,等.采用小波分辨率信号分解的电能质量检测.电工技术学报, 2001, 16(6): 81-84
    [50] O. Poisson, P. Rioual, and M. Meunier. Detection and measurement of power quality disturbances using wavelet transform. IEEE Trans. Power Del., 2000, 15(3): 1039-1044
    [51] L. Angrisani, P. Daponte, M. D. Apuzzo. Method for The autotmatic Detection and Measureinent of Transients. Part II: applications. IEEE Trans. On Instrumentation and Measurement, 1999, 25(1): 31-40
    [52] Shyh-Jier Huang, Cheng-Tao Hsieh. Coitlet wavelet transform applied to inspect power system disturbance-generated signals. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 204-210
    [53] D. G?khan Ece, and ?mer N. Gerek. Power quality event detection using joint 2-D-Wavelet subspaces. IEEE Trans. On Instrumentation and Measurement, 2004, 53(4): 1040-1046
    [54]崔屹.图象处理与分析—数学形态学方法及应用[M].北京:科学出版社, 2002
    [55]曾纪勇,丁洪发,段献忠.基于数学形态学的谐波检测与电能质量扰动定位方法.中国电机工程学报, 2005, 25(21): 57-62
    [56]岳蔚,刘沛.基于数学形态学消噪的电能质量扰动检测方法.电力系统自动化, 2002, 26(7): 13-17
    [57]李庚银,罗艳,周明等.基于数学形态学和网格分形的电能质量扰动检测及定位.中国电机土程学报, 2006, 26(3): 25-30
    [58]欧阳森,工建华,陈德桂等.一种基于数学形态学的电能质量信号快速定位方法.电力系统自动化, 2003, 27(19): 25-29
    [59]凌玲,徐政.基于数学形态学的动态电能质量扰动的检测与分类.电网技术,2006, 30(5): 62-66
    [60]文继锋,刘沛.一种电能质量扰动检测的新方法.中国电机工程学报, 2002, 22(12): 17-20
    [61] O. Poisson, P. Rioual, M. Meunier. New signal processing tools applied to power quality analysis. IEEE Trans. on Power Delivery, 1999, 14(2): 561-566
    [62]李天云,赵妍,李楠等.基于HHT的电能质量检测新方法.中国电机工程学报, 2005, 25(7): 52-56
    [63] M. Albu, G. T. Heydt. On the use of RMS values in power quality assessment. IEEE Trans. Power Del., 2003, 18(4): 1586-1587
    [64] M. H. J. Bollen, P. Goossens and A. Robert. Assessment of voltage dips in HV-networks: deduction of complex voltages from measured RMS voltages. IEEE Trans. Power Del., 2004, 19(2): 783-790
    [65] S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, and S. C. Bhatt. Characterization of distribution power quality events with Fourier and wavelet transforms. IEEE Trans. Power Del., 2000, 15(1): 247-254
    [66] Y. H Gu, M. H. J. Bollen. Time-frequency and time-scale domain analysis of voltage disturbances. IEEE Trans. Power Del., 2000, 15(4): 1279-1284
    [67]徐永海,肖湘宁,杨以涵等.基于dq变换和ANN的电能质量扰动辨识.电力系统自动化, 2001, 25(14): 24-28
    [68] R. G. Stockwell, L. Mansinha, and R. P. Lowe. Localization of the complex spectrum: the S Transform. IEEE Trans. Signal Process, 1996, 44(4): 998-1001
    [69]全惠敏,戴瑜兴.基于S变换模矩阵的电能质量扰动信号检测与定位.电工技术学报, 2007, 22(8): 119-125
    [70] Lee I W C, Dash P K. S-transform-based intelligent system for classification of power quality disturbance signals. IEEE Trans. on Power Delivery, 2003, 18(3): 800-805
    [71]占勇,程浩忠,丁屹峰等.基于S变换的电能质量扰动支持向量机分类识别.中国电机工程学报, 2005, 25(4): 51-56
    [72]吕干云,程浩忠,郑金菊等.基于S变换和多级SVM的电能质量扰动检测识别.电工技术学报, 2006, 21(1): 121-126
    [73] P. K. Dash, B. K. Panigrahi, and G. Panda. Power quality analysis using S-transform. IEEE Trans. Power Del., 2003, 18(2): 406-411
    [74] Fengzhan Zhao, Rengang Yang. Power quality disturbance recognition using S-transform. IEEE Trans. Power Del., 2007, 22(2): 944-950
    [75] P. K. Dash, and M. V. Chilukuri. Hybrid S-transform and kalman filtering approach for detection and measurement of short duration disturbances in power networks. IEEE Trans. On Instrumentation and Measurement., 2004, 53(2): 588-596
    [76] P. K. Dash, B. K. Panigrahi and D. K. Sahoo. Power quality disturbance data compression, detection, and classification using integrated spline wavelet and s-transorm. IEEE Trans. On Power Del.., 2003, 18(2): 595-600
    [77] Surya Santoso, Edward J. Powers, W. Mack Grady et al. Power Quality Disturbance Waveform Recognition Using Wavelet-Based Neural Classifier-Part 1: Theoretical Foundation. IEEE Transactions on Power Delivery, 2000, 15(1): 222-228
    [78] Surya Santoso, Edward J. Powers, W. Mack Grady et al. Power Quality Disturbance Waveform Recognition Using Wavelet-Based Neural Classifier-Part 2: Application. IEEE Transactions on Power Delivery, 2000, 15(1): 229-235
    [79] S. Mishra, C. N. Bhende, and B. K. Panigrahi. Detection and classification of power quality disturbances using S-transorm and probabilistic neural network. IEEE Transactions on Power Delivery, 2008, 23(1): 280-287
    [80] Z. -L. Gaing. Wavelet-based neural network for power disturbance recognition and classification. IEEE Trans. Power Del., 2004, 19(4): 1560-1568
    [81] L. Angrisani, P. Daponte, and M. D’Apuzzo. Wavelet network-based detection and classification of transients. IEEE Trans. Instrum. Meas., 2001, 50(5): 1425-1435
    [82] Haibo He and J. A. Starzyk. A self-organizing learning array system for power quality classification based on wavelet transform. IEEE Trans. Power Del., 2006, 21(1): 286-295
    [83] C. -H. Lin and M. -C. Tsao. Power Quality Detection with classification enhancible wavelet-probabilistic network in a power system. IEE Proceedings of Generation, Transmission and Distribution, November 2005, 152(6): 969-976
    [84] C. -H. Lin and C. -H. Wang. Adaptive Wavelet Networks for Power-Quality Detection and Discrimination in a Power System. IEEE Trans. on Power Delivery, 2006, 21(3): 1106-1113
    [85] I. Monedero, C. León, J. Ropero et al. Classification of electrical disturbances in real time using neural network. IEEE Transactions on Power Delivery, 2007, 22(3): 2288-1296
    [86]林涛,樊正伟.利用小波变换及人工神经网络识别电能扰动.高电压技术, 2007, 33(7): 151-154, 181
    [87] S. Santoso, J. Lamoree, W. M. Grady, E. J. Powers et al. A scalable PQ event identification system. IEEE Trans. Power Del., 2000, 15(4): 738-743
    [88] E. Styvaktakis, Math. J. Boolen, and Irene Y. H. Gu. Expert system for classification and analysis of power system events. IEEE Transactions on Power Delivery, 2002, 17(2), April, pp. 423-428
    [89] M. B. I. Reaz, F. Choong, M. S. Sulaiman, et al. Expert system for power quality disturbance classifier. IEEE Transactions on Power Delivery, 2007, 22(3): 1979-1988
    [90]杨洪耕,刘守亮,肖先勇等.基于S变换的电压凹陷分类专家系统.中国电机工程学报, 2007, 27(1): 98-104
    [91] M. V. Chilukuri and P. K. Dash. Multiresolution S-transform-based fuzzy recognition system for power quality events. IEEE Trans. Power Del., 2004, 19(1): 323-330
    [92] H. Jiansheng, M. Negnevitsky, and D. T. Nguyen. A neural-fuzzy classifier for recognition of power quality disturbances. IEEE Trans. Power Del., 2002, 17(2): 609-616
    [93]刘慧芳,陈勇胜,王群等.基于小波变换和模糊逻辑的暂态能质量扰动分类.电网技术, 2008, 32(3): 84-87
    [94] T. X. Zhu. S. K. Tso, K. L. Lo. Wavelet-based fuzzy reasoning approach to power-quality disturbance recognition. IEEE Trans. Power Del., 2004, 19(4): 1928-1935
    [95]徐袭,石敏.一种基于粗糙集与小波变换的电能质量分类方法.电力自动化设备, 2005, 25(11): 15-18
    [96] M. Kezunovic, Yuan Liao. A novel software implementation concept for power quality study. IEEE Transactions on Power Delivery, 2002, 17(2): 544-549
    [97] Y. Liao, J. B. Lee. a fuzzy-expert system for classifying power quality disturbances. International Journal of Electrical Power & Energy, 2004, 26(3): 199-205
    [98] Dash, P. K. S. Mishra, M. M. A. Salama et al. Classification of power system disturbances using a fuzzy expert system and a fourier linear combiner. IEEE Trans. Power Del., 2000, 15(2): 472-477
    [99]宋晓芳,陈劲操.基于支持向量机的动态电能质量扰动分类方法.电力自动化设备, 2006, 26(4): 39-42
    [100] T. K. Abdel-Galil, M. Kamel, A. M. Youssef et al. Power quality disturbance classificationusing the inductive inference approach. IEEE Transactionson Power Delivery, 2004, 19(4): 1812-1818
    [101] A. M. Youssef, T. K. Abdel-Galil, E. F. El-Saadany et al. Disturbance classification utilizing dynamic time warping classifier. IEEE Trans. Power Del., 2004, 19(1): 272-278
    [102] T. K. Abdel-Galil, E. F. El-Saadany, A. M. Youssef et al. Disturbance classification using hidden markov models and vector quantization. IEEE Transactionson PowerDelivery, 2005, 20(3): 2129-2135
    [103] J. Chung, E. J. Powers, W. M. Grady, S. C. Bhatt. Power disturbance classifier using a rule-based method and wavelet packet-based hidden Markov model. IEEE Trans. Power Del., 2002, 17(1): 233-241
    [104]何为,杨洪耕.基于第二代小波变换和离散隐马尔可夫模型的电能质量扰动分类.电工技术学报, 2007, 22(5)p: 146-152
    [105] A. M. Gaouda, S. H. Kanoun, M. M. A. Salama et al. Pattern recognition applications for power system disturbance classification. IEEE Trans. Power Del., 2002, 17(3): 677-683
    [106] M. Wang and A. V. Mamishev. Classification of power qualityevents using optimal time-frequency representations—part 1: theory. IEEE Transactions on Power Delivery, 2004, 19(3): 1488-1495
    [107] M. Wang, G. I. Rowe, and A. V. Mamishev. Classification of power quality events using optimal time-frequency representations—part 2: application. IEEE Transactions on Power Delivery, 2004, 19(3): 1496-1503
    [108]郑岗,石梅香,刘丁等.基于时域、多分辨率分析和规则基的电能质量扰动分类.电网技术, 2004, 28(3): 65-68
    [109] Cohen L. The history of noise[on the 100th anniversary of its birth]. IEEE on Signal Processing Magazine, IEEE, 2005, 22(6): 20-45
    [110]唐良瑞,祁兵,杨雪等.一种基于高斯滤波器的电能质量信号去噪算法.中国电机工程学报, 2006, 26(10): 18-22
    [111] Donoho D. L.. De-noising by soft-thresholding. IEEE Trans on Inform. Theory, 1995, 41(5): 613- 627
    [112] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage. Journal of American Statistical Association, 1995, 90(2): 1200-1224
    [113] Pan Quan, Zhang Lei, Dai Guanzhong, et al. Two denoising methods by wavelet transform. IEEE Trans. on Signal Processing, 1999, 47(12): 3401-3406
    [114] Shark L. K., Yu C.. Denoising by optimal fuzzy thresholding in wavelet domain. Electronics Letters, 2000, 36(6): 581-582
    [115] Zhang X. P., Desai M. D.. Adaptive denoising based on SURE risk. IEEE Signal Processing Letters, 1998, 5(10): 265-267
    [116] Krim H., Tucker D. Mallat S, Donoho D L. On denoising and best signal representation. IEEE Trans. on Information Theory, 1999, 45(7): 2225-2238
    [117] Jansen M, Bultheel A. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise. IEEE Trans. on Image Processing, 1999, 8(7): 947-953
    [118] Hong-Tzer Yang, Chiung-Chou Liao. A De-Noising Scheme for Enhancing Wavelet-Based Power Quality Monitoring System. IEEE Transactions on Power Delivery, 2001, 16(3): 353-360
    [119]欧阳森,宋政湘,王建华等.基于信号相关性和小波方法的电能质量去噪算法.电工技术学报, 2003, 18(3): 111-116
    [120]刘志刚,曾怡达,钱清泉.多小波在电力系统信号消噪中的应用.中国电机工程学报, 2004, 24(1): 30-34
    [121]欧阳森,宋政湘,陈德桂等.小波软阂值去噪技术在电能质量检测中的应用.电力系统自动化, 2002, 26(19): 56-60
    [122]唐良瑞,杨雪.基于基于三角模融合算子的电能质量去噪算法.电工技术学报, 2007, 22(9): 154-158
    [123]张吉先,钟秋海,戴亚平.小波门限消噪法应用中分解层数及阈值的确定.中国电机工程学报, 2004, 24(2): 118-122
    [124]薛蕙,杨仁刚.基于小波包除噪的电能质量扰动检测方法.中国电机工程学报, 2004, 24(3): 85-90
    [125]黄文清,电能质量扰动在线监测方法研究[博士学位论文].湖南大学图书馆, 2007, 1
    [126]徐永海,肖湘宁,杨以涵等.小波变换在电能质量分析中的应用.电力系统自动化, 1999, 23(23): 55-58
    [127]剧高峰,罗安.离散小波变换用于电能质量扰动数据实时压缩.电力系统自动化, 2002, 26(19): 61-63
    [128]刘志刚,钱清泉.基于多小波的电力系统故障暂态数据压缩研究.中国电机工程学报, 2003, 23(10): 22-26
    [129]张昊,刘沛.基于双正交小波的电力系统故障录波数据压缩.电网技术, 2000, 24(11): 41-43
    [130]李鹏,杨洪耕,孔飘红. MDL判据在电能质量扰动信号数据压缩中的应用.电网技术, 2004, 28(18): 48-52
    [131]欧阳森,宋政湘,陈德桂.基于小波原理的电能质量检测数据实时压缩方法.电网技术, 2003, 27(2): 37-40
    [132] S. J. Huang and M. J. Jou. Application of arithmetic coding for electric power disturbance data compression with wavelet packet enhancement. IEEE Trans. Power Syst., 2004, 19(4): 1334-1341
    [133] G. Panda, P. K. Dash, A. K. Pradhan, and S. K. Meher. Data compression of power quality events using the slantlet transform. IEEE Trans. Power Delivery, 2002, 17(2): 662-667
    [134] S. Santoso, E. J. Powers, and W. M. Grady. Power quality disturbance data compression using wavelet transform methods. IEEE Trans. Power Delivery, 1997, 12(3): 1250-1256
    [135] T. B. Littler and D. J. Morrow. Wavelets for the analysis and compression of power system disturbances. IEEE Trans. Power Del., 1999, 14(2): 358-364
    [136] M. V. Ribeiro J. M. Romano, C. A. Duque. An improved method for signal processing and Compression in power quality evaluation. IEEE Trans. Power Delivery, 2004, 19(2): 464-471
    [137] E. Y. Hamid and Z. I. Kawasaki. Wavelet-based data compression of power system disturbances using the minimum description length criterion. IEEE Trans. PowerDelivery, 2002, 17(2): 460-466
    [138] ?mer Nezih Gerek, Do?an G?khan Ece. 2-D analysis and compression of power quality event data. IEEE Transactions on Power Delivery, 2004, 19(2): 791-798
    [139] W. R. Anis Ibrahim, M. M. Morcos. Novel data compression technque for power wveforms using adaptive fuzzy logic. IEEE Trans. Power Delivery, 2005, 20(3): 464-471
    [140]崔锦泰.著,程正兴.译.小波分析导论.西安:西安交通大学出版社, 1997. 1
    [141]肖遥,李澍森.供电系统的电压下凹.电网技术, 2001, 25(1): 73-77
    [142]王克星,宋政湘,陈德桂等.基于小波变换的配电网电压暂降的干扰源辨识.中国电机工程学报, 2003, 23(6): 29-34, 54
    [143] S. Santoso, E. J. Powers, W. M. Grady et al. Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 1996, 11(2): 924-930
    [144]李智勇,吴为麟.基于分形测度的电压暂降持续时间检测.电工技术学报, 2007, 22(9): 148-153
    [145]潘兰兰.电能质量分析仪的研制: [硕士学位论文].华中科技大学图书馆, 2005. 7
    [146] D. L. Brooks, R. C. Dugen, M. Waclawiak et al. Indices for assessing utility distribution system RMS voltage variation performance. IEEE Trans. Power Delivery., 1998, 13(1): 254-259
    [147] Huang S. J., Hsieh C. H.. Feasibility of fractal-based methods for visualization of power system disturbances. International Journal of Electrical Power and Energy Systems, 2001, 23(1): 31-36
    [148] http: //grouper. ieee. org/groups/1159/
    [149] Hong June Shin. Theory and Application of time-frequency analysis to transient phenomena in electric power and other physical systems[D]. The University of Texas at Austin, 2004, August
    [150] John G. Proakis著.汤俊译.统计信号处理算法.北京:清华大学出版社, 2006. 3
    [151]刘有才,刘增良.模糊专家系统原理与设计.北京航空航天大学出版社, 1996. 8
    [152]李凡.模糊专家系统.武汉:华中理工大学出版社, 1995. 7
    [153]陆汝铃.人工智能.北京:科学出版社, 2000. 3
    [154]马玉祥,武波.专家系统.成都:电子科技大学出版社, 1994. 1
    [155] T. A. Bellei, R. P. Oleary, E. H. Camm. Evaluating capacitor switching devices preventing nuisance tripping of adjustable-speed drives due to voltage magnification. IEEE Trans. on Power Delivery, 1996, 11(3): 1373-1378
    [156] E. P. Dick, D. Fischer, R. Marttila, et al. Point-on-wave capacitor switching and adjustable speed drives. IEEE Transactions on Industry Applications, 1996, 11(3): 1367-1372
    [157] M. McGranaghan, R. Zavadil, G. Hensley, et al. Impact of utility switched capacitors on customer systems-magnification at low voltage capacitors. IEEE Transactions on Power Delivery, 1992, 7(2): 862-868
    [158] D. Sochuliakova, D. Niebur, C. O. Nwankpa, et al. Identification of capacitor position in a radial system. IEEE Transactions on Power Deliver. 1999, 14(4): 1368-1373
    [159] A. Parsons, W. Grady, E. Powers, and J. Soward, et al. A direction finder for power quality disturbances based upon disturbance power and energy. IEEE Transactions on Power Delivery, 2000, 15(3): 1081-1086
    [160] J. Kim, W. Grady, A. Arapostathis et al. A time-domain procedure for locating switched capacitors in power distribution systems. IEEE Transactions on Power Delivery, 2002, 17(4): 1044-1049
    [161] M M Saied. Capacitor switching transients: analysis and proposed technique for identifying capacitor size and location. IEEE Trans on Power Delivery, 2004, 19(2): 759-765
    [162] Y. Y. Hong, B. Y. Chen. Locating switching capacitor using wavelet transform and hybrid principal component analysis network. IEEE Trans on Power Delivery, 2007, 22(2): 1145-1152
    [163] G. W. Chang, M. H. Shih, S. Y. Chu et al. An efficient approach for tracking transients generated by utility shunt capacitor switching. IEEE Trans on Power Delivery, 2006, 21(1): 510-512
    [164] S. Santoso. On determining the relative location of switched capacitor banks. IEEE Trans on Power Delivery, 2007, 22(2): 1108-1116
    [165]张贤达.现代信号处理(第二版).北京:清华大学出版社, 2002. 10
    [166]吴湘霖,俞卞章,李会方等.基于虚拟阵列的波达方向、载频和极化参数联合估计.电子与信息学报, 2005, 27(12): 1887-1891
    [167]张群飞,保铮,黄建国.一种水下多目标方位、频率、距离联合估计新方法.电子学报, 2004, 32(9): 1409-1413
    [168]严杰,丁腾波,田玉双等.基于ESPRIT算法的子载波交织型OFDMA上行链路频偏估计.电路与系统学报, 2007, 12(4): 5-10
    [169]冯德军,王雪松,陈志杰等.酉ESPRIT超分辨ISAR成像方法.电子学报, 2005, 33(12): 2097-2100
    [170] Roy R., Paulraj A., Kailath T.. ESPRIT: a subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans on Acoustics, Speech, Signal Processing, 1986, 34(5): 1340-1342
    [171] Roy R., Kailath T.. ESPRIT: estimation of signal parameters via rotational invariance techniques. IEEE Trans on Acoustics, Speech, Signal Processing, 1989, 37 (7): 984-995
    [172]张静,徐政,王峰等. TLS-ESPRIT算法在低频振荡分析中的应用.电力系统自动化, 2007, 31(20): 84-88
    [173] M. H. J. Bollen, E. Styvaktakis, I. Y. H. Gu. Categorization and analysis of power system transients. IEEE Trans on Power Delivery, 2005, 20(3): 2298-2306
    [174]齐泽锋,李卫国,谈顺涛等.基于模极大值小波域的局部放电信号重构算法.中国电机工程学报, 2002, 22(11): 28-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700