泛素—蛋白酶体途径参与小鼠SPEN家族MINT蛋白转录调控作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泛素-蛋白酶体途径被认为是在哺乳动物细胞中选择性的降解短寿命蛋白的主要系统。受调节蛋白主要与细胞周期进程、应激反应、抗原呈递、信号传导、转录调控、DNA损伤修复、凋亡、细胞器官的生物发生有关。泛素化是一系列酶级联传递泛素的结果。具体过程为,泛素激活酶E1催化泛素与底物蛋白结合,即以ATP依赖的方式通过硫醇酯键将泛素的C-端硫醇基与自身的半胱氨酸结合,然后将活化的泛素传递给泛素结合酶E2;泛素连接酶E3将结合着泛素的泛素结合酶和底物蛋白连接,从而促进泛素的羧基末端的甘氨酸与底物蛋白内部的赖氨酸ε的氨基之间形成异肽键,泛素与蛋白结合;部分底物蛋白尚需要多聚泛素化聚集因子E4参与多聚泛素链的形成。之后,泛素多聚链的蛋白分子被26S蛋白酶复合体识别和降解,泛素-C-末端水解酶或者异肽酶酶解释放泛素分子。
     UbcH8是人的泛素结合酶基因UBE2L6编码的蛋白,属于主要包含Ubc结构域的第一类泛素结合酶家族(Class Ⅰ E2s)成员。第一类泛素结合酶家族分子不能将泛素分子直接传递给底物蛋白,提示这类E2需要借助泛素连接酶E3进行底物蛋白的识别。研究表明:UbcH8可以与RING finger或者BR motif-containing domain (in between RING fingers)以及HECT[6]等结构域的蛋白发生相互
In mammalian cells, the ubiquitin-proteasome pathway is the principal system that mediates selectively the degradation of short-lived proteins related to such cellular activities as cell cycle progression, the response to stress, antigen processing, signal transduction, transcriptional regulation, DNA repair, apoptosis, and organelle biogenesis. Ubiquitylation occurs as a result of the sequential action of four classes of enzymes, E1 or ubiquitin activating enzyme, E2 or ubiquitin conjugating enzyme, E3 or ubiquitin protein ligase and E4 or ubiquitin chain assembly factor. E1, the first enzyme in the ubiquitylation pathway, forms a thiol-ester bond between its active site cysteine and the carboxyl-terminal glycine of ubiquitin. The activated ubiquitin on E1 is subsequently transferred to the active site cysteine of an E2 by transesterification. E3 binds ubiquitin-charged E2 and substrate and facilitates formation of an isopeptide linkage between the carboxyl-terminal glycine of ubiquitin and the ε amino group of an internal lysine residue on the substrate, or an ubiquitin already attached to the protein. Ubiquitin chain assembly factor or E4 is
引文
[1] Cecile M. Pickart. Back to the future with ubiquitin. Cell, 2004; 116: 181-190.
    [2] Allan M. Weissman. Themes and variations on ubiquitylation. Molecular Cell Biology, 2001; 2: 169-178.
    [3] 尹会男,柴家科。泛素-蛋白酶体途径研究进展。医学分子生物学杂志。2004;1(1):47-50。
    [4] Avram Hershko and Aaron Ciechanover. The ubiquitin system. Annu. Rev. Biochem. 1998; 67: 425-479.
    [5] Bossola M, Muscaritoli M, Costelli P, et al. Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg, 2003, 237(3): 384-389.
    [6] Gillessen S, Groettup M, Cemy T. The proteasome, a new target for cancer therapy. Onkologie. 2002, 25(6): 534-539.
    [7] Elliott PJ, Zollner TM, Boehncke WH. Proteasome inhibition: a new anti-inflammatory strategy. J Mol Med. 2003, 81(4): 235-245.
    [8] Schlesinger DH, Goldstein G, Niall HD. The complete amino acid sequence of ubiquitin, an adenylate eyclase stimulating polypeptide probably universal in living cells. Biochemistry, 1975; 14(10): 2214-2218.
    [9] Goldknopf IL, French MF, Musso R, Busch H. Presence of protein A24 in rat liver nucleosomes. Proc Natl Acad Sci. 1977; 74(12): 5492-5495.
    [10] Ciechanover A, Elias S, Heller H, Hershko A. "Covalent affinity" purification of ubiquitin-activating enzyme. J Biol Chem. 1982; 257(5):??2537-2542.
    [11] Haas AL, Warms JV, Hershko A, Rose IA. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem. 1982; 257(5): 2543-2548.
    [12] Hough R, Rechsteiner M. Ubiquitin-lysozyme conjugates. Purification and susceptibility to proteolysis. J Biol Chem, 1986; 261(5): 2391-2399.
    [13] Hershko A. The ATP-ubiquitin proteolytic pathway. Prog Clin BiolRes. 1985; 180: 11-16.
    [14] Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science, 1989; 243(4898): 1576-1583.
    [15] Hershko A, Eytan E, Ciechanover A, Haas AL. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J Biol Chem, 1982; 257(23): 13964-13970.
    [16] Finley D, Ciechanover A, Varshavsky A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell, 1984; 37(1): 43-55.
    [17] Ciechanover A, Finley D, Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell, 1984; 37(1): 57-66.
    [18] Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is??destroyed at each cleavage division. Cell, 1983; 33(2): 389-396.
    [19] Finlay D., Ciechanover A., and Varshavsky A.,. Thermolability of ubiquitin-activating enzyme from. the mammalian cell cycle mutant ts85. Cell, 1984; 37: 43-55.
    [20] Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science, 1986; 234(4773): 179-186.
    [21] Fanga S. and. Weissmanb A. M. A field guide to ubiquitylation. CMLS, Cell. Mol. Life Sci. 2004; 61: 1546-1561
    [22] Hatakeyama S, Nakayama KI. U-box proteins as a new family of ubiquitin ligases. Biochem Biophys Res Commun, 2003; 302: 635-645.
    [23] Jan Smalle and-Richard D. Vierstra: The ubiquitin 26s proteasome proteolytic pathway. Annual Review of Plant Biology, 2004; 55: 555-590.
    [24] Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA. Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo. Exp Cell Res, 2005; 307(2): 436-51.
    [25] Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature, 2002; 416(6882): 763-767.
    [26] Haas, A. L, Warms, J. V., Hershko, A. and Rose, I. A. Ubiquitin-activating enzyme. Mechanism and role in proteinubiquitin conjugation. J. Biol. Chem., 1982; 257: 2543-2548.[27] Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998; 67: 425-479.
    [28] 柳国艳,刘书逊.泛素系统在免疫信号转导过程中的作用研究进展.国外医学免疫学分册,2005;28(5):288-292.
    [29] Jentsch S, Seufert W, Sommer T, Reins HA. Ubiquitin-conjugating enzymes: novel regulators of eukaryotic cells. Trends Biochem Sci; 15(5): 195-198
    [30] 杨东叶,刘凯于,余泽华.泛素连接酶E3.细胞生物学杂志,2005;27:281—285.
    [31] Peter K. Jackson, Adam G. Eldridge, Ellen Freed, Laura Furstenthal, Jerry Y. Hsu, Brett K. Kaiser and Julie D. R. Reimann. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends in Cell Biology, 2000; 10: 429-439
    [32] Ardley HC, Robinson PA. E3 ubiquitin ligases. Essays Biochem. 2005; 41: 15-30.
    [33] Hoppe T. Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends Biochem Sci, 2005 ; 30(4): 183-7.
    [34] Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell, 1999; 96(5): 635-644.
    [35] Lain YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature, 2002; 416(6882): 763-767.
    [36] Dohmen RJ, London MK, Glanemann C, Ramos PC. Assays for proteasome assembly and maturation. Methods Mol Biol, 2005;??301: 243-254.
    [37] Kim JH, Park KC, Chung SS, Bang O, Chung CH. Deubiquitinating enzymes as cellular regulators. J Biochem (Tokyo), 2003; 134(1): 9-18.
    [38] Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA. Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo. Exp Cell Res, 2005; 307(2): 436-451.
    [39] Liu Y-C. Ubiquitin ligases and the immtme response. Annu Rev Immunol, 2004; 22: 81-127
    [40] Pickart CM, Eddins MJ: Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acra, 2004; 1695: 55-72.
    [41] Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature, 2002; 419: 407-411.
    [42] Jones KA, Kadonaga JT. Exploring the transcription-chromatin interface. Genes Dev, 2000; 14(16): 1992-1996
    [43] Masafumi Muratani, and William P. Tansey. How the ubiquitin-proteasome system controls transcription. Molecular Cell Biology, 2003; 4: 1-10.
    [44] Goldknopf, I. L. et al. Isolation and characterization of protein A24, a 'historic-like' non-histone chromosomal protein. J. Biol. Chem, 1975, 250: 7182-7187
    [45] Goldknopf, I. L. & Busch, H. Isopeptide linkage between non histone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc. Natl Acad. Sci, 1977; 74: 864-868.[46] Mitsui, A. & Sharp, P. A. Ubiquitination of RNA polymerase Ⅱ large subunit signaled by phosphorylation of carboxylterminal domain. Proc. Natl Acad Sci, 1999; 96: 6054-6059
    [47] Dhananjayan SC, Ismail A, Nawaz Z. Ubiquitin and control of transcription. Essays Biochem, 2005; 41: 69-80.
    [48] Lehner P J, Cresswell P. Recent developments in MHC-class-Ⅰ-mediated antigen presentation. Curr Opin Immunol, 2004; 16(1): 82-89.
    [49] Kruger E, Kuckelkorn U, Sijts A, Kloetzel PM. The components of the proteasome system and their role in MHC class Ⅰ antigen processing. Rev Physiol Biochem Pharmacol, 2003; 148: 81-104.
    [50] Friedlander R, Jamsch E, Urban J, Volkwein C, SommerT. A regulatory link between ER-associated protein degradation and the unfolded—protein response. Nat Cell Biol, 2000; 2: 379—384
    [51] Travers KJ, Patil CK, Wordicka L, Loc khart DJ, Weissman JS, Walter P. Functional an d genomic an alyses reveal an essential coordination between the unfolded protein response an d ER-associated degr adation. Cell, 2000; 101: 249-258
    [52] Brodsky JL, McCracken AA. ER protein quality control and proteasome-mediated protein degradation. Semin Cell Dev Biol. 1999; 10(5): 507-513.
    [54] 屈顺林,杨向东。泛素-蛋白酶体途径与受体胞吞。国外医学生理、病理科学与临床分册,2004;24(1):11-14[55] Susan CS, Katherine SM, Linda H. Monoubiquitin carries a novel internalization sinagal that is appended to activated receptor. EMBO J, 2000; 19 (2): 187-198
    [56] Dice JF. Molecular determinants of protein half-lives in eukaryotic cells. FASEB J, 1987; 1(5): 349-357.
    [57] Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol, 2005; 7(8): 758-65.
    [58] 郭纪锋,张玉虎,唐北沙。泛素蛋白水解酶体通路与神经系统变性疾病。国外医学生理、病理科学与临床分册,2004;24(6):523-526.
    [59] Shastry BS. Neurodegenerative disorders of protein aggregation. Neurochem Int, 2003, 43(1): 1-7.
    [60] 何洪智,赵晓航,张立勇,吴曼.蛋白质泛素化降解途径与肿瘤发生的关系.世界华人消化杂志,2002;10(12):1365-1368
    [61] Devoy A, Soane T, Welchman R, Mayer RJ. The ubiquitin-proteasome system and cancer. Essays Biochem, 2005; 41: 187-203.
    [62] 丁莉,屈顺林,杨向东.泛素-蛋白酶体通路在动脉粥样硬化中的作用.生命的化学,2005;25(5):370-372.
    [63] Herrmann J, Ciechanover A, Lerman LO, Lerman A. The ubiquitin-proteasome system in cardiovascular diseases-a hypothesis extended. Cardiovasc Res, 2004; 61(1): 11-21.
    [64] Gelman MS, Kopito RR. Cystic fibrosis: premature degradation of mutant proteins as a molecular disease mechanism. Methods Mol Biol, 2003; 232: 27-37.
    [65] Tsukamoto S, Yokosawa H. Natural products inhibiting the ubi-??quitin-proteasome proteolytic pathway, a target for drug development. Curr Med Chem, 2006; 13(7): 745-754.
    [66] Ciechanover A. The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology. 2006; 66: S7-19.
    [67] Voorhees PM, Orlowski RZ. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol. 2006; 46: 189-213.
    [68] Herrmann J, Ciechanover A, Lerman LO, Lerman A. The ubiquitin-proteasome system-micro target for macro intervention? Int J Cardiovasc Intervent. 2005; 7(1): 5-13.
    [69] Thaminy S, Miller J, Stagljar I. The split-ubiquitin membrane-based yeast two-hybrid system. Methods Mol Biol. 2004; 261: 297-312.
    [70] Lehming N. Analysis of protein-protein proximities using the split-ubiquitin system. Brief Funct Genomic Proteomic. 2002; 1(3): 230-238.
    [71] Newberry EP, Latifi T, Towler DA.The RRM domain of MINT, a novel Msx2 binding protein, recognizes and regulates the rat osteocalcin promoter. Biochemistry, 1999; 38(33): 10678-10690.
    [72] Kuang B, Wu SC, Shin Y, Luo L, Kolodziej P. Split ends encodes large nuclear proteins that regulate neuronal cell fate and axon extension in the Drosophila embryo. Development, 2000; 127(7): 1517-1529
    [73] Chen F, Rebay I: Split ends, a new component of the DrosophilaEGF receptor pathway, regulates development of midline glial cells. Curr Biol, 2000; 10(15): 943-946
    [74] Rebay I, Chen F, Hsiao F, Kolodziej PA, Kuang BH, Laverty T, Suh C, Voas M, Williams A, Rubin G.M: A genetic screen for novel components of the Ras/Mitogen-activated protein kinase signaling pathway that interact with the yah gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein. Genetics, 2000; 154(2): 695-712.
    [75] Mace K, Tugores A: The product of the split ends gene is required for the maintenance of positional information during Drosophila development. BMC Dev Biol, 2004; 4(1): 15-22.
    [76] Oscar L. Sierra, Su-Li Cheng, Arleen P. Loewy, Nichole harlton-Kachigian, Dwight A. Towler. MINT, the Msx2 Interacting nuclear matrix target, enhances Runx2-dependent activation of the osteocalcin fibroblast growth factor response element. J. Biol. Chem, 2004; 279 (31): 32913-32923.
    [77] Kuroda K, Han H, Tani S, Tanigaki K, Tun T, Furukawa T, Taniguchi Y, Kurooka H, Hamada Y, Toyokuni S, Honjo T.Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity. 2003; 18(2): 301-312.
    [78] Li J, Li J, Yang X, Qin H, Zhou P, Liang Y, Han H: The C terminus of MINT forms homodimers and abrogates MINT-mediated transcriptional repression. Biochim Biophys Acta, 2005; 1729(1): 50-56.
    [79] Yang X, Li J, Qin H, Yang H, Li J, Zhou P, Liang Y, Han H. Mintrepresses transactivation of the type II collagen gene enhancer through interaction with αA-crystallin-binding protein 1. J. Biol. Chem, 2005; 280(19): 18710-18716.
    [80] Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knochel W, Liptay S, Schmid RM.SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 2002; 21(20): 5417-5426.
    [81] Shi Y, Downes M, Xie W, Kao HY, Ordentlich P, Tsai CC, Hon M, Evans RM: Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev, 2001; 15(9): 1140-1151
    [82] Ludewig AH, Kober-Eisermann C, Weitzel C, Bethke A, Neubert K, Gerisch B, Hutter H, Antebi A. A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes Dev, 2004; 18(17): 2120-2133
    [83] Hiriart E, Gruffat H, Buisson M, Mikaelian I, Keppler S, Meresse P, Mercher T, Bernard OA, Sergeant A, Manet E. Interaction of the Epstein-Barr virus mRNA export factor EB2 with human Spen proteins SHARP, OTT1, and a novel member of the family, OTT3, links Spen proteins with splicing regulation and mRNA export. J Biol Chem. 2005; 280(44): 36935-36945.
    [84] Luis Sánchez-Pulido, Ana M Rojas, Karel H van Wely, Carlos Martinez-A and Alfonso Valencial. SPOC: A widely distributed domain associated with cancer, apoptosis and transcription. BMC Bioinformatics 2004, 5: 91
    [85] 李军锋,周鹏,秦红,韩骅核基质MINTC端片断(2226-2959)相互作用分子的筛选与鉴定。第四军医大学学报,2003;24(24):2220-2223.
    [86] Ariyoshi M, Schwabe JW. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev. 2003; 17(15): 1909-1920.
    [87] Franz Oswald, M. W., Ying Cao, Kathy Astrahantseff, Soizic Bourteele, Walter Knochel, and Tilman Borggrefe. RBP-J/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Molecular and Cellular Biology, 2005; 25(23): 10379-10390.
    [88] Eric C. Lai. Protein Degradation: Four E3s For The Notch Pathway. Current Biology, 2002; 12: R74-R78.
    [89] 洪奇华.Notch信号途径及其调控.细胞生物学杂志,2004,26:367-371
    [90] Wilkin MB, Baron M. Endocytic regulation of Notch activation and down-regulation. Mol Membr Biol. 2005; 22(4): 279-289.
    [91] 王国红,李祺福.Cbfα1/Runx2与成骨细胞分化调控.生命科学,2005;17(1):40-44.
    [92] 夏玉莲,孙元明,李雨民.核结合因子α1表达的调控.中国地方病学杂志,2003,22(6):561-563.
    [93] 王胜朝,Kawashima N,Sakamoto K,Fatsube K,shindo k,takagim,suda h,史俊南.转录调控因子CBF1(RBP-Jκ)对Cbfα1和Ose2元件启动子活性的影响.牙体牙髓牙周病学杂志,2004,14(12):659-662。[94] Zhao M, Qiao M, Oyajobi BO, Mundy GR, Chen D. E3 ubiquitin ligase Smurfl mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem. 2003; 278(30): 27939-27944.
    [95] Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, Boyce BF, Xing L. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurfl and Smurf2 in osteoblasts. J Biol Chem. 2006; 281(7): 4326-4333.
    [96] Francisco J. Herrera and Steven J. Triezenberg. Molecular Biology: What Ubiquitin Can Do for Transcription. Current Biology, 2004, 14: 622-624.
    [97] Qin H, Wang J, Liang Y, Taniguchi Y, Tanigaki K, Hart H: RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Res, 2004; 32(4): 1492-1501.
    [98] Strobl, L. J., Hofelmayr, H., Stein, C., Marschall, G., Brielmeier, M., Laux, G., Bornkamm, G. W., and Zimber-Strobl, U. Both Epstein-Barr viral nuclear antigen 2 (EBNA2) and activated Notchl transactivate genes by interacting with the cellular protein RBP-J. Immunobiology, 1997; 198: 299-306.
    [99] Do Hee Lee and Alfred L. Goldberg. Proteasome inhibitors: valuable new tools for cell biologists. Trends in Cell Biology, 1998; 8: 397-403.
    [100] H. C. Ardley, S. A. Rose, N. Tan, J. P. Leek, A. F. Markham, and P. A. Robinson: Genomie organization of the human ubiquitin-conjugating enzyme gene, UBE2L6 on chromosome 11q12.??Cytogenet Cell Genet, 2000; 89: 137-140.
    [101] Kumar S, Kao WH, Howley PM: Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem, 1997; 272(21): 13548-13554.
    [102] Moynihan TP, Ardley HC, Nuber U, Rose SA, Jones PF, Markham AF, Scheffner M, Robinson PA. The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif-containing domains of HHARI and H7-AP1. J Biol Chem, 1999; 274(43): 30963-30968.
    [103] ImaiY, Soda M, Takahashi R: Parkin suppresses unfolded protein stress induced cell death through its E3 ubiquitin protein ligase activity. J Biol Chem, 2000; 275(40): 35661-35664. [8] Huang J, Xu
    [104] LG, Liu T, Zhai Z, Shu HB. The p53-inducible E3 ubiquitin ligase p53RFP induces p53-dependent apoptosis. FEBS Lett. 2006; 580(3): 940-947.
    [105] Takeuchi T, Iwahara S, Saeki Y, Sasajima H, Yokosawa H. Link between the ubiquitin conjugation system and the ISG15 conjugation system: ISG15 Conjugation to the UbcH6 ubiquitin E2 enzyme. J. Biochem (Tokyo). 2005; 138(6): 711-719.
    [106] Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci. 2005; 102(29): 10200-10205.
    [107] Zhao C, Beaudenon SL, Kelley ML, Waddell MB, Yuan W, Schulman BA, Huibregtse JM, Krug RM.The UbcH8 ubiquitin E2??enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc Natl Acad Sci. 2004; 101(20): 7578-7582.
    [108] Karen L. Craig and Mike Tyers: Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev, 1998; 12: 692-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700