钛合金微等离子体氧化陶瓷膜的结构与耐腐蚀机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过微等离子体氧化(MPO)方法在Ti-6Al-4V钛合金表面原位生长陶瓷膜,系统地研究陶瓷膜的相组成、微观结构及膜层耐腐蚀性能,并优化耐蚀性陶瓷膜层制备工艺;分析基体在MPO过程中的溶解现象和电解液中离子浓度变化特点,探讨电极表面陶瓷膜层生长规律和结构特点;研究膜层的等效电路、膜层结构与耐腐蚀性能的关系,并对优化工艺条件下制备的陶瓷膜层进行进一步的耐腐蚀性能测试和耐腐蚀机制研究。
     利用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子探针(EPMA)、能谱(EDS)和X射线荧光光谱仪(XRF)研究膜层的相组成、形貌和膜层内元素分布特点;利用加速的电化学方法初步评价膜层试样的耐腐蚀性能;通过电感耦合等离子体原子发射光谱仪(ICP-AES)分析基体元素在电解质溶液中的溶解和电解液中主要元素的变化特点;利用电化学阻抗谱(EIS)技术研究膜层电化学阻抗特性;由酸溶液中失重实验、接触腐蚀实验、盐雾腐蚀实验和高温氧化实验来考察膜层试样的耐腐蚀性能。
     研究表明Ti-6Al-4V钛合金在K_2ZrF_6电解液体系中MPO反应时形成含有m-ZrO_2、t-ZrO_2和磷酸锆盐相的陶瓷膜。膜层内钛元素很少,锆和磷元素很多。反应时间增加,磷酸锆盐成为膜内主晶相,膜层疏松、粗糙,截面裂纹较多。在NaAlO2溶液中微等离子体氧化钛合金,可以形成含有Al2TiO5、α-Al2O3和rutile TiO2相陶瓷膜层,其中Al2TiO5为主晶相。膜层具有双层结构:外层疏松,而内层致密、与基体结合很好。Ti元素在膜层的含量比基体低,并且外层含量比内层含量低。Al元素在膜层内含量远高于基体含量,并且在膜层中间部位含量最高。
     电参数的改变实际上改变了正负相脉冲的作用强度和作用时间,从而改变了膜层的相组成和结构特点。正向脉冲作用增加,有助于膜层内α-Al_2O_3含量增多、膜层增厚,但是膜层由于生长过快而较粗糙、多孔。负相脉冲作用增加有助于膜层内rutile TiO_2含量增多,膜层厚度下降,更加致密,但是由于致密性的提高往往导致膜层表面的微裂纹增多。反应时间增加,膜层厚度增加,表面粗糙度不断提高,晶相物质含量不断增多。铝酸盐体系制备的膜层结构更致密,耐蚀性好于锆酸盐体系。
     单脉冲MPO时,基体元素溶解的多少取决于电解质溶液中阴离子在电
In this paper, the ceramic coatings were prepared in situ on Ti-6Al-4V alloy by micro-plasma oxidation (MPO). The phase composition, microstructure and corrosion resistance of the ceramic coatings were studied in detail and the technology of corrosion resistant coatings was optimized. The dissolution of the substrate and the changes of the elements in the electrolyte during the MPO process were studied to discuss the growing characters and the structure of the ceramic coatings. The electric circuit model was established and the relation of the electric circuit model, the structure and the corrosion resistance was discussed. Further tests of corrosion resistance of the coatings under the optimized technology were carried out and the corrosion resistance mechanism was analyzed.
     The phase composition, morphology of the coatings was studied by X-ray diffraction (XRD) and the scanning electron microscopy (SEM). The elements and the distribution characters were examined by electron probe microscopy (EPMA), energy dispersive spectrum (EDS) and X-Ray Fluorescence Spectrometer (XRF). The accelerated electrochemical methods (polarizing curve and potentiodynamic scanning) were used to evaluate the corrosion of the coated samples. The solution of the substrate and the elements in the electrolyte were measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES). Electrochemical Impedance Spectroscopy was used to analysis the relation between the structure and the corrosion resistance of the coated samples. The corrosion resistance of coated samples was assessed by acid corrosion resistance test of the coated samples, galvanic corrosion resistance, and salt spray corrosion test and high-temperature oxidation.
     The results show that the coating prepared on Ti-6Al-4V alloy by MPO in K_2ZrF_6 system is composed of m-ZrO_2, t-ZrO_2 and zirconium phosphate. Ti in the coating is low, while the content of Zr and P is much high in the coating. Increasing the reaction time, zirconium phosphate becomes the main crystalline of the coating. The coating surface is coarse, loose and two many cracks and micro-holes exist in the section image of the coatings. The ceramic coatings
引文
1 刘世友. 钛工业的开发现状与展望. 1997, 131: 58~63
    2 白木, 周洁. 金属钛的性能、发展与应用. 矿业快报. 2003,405 (5): 1~7
    3 徐增华. 金属耐蚀材料. 腐蚀与防护. 2002, 23 (1): 42~45
    4 李梁, 孙健科,孟祥军. 钛合金的应用现状及发展前景. 钛工业进展.2004, 21(5): 19~24
    5 A. Fossati, F. Borgioli, E. Galvanetto, et al. Corrosion Resistance Properties of Plasma Nitrided Ti-6Al-4V Alloy in Nitric Acid Solutions. Corros. Sci. 2004, 46: 917~927
    6 H. Guleryuz, H. Cimenoglu. Effect of Thermal Oxidation on Corrosion and Corrosion-wear Behaviour of a Ti-6Al-4V Alloy. Biomaterials. 2004, 25: 3325~3333
    7 中国腐蚀与防护学会, 金属腐蚀手册. 上海科学出版社 1987:40~42
    8 辛湘杰, 薛俊峰, 董敏. 钛的腐蚀、防护及工程应用. 安徽科学技术出版社(1988 年)
    9 A. Neville, J. Xu. An Assessment of the Instability of Ti and Its Alloys in Acid Environments at Elevated Temperature. Journal of Light Metals. 2001;119~126
    10 D.X. He, T.C. Zhang, Y.S. Wu. Fretting and Galvanic Corrosion Behaviors and Mechanisms of Co–Cr–Mo and Ti–6Al–4V Alloys. Wear 2001, 249: 883~891
    11 Nadia M. Taher, Abed S. Al Jabab. Galvanic Corrosion Behavior of Implant Suprastruturedental Alloy. Dent. Mater. 2003, 19:54~59
    12 刘建华, 吴昊, 李松梅等. 高强合金与钛合金的电偶腐蚀行为. 北京航空航天大学学报.2003, 29 (2): 124~12
    13 贾新云, 刘培英,陶冶等. 钛合金的高温氧化及防护. 航空工程与维修. 2000, (4): 19~21
    14 A. Jazayeri-G, H.A. Davies, R.A. Buckley. Microstructure of Rapidly Solidified Ti-Al-V and Ti-Al-Si-V Alloys. Mater. Sci. Eng. 2004, A375-377: 512~515
    15 J. Sun, J.S. Wu, B. Zhao, F. Wang. Microstructure, Wear and High Temperature Oxidation Resistance of Nitrided TiAl Based Alloy. Mater. Sci. Eng. 2002, A329–331: 713~717
    16 王宏宇, 陈康敏, 许晓静等. 钛合金 Ti-6Al-4V 的磨损失效及其表面耐磨处理技术.轻金属. 2005, (5):54~58
    17 秦林, 唐宾, 赵晋香等. 钛合金 Ti6Al4V 表面渗钼层的摩擦磨损性能. 中国有色金属学报. 2003, 13(6): 570~573
    18 余存烨. 钛腐蚀氢脆及防止措施. 全面腐蚀控制. 2002, 16 (1): 7~10
    19 E.N. Codaro, R.Z. Nakazatoa, A.L. Horovistiz, et al. An Image Analysis Study of Pit Formation on Ti-6Al-/4V. Mater. Sci. Eng. 2003, A341: 202~210
    20 张琳,吴荫顺,曹备等. 钛合金材料在醇类溶液中的电化学形为. 北京科技大学学报.2003, 25 (2): 136~166
    21 刘道新, 刘双梅, 何家文. 航空钛合金结构的几种典型损伤形式及控制,航空工程与维修. 2000,(4):22~24
    22 郭敏,彭乔. 钛的应用与腐蚀. 全面腐蚀控制.1998, 14 (2): 20~24
    23 H.Y. Yu, Z.B. Cai, Z.R. Zhoua, et al. Fretting Behavior of Cortical Bone Against Titanium and Tts Alloy. Wear. 2005, 259: 910~918
    24 P. Kaestner, J. Olfeb, J.W. Hec, et al. Improvement in the Load-bearing Capacity and Adhesion of TiC Coatings on TiAl6V4 by Duplex Treatment. Surf. Coat. Technol. 2001, 142-144: 928~933
    25 黄永玲. TC4 钛合金表面保护层的应用研究. 航天工艺.2000 4:23-28.
    26 余存烨. 耐蚀钛合金的发展. 钛工业进展. 2003, 1: 12~19
    27 刘茵琪, 孟祥军, 冯岩等. TB19 合金腐蚀性能研究. 材料开发与应用. 2003 6 (18): 43~46
    28 A.M. Al-Mayouf, A.A. Al-Swayih, N.A. Al-Mobarak, et al. Corrosion Behavior of a New Titanium Alloy for Dental Implant Applications in Fluoride Media. Mater. Chem. Phys. 2004, 86: 320~329
    29 李棣泉, 梁振锋, 昌春华. 一种新型耐蚀钛合金. 黄金科学技术.2004,12 (1):24
    30 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews. Characterization of Oxide Films Produced by Plasma Electrolytic Oxidation of a Ti-6Al-4V Alloy. Surf. Coat. Technol. 2000, 130: 195~206
    31 赵树萍. 钛及其合金微弧氧化的应用. 国外金属热处理. 1999, 6: 22.
    32 李争显. 钛及钛合金表面处理技术. 钛工业进展. 1998, 1: 14~15
    33 T.Wierzchon(梁秀兵译). 钛合金表面工程—新的应用前景. 中国表面工程. 2003, 63 (6): 1~4
    34 C. Liu, Q. Bi, A. Matthews. Tribological and Electrochemical Performance of PVD TiN Coatings on the Femoral Head of Ti–6Al–4V Artificial Hip Joints. Surf. Coat. Technol. 2003, (163-164): 597~604
    35 T. Grogler, E. Zeiler, A. Franz, et al. Erosion Resistance of CVD Diamond-coated Titanium Alloy for Aerospace Applications. Surf. Coat. Technol. 1999, 112: 129~132
    36 I. Tsyfanov, E. Wieser, W. Matz, H. Reuther, E. Richther. Modification of the Ti-6Al-4V Alloy by Ion Implantation of Calciumand/or Phosphorus. Surf. Coat. Technol. 2002, (158): 318~323
    37 Y. Itoh, A. Itoh, H. Azuma, et al. Improving the Tribological Properties of Ti–6Al–4V Alloy by Nitrogen-ion Implantation. Surf. Coat. Technol.1999, 111: 172~176
    38 I. Garcia, J. de la Fuente, J.J. de Damborenea. (Ti,Al )/(Ti,Al) N Coatings Produced by Laser Surface Alloying. Mater. Lett. 2002, 53: 44~51
    39 胡红娟, 秦妍梅, 范爱兰等. 纯钛 Mo-N 共渗改性层在 H2SO4 溶液中腐蚀行为研究. 稀有金属快报. 2005, 24(11):21~24
    40 刘道新, 唐宾. 钛合金表面硬化与固体润滑处理层的电化学腐蚀行为研究. 稀有金属. 2005, 29(1): 39~42
    41 J.S. Wu, L.T. Zhang, F. Wang, et al. The Individual Effects of Niobium and Silicon on the Oxidation Behaviour of Ti3Al Based Alloys. Intermetallics. 2000, 8: 19~28
    42 D. Vojtech, B. Bártová, T. Kubatik. High Temperature Oxidation of Titanium–silicon Alloys. Mater. Sci. Eng. 2003, A361: 50~57
    43 Wei Fang, Se-Hyun Ko, Hitoshi Hashimoto, et al. High Temperature Oxidation Behavior of Ti3Al–Nb Alloys Prepared by Pulse Discharge Sintering. Mater. Sci. Engin. 2002, A329–331: 708~712
    44 辛丽, 李铁藩, 周龙江等. 表面涂少量氯化锰提高 Ti47Al2Cr2Nb 合金高温抗氧化性.中国腐蚀与防护学报.1999, 19 (5):311~314
    45 Y.G. Zhao, W. Zhou, Q.D. Qin, et al. Effect of Pre-oxidation on theProperties of Aluminide Coating Layers Formed on Ti Alloys. J. Alloy. Compd. 2005, 391:136~140
    46 赵宇光, 周伟, 秦庆东等. 预氧化处理对钛合金抗高温氧化行为的影响. 特种铸造及有色合金. 2004, (3): 34~36
    47 萧今声, 许国栋. 提高高温钛合金性能的途径. 中国有色金属学报.1997, 7 (4): 97~105
    48 薛文斌, 邓志威, 来永春等. 有色金属表面微弧氧化技术评述. 金属热处理. 2000, (1): 1~3
    49 关永军, 夏原. 等离子体电解沉积的研究现状. 力学进展. 2004, 34(2): 237~250
    50 A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol. 1999, 122: 73~93
    51 蔡宗英, 张莉霞, 邢献然. 微等离子体氧化技术制备陶瓷膜研究进展. 湿法冶金.2004,23(3):128~132
    52 X. Nie, A. Wilson, A. Leyland, A. Matthews. Deposition of Duplex Al2O3/DLC Coatings on Al Alloys for Tribological Application Using a Combined Micro-Arc Oxidation and Plasma-Immersion Ion Implantation Technology. Surf. Coat. Technol. 2000, 121: 506~513
    53 T. B. Van, S. D. Brown, G. P. Wirtz, Anode Spark Reaction Products in Aluminate, Tungstate and Silicate. Am. Ceram. Soc.Bull. 1977, 56 (6): 563~566
    54 张文华, 胡正前, 马晋. 俄罗斯微弧氧化技术的研究进展. 有色金属. 2004, 1: 43~46
    55 V.S. Rudnev, T.P. Yarovaya, D.L. Boguta, et al. Anodic Spark Deposition of P, Me(II) or Me(III) Containing Coatings on Aluminium and Titanium Alloys in Electrolytes with Polyphosphate Complexes. J. Electroanal. Chem. 2001, 497: 150~158
    56 I.V. Lukiyanchuk, V.S. Rudnev, V.G. Kuryavyi, et al. Surface Morphology, Composition and Thermal Behavior of Tungsten Containing Anodic Spark Coatings on Aluminium Alloy. Thin Solid Films. 2004, 446: 54~60
    57 é.S. Atroshchenko, O.E. Chufistov, I.A. Kazantsev, et al. Formation of Structure and Propertiyes of Coatings Deposited by Microarc Oxidizing and Parts Fabrication from Aluminum Alloy. Met. Sci. Heat Treat. 2000, 42:411~415
    58 G.P. Wirtz, S.D. Brown, W.M. Kriven. Ceramic Coatings by Anodic Spark Deposition. Mater. Manuf. Process. 1991, 6(1): 87~115
    59 J.L. Patel. Advances in Ceramic Coating. Mater. Technol. 2001, 16 (1): 19~22
    60 P. Kurze, J. Schreckenbach, Th. Schwarz, et al. Coating by Anodic Oxidation with Spark Discharge. Metalloberflaeche.1986, 40 (12): 539~540
    61 S. Meyer, R. Gorges, G. Kreisel. Preparation and Characterisation of Titanium Dioxide Films for Catalytic Applications Generated by Anodic Spark Deposition. Thin Solid Films 2004, (450): 276~281
    62 A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, et al. Spatial Characteristics of Discharge Phenomena in Plasma Electrolytic Oxidation of Aluminium Alloy. Surf. Coat. Technol. 2004, 177–178: 779~783
    63 T.H. Teh, A. Berkania, S. Mato, et al. Initial Stages of Plasma Electrolytic Oxidation of Titanium. Corros. Sci. 2003, 45 (12): 2757~2768
    64 S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya. Composition and Adhesion of Protection Coatings on Aluminum. Surf. Coat. Technol. 2001, 145:146~151
    65 X.L. Zhu, K.H. Kim, Y.S. Jeong. Anodic Oxide Films Containing Ca and P of Titanium Biomaterial. Biomaterials 2001, 22: 2199~2206
    66 L.H. Lia, Y.M. Konga, H.W. Kima. Improved Biological Performance of Ti Implants due to Surface Modification by Micro-arc Oxidation. Biomaterials 2004, 25: 2867~2875
    67 G. Sundararajan, L. Rama Krishna. Mechanisms Underlying the Formation of Thick Alumina Coatings through the MAO Coating Technology. Surf. Coat. Technol. 2003, 167: 269~277
    68 L. Rama Krishna, K.R.C. Somaraju, G. Sundararajan. The Tribological Performance of Ultra-hard Ceramic Composite Coatings Obtained through Microarc Oxidation. Surf. Coat. Technol. 2003, 163–164: 484~490
    69 W.B. Xue, C. Wang, R.Y. Chen. Structure and Properties Characterization of Ceramic Coatings Produced on Ti-6Al-4V alloy by Microarc Oxidation in Aluminate Solution. Mater. Lett. 2002, 52 (6): 435~441
    70 薛文彬, 来永春, 陈如意等. LY12 铝合金微弧氧化陶瓷膜的纳米压入研究. 稀有金属材料与工程, 2001, 30(4): 281~284
    71 薛文斌, 来永春, 邓志威等. LY12 铝合金微等离子体氧化陶瓷膜的相组成及显微硬度分析. 材料科学与工艺. 1999, 7(2):18~21
    72 Y. Han, S.-H. Hong, K.W. Xu. Porous Nanocrystalline Titania Films by Plasma Electrolytic Oxidation. Surf. Coat.Technol. 2002, (154): 314~318
    73 蒋百灵, 张菊梅, 时惠英. 钛合金微弧氧化膜表面形貌对膜/环氧树脂结合强度的影响. 中国有色金属学报. 2004, 14(4): 539~542
    74 张淑芬, 张先锋, 蒋百灵. 溶液电导率对镁合金微弧氧化的影响. 材料保护 2004, 37 (4): 7~9
    75 T. Wei, F. Yan, J. Tian. Characterization and Wear- and Corrosion-resistance of Microarc Oxidation Ceramic Coatings on Aluminum Alloy. J. Alloy. Compd. 2005, 389 (1-2): 169~176
    76 袁洋, 罗状子, 田军. 铝合金表面微弧氧化耐磨润滑膜层. 材料保护. 2002, 35 (5): 4~6
    77 J. Liang, B. Guo, J. Tian, et al. Effect of Potassium Fluoride in Electrolytic Solution on the Structure and Properties of Microarc Oxidation Coatings on Magnesium Alloy. Appl. Surf .Sci. 2005, 252 (2): 345~351
    78 Y.L. Shi, F.Y. Yan, G.W. Xie. Effect of Pulse Duty Cycle on Micro-plasma Oxidation of Aluminum Alloy. Mater.Lett. 2005, 9 (22): 2725~2728
    79 张欣宇, 石玉龙, 阎凤英. 铝及合金等离子体微弧氧化技术. 电镀与精饰. 2001, 20 (6): 24~27
    80 张欣宇, 石玉龙. 等离子体微弧氧化技术及其应用. 青岛化工学院学报. 2002, 23 (1): 69~73
    81 F. Liu, F.P. Wang, T. Shimizu, et al. Formation of Hydroxyapatite on Ti-6Al-4V Alloy by Microarc Oxidation and Hydrothermal Treatment. Surf. Coat. Technol. 2005, 199 (2-3):220~224
    82 X.T. Sun, Z.H. Jiang, Z.P.Yao, et al. The Effects of Anodic and Cathodic Processes on the Characteristics of Ceramic Coatings Formed on Titanium Alloy through the MAO Coating Technology. Appl. Surf. Sci. 2005, 252 (2): 441~447
    83 Y.M. Wang, B.L. Jiang, T.Q. Lei, et al. Microarc Oxidation and Spraying Graphite Duplex Coating Formed on Ttitanium Alloy for Antifriction Purpose. Appl. Surf. Sci. 2005, 246 (1-3): 214~221
    84 S.G. Xin, L.X. Song, R.G. Zhao, et al. Properties of Aluminium Oxide Coating on Aluminium Alloy Produced by Micro-arc Oxidation. Surf. Coat. Technol. 2005, 199 (2-3): 184~188
    85 G.L. Yang, X.Y. Lu, Y.Z. Bai, et al. The Effects of Current Density on the Phase Composition and Microstructure Properties of Micro-arc Oxidation Coating. J.Alloy. Compd. 2002, (345): 196~200
    86 C.T. Wu, F. H. Lu. Synthesis of Barium Titanate Films by Plasma Electrolytic Oxidation at Room Electrolyte Temperature. Surf. Coat. Technol. 2005, 199 (2-3): 225~230
    87 宋润滨, 左洪波, 吉泽升. 合金等离子体增强电化学表面陶瓷化进展. 轻合金加工技术. 2003 ,2 (31): 8~11
    88 W.Krysmann, P.Kurze, K.H.Dittrich and H.G.Schneider. Structure and Properties of ANOF Layers. J. Crys. Res. Technol. 1984,19 (7): 973~979
    89 J.M. Albella, I. Montero, J.M. Martinez-dvart. Scintillation in Anodic Ta2O5 Film. Thin Solid Film. 1979, 58 (2): 307~311
    90 F.J. Burger, J.C. Wu. Dielectric Breadown in Electrolytic Capacitors. J. Electrochem. Soc. 1971,118 (12): 2039~2042
    91 S.Ilonopisov, Theory of Ectrical Breakdown during Formation of Barrier Anodic Films. Electrochim. Acta. 1977, 22(10):1077~1082
    92 S. Ikonopisov, A. Girginivv, A. Machkova. Post-Breakdown Anodization of Aluminium. Electrochim. Acta. 1977, 22 (11): 1283~1286
    93 H.J. de Wit, Ch.Wijenbery, C. Crevecoeur. The Dielectric Breakdown of Anodic Aluminum Oxide. J. Electrochem. Soc. 1976,123 (10):1479~1486
    94 J.M. Albella, I. Montero, J.M. Martinez-Duart. Electro Induction and Avalanche during the Anodic Oxidation of Tantalum. J. Electrochem. Soc. 1984, 131 (5): 1101~1104
    95 V. kadary, N. Klein. Electrical Breakdown during the Anodic Growth of Tantalum Pentoxide. J. Electrochem. Soc.1980, 127(1): 139~150
    96 旷亚非, 侯朝辉, 刘建平. 阳极氧化过程中电击穿理论的研究进展. 电镀也涂饰. 2000, 19 (3): 38~45.
    97 徐勇. 国内铝和铝合金微弧氧化技术研究动态. 腐蚀与防护. 2003, 24 (4): 154~157
    98 И.В.Лукиянчук, В.С.Руднев, Н.А.Анденко, Т.А.Кайдалова, Е.С.Панин,П.С. Гордиенко. Анодно-искровое Оксидирование Сплава Алюминия в Вольфраматных Электролитах. Журнал Прикладной Химии. 2002, 75(4): 587~591
    99 Г.А.Марков, Е.К.Шуленко. Токовые Режимы и Переход к Микродуговое Стадии Оксидировання. Защита Металлов.1995, 31 (6): 643~647
    100 孙南海, 危立辉. 等离子体微弧氧化双向脉冲电源稳流稳压控制. 中南民族大学学报(自然科学版). 2004, 23(6): 47~49.
    101 О.И.Терлеева, В.В.Уткин и А.И.Слонова. Особенности Изменений Напряжения в Сложных Токовых Режимах Микроплазменных Процессах. Защита Металлов. 1999, 35(2):192~195
    102 龙北红, 吴汉华, 龙北玉等. 用微弧氧化法在 Na2CO3-Na2SiO3 溶液中制备 TiO2 薄膜的特性研究. 云南大学学报(自然科学版). 2005, 27(5A): 587~590
    103 H. Wu, X. Lu, B. Long, et al. The Effects of Cathodic and Anodic Voltages on the Characteristics of Porous Nanocrystalline Titania Coatings Fabricated by Microarc Oxidation. Mater. Lett. 2005, 59 (2-3): 370~375
    104 Y. Wang, T. Lei, B. Jiang, et al. Growth, Microstructure and Mechanical Properties of Microarc Oxidation Coatings on Titanium Alloy in Phosphate-containing Solution. Appl. Surf. Sci. 2004, 233 (1-4): 258~267
    105 薛文斌,邓志威,陈如意等. 钛合金在硅酸盐溶液中微弧氧化陶瓷膜的组织结构. 金属热处理, 2000, (2): 5~7
    106 A L Yerohin, A Leyland, A Matthews. Kinetic Aspects of Aluminium Titanate Layer Formation on Titanium Alloy by Plasma Electrolytic Oxidation, Appl. Surf. Sci. 2002, (200): 172~184
    107 W. Xue, C. Wang, Z. Deng, et al. Influence of Electrolytes on the Microstructure of Microarc Oxidation Coatings on Ti-6Al-4V alloy. Mater. Lett. 2002, 18 (1): 37~39
    108 X.H. Wu, W. Qin, Z.H. Jiang. Influence of Fe3+ Ions on the Photocatalytic Activity of TiO2 Films Prepared by Micro-plasma oxidation Method. Thin Solid Films. 2006, 496:288~292
    109 高玉周, 严立, 张世锋等. 微等离子体氧化制备 TiO2 薄膜的结构特性. 中国表面工程. 2003,(6): 35~37
    110 Г.Л.Щукин, А.Л.Баланович, В.П.Савенко. Микроплазменное Аноди-рование Алюминия и его Медбсодержащего Сплава в Растворе Гексафторцирконата Калия. Журнал Прикладной Химии.1996, 69 (6): 939~941
    111 赵阳, 钱翰城, Samir H.Awad 等. 钛合金微等离子体氧化技术研究动态.表面技术,2005, 34(3): 8~12
    112 孙学通. 钛合金微离子体氧化陶瓷膜的结构及摩擦学行为. 哈尔滨工业大学工学博士论文. 2005 年 10 月
    113 王亚明, 蒋百灵, 雷廷权等. Ti6Al4V 表面微弧氧化陶瓷涂层的结构和摩擦学特性. 摩擦学学报.2003, 23(5): 371-375.
    114 X.H. Wu, Z.H. Jiang, H.L. Liu, et al. Photo-catalytic Activity of Titanium Dioxide Thin Films Prepared by Micro-plasma Oxidation Method. Thin Solid Films 2003, 441: 130~134.
    115 陈艳, 何翔, 孔中华. 脉冲等离子体微弧氧化法制备 TiO2 薄膜及膜层的性能研究. 腐蚀与防护. 2004, 25 (8): 332~335
    116 Y.L. Jiang, H.L. Liu, C.M. Lu. Kinetics of Photoelectrocatalytic Degradation of Humic Acid Using B2O3·TiO2/Ti Photoelectrod. J. Environ. Sci. 2005,17 (2): 208~211
    117 Y. Han, K.W. Xu. Photoexcited Formation of Bone Apatite-like Coatings on Micro-arc Oxidized Titanium. J. Biomed. Mater. Res.-Part A, 2004, 71(4):608~614
    118 P. Huang, K.W. Xu, Y. Han. Hybrid Process of Microarc Oxidation and Hydrothermal Treatment of Titanium Implant. J. Porous Mater. 2004, 11: 41~45
    119 F. Liu, F.P. Wang, T. Shimizu, et al. Structure and Characteristics of Oxide Films Containing Ca and P on Ti Substrate J. Mater. Sci. Technol. 2005, 21 (2), pp. 285~288
    120 Y. Han, S.H. Hong, K.W. Xu. Structure and in vitro Bioactivity of Titania-based Films by Micro-arc Oxidation. Surf. Coat. Technol. 2003, 168: 249~258
    121 X.P. Zhang, G. Chen. Corrosion Protection of AZ91D Mg Alloy Coating with Micro-arc Oxidation Film Evaluated by Immersion and Electrochemical Tests. Surf. Rev. Lett. 2005, 12 (2): 279~287
    122 R.C.Barik, J.A. Wharton, T, R.J.K. Wood, K.R. Stokes, R.L. Jones.Corrosion, Erosion and Erosion–corrosion Performance of Plasma Electrolytic Oxidation (PEO) Deposited Al2O3 Coatings. Surf. Coat. Technol. 2005, 199: 158~167
    123 蒋百灵 张先锋. 镁合金微弧氧化陶瓷层的生长过程及其耐蚀性. 中国腐蚀与防护学报.2005, 25(2): 97~101
    124 G. A. Lavrushin, S. V. Gnedenkov, P. S. Gordienko, et al. Cyclic Strength of Titanium Alloys, Anodized under Micro-Arc Conditions, in Sea Water. Protection of Metals, 2002, 38 (4): 363~365
    125 C.T. Wu, F.H. Lu. Corrosion resistance of BaTiO3 films prepared by plasma electrolytic oxidation. Surf. Coat. Technol. 2002, 166: 31~36
    126 曹楚南, 张鉴清. 电化学阻抗谱导论. 科学出版社, 2002 年 7 月.
    127 H.G. Kim, S.H. Ahn, J.G. Kim, et al. Corrosion Performance of Diamond-like Carbon (DLC)-coated Ti Alloy in the Simulated Body Fluid Environment. Diamond & Related Materials.2005, 14: 35~41
    128 A. Miszczyka, T. Schauer. Electrochemical Approach to Evaluate the Interlayer Adhesion of Organic Coatings. Progress in Organic Coatings. 2005, 52: 298~305
    129 GB/T15748-1995. [S] 船用金属材料电偶腐蚀实验方法.
    130 GB/T10125-1997.[S] 人造气氛腐蚀试验-盐雾实验.
    131 方青, 张联盟, 沈强等. 钛酸铝陶瓷及其研究进展. 硅酸盐通报. 2003, (1): 49~53
    132 辛世刚. LY12 铝合金表面微等离子体氧化陶瓷膜的结构与性能. 哈尔滨工业大学博士学位论文. 2003: 50
    133 R.J. Moolenaar, J.C. Evans, L.D. McKeever. The Structure of the Aluminium Ion in Solutions at High Concentration. J. Phys.Chem.1970, 74:3629~3636
    134 S. Veesler, S. Rource, R. Boistelle. General Concept of Hydrargillite Al (OH) 3 Agglomeration. J Crystal Growth ,1994 ,135 :505~512
    135 C.Y. WANG, S. P. BI Advancement of Studies on the Formation of Polynuclear Hydroxyl Aluminum Species and Their Transformation Laws in Aqueous Systems and Soil Solutions: a Review. ACS Symposium Series, Washington D C: American Chemical Society. 2002, 822: 246~ 258
    136 L.A. Carreira, V.A. Maroni. Raman and Infared Spectra and Structures ofthe Alliminate Ions. J. Phys. Chem. 1966, 45: 2216~2220
    137 史美伦. 交流阻抗谱原理及应用. 国防工业出版社.2000 年 3 月.
    138 史美伦, 李通化, 周国定. 表面粗糙度的交流阻抗研究及其在铜电极上的应用. 同济大学学报(自然科学版). 1995, 23(1): 83~87
    139 A.P. Yadav, A. Nishikata, T. Tsuru. Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet–dry Conditions––Influence of Time of Wetness. Corros. Sci. 2004, 46: 169~181
    140 G. Bierwagen, D. Tallman, J.P. Li, et al. EIS Studies of Coated Metals in Accelerated Exposure. Progress in Organic Coatings, 2003, 46: 148~157
    141 F. Fracassi, R. d’Agostino, F. Palumbo, et al. Application of Plasma Deposited Organosilicon Thin Films for the Corrosion Protection of Metals. Surf. Coat. Technol. 2003, 174-175:107~111
    142 C.H. Tsai, F. Mansfeld. Determination of Coating Deterioration with EIS: Part II. Development of a Method for Field Testing of Protective Coatings Corros. Sci. 1993, 49 (9): 726
    143 C. Liu, Q.Bi, A. Leyland, et al. An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part I. Establishment of Equivalent Circuits for EIS Data Modeling. Corros. Sci. 2003, 45: 1243~1256
    144 张建民, 扬长春, 石秋芝等. 交流阻抗谱研究钙磷陶瓷电沉积层的结构. 硅酸盐学报. 2003, 31 (2): 127~132
    145 朱相荣, 王相润. 金属材料的海洋腐蚀与防护. 国防工业出版社 1999 年 3月
    146 曹楚南. 腐蚀电化学原理. 化学工业出版社,2004 年 4 月第 2 版。
    147 S.V. Gnedenkov, P.S. Gordienko, S.L. Sinebruhov, et al. Anticorrosion, Anticsale Coatings Obtained on the Surface of Titanium Alloys by Microarc Oxidation Method and Used in Seawater. Corrosion. 2000, 56 (1):24~31
    148 徐刚,韩高荣. 钛酸铝的结构、热膨胀及热稳定性. 材料导报 2003 17 (12): 44~47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700