花旗松素纳米给药系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花旗松素是二氢黄酮醇类化合物,是红蓼、土茯苓等中药的主要有效成分,也广泛存在于柑橘、葡萄等水果中。药理学研究表明花旗松素具有显著的抗氧化、抗肿瘤等作用。但因其水溶性小,生物利用度低,口服吸收不规则,故很大程度上限制了其临床应用。本实验将花旗松素制成固体脂质纳米粒和脂质体,并对两者在小鼠体内的药代动力学特征进行了初步研究,为花旗松素的进一步开发奠定基础。
     采用溶剂注入法分别制备花旗松素固体脂质纳米粒和花旗松素脂质体,通过星点设计-效应面优化法(RSM-CCD)优化花旗松素固体脂质纳米粒的处方,通过单因素实验筛选花旗松素脂质体的处方用量。根据优化后的处方及制备工艺分别制备三批花旗松素固体脂质纳米粒及脂质体,结果显示,固体脂质纳米粒平均包封率80.9±3.5%,载药量13.9±2.0%,激光动态散射仪分析,纳米粒平均粒径125.0±1.5nm,zeta电位-24.3±6.1mV,透射电镜观察显示,纳米粒呈圆整均匀的类球形粒子;花旗松素脂质体包封率68.1±4.5%,平均粒径166.4±2.9nm,zeta电位-32.3±4.9mV,透射及扫描电镜观察显示,颗粒圆整均匀。
     建立小鼠血浆中花旗松素的HPLC分析方法。以花旗松素溶液剂为对照,研究小鼠静脉注射花旗松素固体脂质纳米粒混悬液、花旗松素脂质体混悬液后的体内药动学过程,并计算药动学参数。花旗松素制剂在小鼠体内血药药代动力学过程符合三房室模型。血药药代动力学参数为(每个采血点n=3):溶液剂组:AUC(0-∞)15.745mg/L*h,t1/2β0.021h,Cmax 31.02mg/l,Tmax 0.083h,CL3.176L/h/kg;脂质体组:AUC(0-∞)20.962mg/L*h,t1/2p 0.279h,Cmax 15.30mg/l,Tmax 0.083h,CL 2.385L/h/kg;固体脂质纳米粒组:AUC(0-∞)17.61mg/L*h,t1/2β0.116h,Cmax 18.60mg/l,Tmax 0.083h,CL 2.839L/h/kg。实验结果表明,花旗松素脂质体及纳米粒在小鼠体内的AUC较溶液剂组有较大的提高,消除速度减少,可见,花旗松素脂质体及纳米粒能有效地延长花旗松素在体内存留时间,延缓药物的代谢及排泄。花旗松素溶液剂组、脂质体组、纳米粒组的Cmax分别为:31.02mg/l,15.30 mg/l,18.60 mg/l,可见,溶液剂在体内的分布要快于其他两种制剂。
Taxifolin is widely distributed in many Chinese herbs, such as the rhizome of Smilax glabra, a Liliaceae plant and Hypericum perforatum, also have been found in many citrus fruits, especially grapefruit and orange. It has been reported that taxifolin has many activities in anti-bacteria, anti-oxidative, anti-inflammation, anti-cancer, as well as hepato-protection. However, Taxifolin has poor water-solubility and low bioavailability for oral administration due to slow drug dissolution and decomposition in the stomach and intestine. Therefore, the development of the new formulation of Taxifolin that enables quick availability to the body is in great need. In this study, solid lipid nanoparticles (SLN) and liposomes of Taxifolin were prepared.
     Taxifolin liposomes and solid lipid nanoparticles(DHQ-SLN) were prepared by solvent injection method. Central composite design-response surface methods were used to obtain the optimum prescription of SLN. The single factor experiment results were applied to have taxifolin liposomes. Three batches of DHQ-SLN were prepared using the optimized formulation. From the transmission electron microscope observation, the nanoparticles were spherically shaped, the encapsulation efficiency was 80.9±3.5%, and drug loaded capacity was 13.9±2.0%, the average diameter was 125.0±1.5nm, zeta potential was -24.3±6.1mv. The liposomes with spherical or ellipsoidal shape featured the encapsulation efficiency of 68.1±4.5%, the mean partical size of 166.4±2.9 nm, and Zeta potential of -32.3±4.9mV.
     An HPLC method was developed for the detemination of taxifolin in mice plasma. Intravenous pharmacokinetic behaviors of taxifolin solution, taxifolin liposomes and DHQ-SLN suspension were investigated in mice. The plasma concentration-time profiles of taxifolin were fitted to the three compartment model. The plasma pharmacokinetic parameters were obtained as following(n=3):solution:AUC(0-∞) 15.745mg/L*h, t1/2β0.021h, Cmax 31.02mg/l, Tmax 0.083h, CL 3.176L/h/kg; liposomes:AUC(0-∞) 20.962mg/L*h, t1/2β0.279h, Cmax 15.30mg/l, Tmax 0.083h,CL 2.385L/h/kg; DHQ-SLN:AUC(0-∞) 17.61mg/L*h, t1/2β0.116h, Cmax 18.60mg/l, Tmax 0.083h, CL 2.839L/h/kg. The results showed that the AUC(0-∞) of taxifolin liposomes and DHQ-SLN were higher than that of solution, and less elimination. Solution, liposome, nanoparticle group Cmax were:31.02mg/l,15.30 mg/l,18.60 mg/l, showed the distribution of solution in the body faster than the other two preparations.
引文
[1]zur Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur J Pharm Biopharm, 1998,45(2):149-155.
    [2]R.H. Muller*, R.D. Petersen, A. Hommoss, J. Pardeike. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Advanced Drug Delivery Reviews. 2007,59:522-530
    [3]R.H. Muller*, M. Radtke, S.A. Wissing. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews.2002,54:131-155
    [4]Wissing SA, Kayser O, Muller RH. Solid lipid nanoparitieles for parenteral drug delivery. Adv Drug Deliv Rev,2004,56(9):1257-1263
    [5]Jenning V, Thunemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm,2000,199:167—177.
    [6]Muller R.H., Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm.2000 Jul;50(1):161-77.
    [7]厉英超,董蕾,贾皑,苌新明,薛挥.高压乳匀法制备中药固体脂质纳米粒.南方医科大学学报,2006,26(5):541-544
    [8]Gasco M R. Method for producing solid lipid microspheres having a narrow size distribution[P]USP:1993.
    [9]Hodoshima N, Udagawa C, Ando T, et al. Lipid nanoparticles for delivering 兰州大学硕士学位论文
    antitumor drugs.Int J Pharm,1997,146(1):81-92.
    [10]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,2005:329-351.
    [11]Jerome Gualbert, Patrick Shahgaldian, Anthony W. Coleman. Interactions of amphiphilic calix[4]arene-based Solid Lipid Nanoparticles with bovine serum albumin. International Journal of Pharmaceutics,2003,257:69-73
    [12]Demirel M, Yazan Y, Muller RH, Kilic F, Bozan B. Formulation and in vitro evaluation of piribedil solid lipid micro and nanoparticles. Microencapsul,2001, 18(3):3592-3711
    [13]李湘斌,赵明钢,张宗久,李钧,张阳德.胰岛素多肽固体脂质纳米粒的制备与理化性质研究.中国现代医学杂志,2007,17(17):2078-2081
    [14]R.H. Muller, A. Dingler, The next generation after the liposomes:solid lipid nanoparticles (SLN, Lipopearls) as dermal carrier in cosmetics, Eurocosmetics, 1998,19-26
    [15]Sivaramakrishnan R, Nakamura C, Mehnert W, Korting HC, Kramer KD, Schafer-Korting M. Glucocorticoid entrapment into lipid carriers—characterisation by parelectric spectroscopy and influence on dermal uptake. J Control Release. 2004,97(3):493-502.
    [16]刘婵,陈志良,朱晓亮,黄亮.氮酮对鬼臼毒素固体脂质纳米粒透皮性的影响.中国药业,2006,15(4):7-8
    [17]毕茹.胰岛素固体脂质纳米粒肺吸入粉雾剂的研制.山东大学
    [18]Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm.2009,366(1-2):170-184
    [19]Wissing SA, Muller RH. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int J Cosmet Sci.2001,23(4):233-243.
    [20]Souto EB, Muller RH. Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int J Cosmet Sci.2008,30(3):157-165.
    [21]Song C, Liu S. A new healthy sunscreen system for human:solid lipid nanoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int J Biol Macromol.2005,36(1-2):116-119.
    [22]Wissing SA, Muller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity—in vivo study. Eur J Pharm Biopharm.2003,56 (1): 67-72.
    [23]Wissing SA, Muller RH. Solid lipid nanoparticles (SLN)-a novel carrier for UV blockers. Pharmazie.2001,56(10):783-786.
    [24]Pew JC. A Flavonone from Douglas-Fir Heartwood. J Am Chem Soc,1948, 70:3031-3034.
    [25]Fedosova NF, Alisievich SV, Lyadov KV, Romanova EP, Rudko IA, Kubatiev AA. Mechanisms underlying diquertin-mediated regulation of neutrophil function in patients with non-insulin-dependent diabetes mellitus. Bull Exp Biol Med. 2004,137(2):143-146.
    [26]Potapovich Al, Kostyuk VA. Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry,2003,68(5):514-519
    [27]Kostyuk VA, Kraemer T, Sies H, Schewe T. Myeloperoxidase/nitrite-mediated lipid peroxidation of low-density lipoprotein as modulated by flavonoids. FEBS Lett. 2003,537(1-3):146-150.
    [28]Kravchenko LV, Morozov SV, Tutel'yan VA. Effects of flavonoids on the resistance of microsomes to lipid peroxidation in vitro and ex vivo. Bull Exp Biol Med.2003 Dec;136(6):572-5.
    [29]Teselkin YO, Babenkova IV, Kolhir VK, Baginskaya AI, Tjukavkina NA, Kolesnik YA, Selivanova IA, Eichholz AA. Dihydroquercetin as a means of antioxidative defence in rats with tetrachloromethane hepatitis. Phytother Res. 2000,14(3):160-162
    [30]师智勇,孙宗全,王国华.花旗松素对大鼠心肌缺血再灌注损伤的保护作用.华中医学杂志2008,32卷4期,287-289
    [31]Wang YH, Wang WY, Chang CC, Liou KT, Sung YJ, Liao JF, Chen CF, Chang S, Hou YC, Chou YC, Shen YC. Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. J Biomed Sci.2006,13(1):127-141.
    [32]Wang YH, Wang WY, Liao JF, Chen CF, Hou YC, Liou KT, Chou YC, Tien JH, Shen YC. Prevention of macrophage adhesion molecule-1 (Mac-1)-dependent neutrophil firm adhesion by taxifolin through impairment of protein kinase-dependent NADPH oxidase activation and antagonism of G protein-mediated calcium influx. Biochem Pharmacol.2004,67(12):2251-2262.
    [33]Kandaswami C, Perkins E, Soloniuk DS, Drzewiecki G, Middleton E Jr. Antiproliferative effects of citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer Lett.1991,56(2):147-152
    [34]Makena PS, Pierce SC, Chung KT, Sinclair SE. Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA. Environ Mol Mutagen. 2009,50(6):451-459
    [35]Plotnikov MB, Plotnikov DM, Aliev OI, Maslov MY, Vasiliev AS, Alifirova VM, Tyukavkina NA. Hemorheological and antioxidant effects of Ascovertin in patients with sclerosis of cerebral arteries. Clin Hemorheol Microcirc.2004, 30(3-4):449-452.
    [36]Plotnikov MB, Plotnikov DM, Alifirova VM, Aliev OI, Maslov MIu, Vasil'ev AS, Tiukavkina NA. Clinical efficacy of a novel hemorheological drug ascovertin in patients with vascular encephalopathy. Zh Nevrol Psikhiatr Im S S Korsakova. 2004,104(12):33-37.
    [37]Tarakhovskii IuS, Kuznetsova SM, Vasil'eva NA, Egorochkin MA, Kim IuA. Interaction of taxifolin (dihydroquercetin) with dimyristoylphosphatidylcholine multilamellar liposomes. Biofizika.2008,53(1):78-83.
    [38]M. Karlina, O. Pozharitskaya and A. Shikov, Self-microemulsifying drug delivery systems as nanosystems for bioavailability enhancement of taxifolin in vitro, Planta Med.2007,73:905-906.
    [39]I. Urakova, O. Pozharitskaya, A. Shikov, V. Makarov and V. Tikhonov, Nanosystems with taxifolin for solid dosage form and its bioavailability in vitro, Planta Med.2007,73:905.
    [40]Alexander N. Shikov, Olga N. Pozharitskaya, Inna Miroshnyk, Sabiruddin Mirza, Irina N. Urakova, Samuli Hirsjarvi, Valery G. Makarov, Jyrki Heinamaki, Jouko Yliruusi, Raimo Hiltunen. Nanodispersions of taxifolin:Impact of solid-state properties on dissolution behavior. International Journal of Pharmaceutics,2009,377 (1-2):148-152
    [41]Duweler KG, Rohdewald P. Urinary metabolites of French maritime pine bark extract in humans. Pharmazie.2000,55(5):364-368.
    [42]Grimm T, Skrabala R, Chovanova Z, Muchova J, Sumegova K, Liptakova A, Durackova Z, Hogger P. Single and multiple dose pharmacokinetics of maritime pine bark extract (pycnogenol) after oral administration to healthy volunteers. BMC Clin Pharmacol.2006,6:4.
    [43]Pozharitskaya ON, Karlina MV, Shikov AN, Kosman VM, Makarova MN, Makarov VG. Determination and pharmacokinetic study of taxifolin in rabbit plasma by high-performance liquid chromatography. Phytomedicine.2009,16(2-3):244-251.
    [44]Wang X, Xia H, Xing F, Deng G, Shen Q, Zeng S. A highly sensitive and robust UPLC-MS with electrospray ionization method for quantitation of taxifolin in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci.2009,877(18-19):1778-1786.
    [45]Booth AN, Deeds F.The toxicity and metabolism of dihydroquercetin.J Am Pharm Assoc Am Pharm Assoc (Baltim).1958,47(3):183-184
    [46]Nielsen SE, Breinholt V, Justesen U, Cornett C, Dragsted LO. In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica. 1998,28(4):389-401
    [47]Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol. 2003,69(10):5849-5854.
    [48]Blaut M, Schoefer L, Braune A. Transformation of flavonoids by intestinal microorganisms.Int J Vitam Nutr Res.2003,73(2):79-87.
    [49]Kim BG, Lee Y, Hur HG, Lim Y, Ahn JH.Flavonoid 3'-O-methyltransferase from rice:cDNA cloning, characterization and functional expression. Phytochemistry. 2006,67(4):387-394.
    [1]Mehnert W, Mader K. Solid lipid nanoparticles:production, characterization and applications. Adv Drug Deliv Rev.2001,47(2-3):165-96.
    [2]M. A. Schubert, C. C. Muller-Goymann. Solvent injection as a new approach for manufacturing lipid nanoparticles-evaluation of the method and process parameters. European Journal of Pharmaceutics and Biopharmaceutics,2003,55(1):25-131.
    [3]P. Angelopoulos, H. Evangelaras, C. Koukouvinos. Small, balanced, efficient and near rotatable central composite designs. Journal of Statistical Planning and Inference. 2009,139(6):2010-2013
    [4]Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta.2008,76(5):965-977.
    [5]Xiaoyun Zhang, Jianping Liu, Hua Qiao, Huan Liu, Jingman Ni, Wenli Zhang, Yanbin Shi. Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technology.2010,197 (1-2): 120-128
    [6]Chi-Hsien Liu, Chao-Ting Wu. Optimization of nanostructured lipid carriers for lutein delivery.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010,353, (2-3):149-156
    [7]Yang Xiong, Dan Guo, Lili Wang, Xiaoli Zheng, Yue Zhang, Jianming Chen. Development of nobiliside A loaded liposomal formulation using response surface methodology.International Journal of Pharmaceutics,2009,371 (1-2):197-203
    [8]Ji-Soo Lee, Donghwa Chung, Hyeon Gyu Lee. Optimization of calcium pectinate gel beads for sustained-release of catechin using response surface methodology. International Journal of Biological Macromolecules.2008,42 (4):340-347
    [9]Paul A. McCarron, A. David Woolfson, Siobhan M. Keating. Response surface methodology as a predictive tool for determining the effects of preparation conditions on the physicochemical properties of poly(isobutylcyanoacrylate) nanoparticles. International Journal of Pharmaceutics.1999,193 (1):37-47
    [10]张志宏,唐歆,彭博,聂淑芳,李想,潘卫三.星点设计-效应面法优化双嘧达莫漂浮渗透泵给药系统.药学学报.2009,44(2):203-207
    [11]孙悦,唐素芳,高立勤.星点设计-效应面法优化水杨酸校正片在流通池中的释放.药物分析杂.2009,29(8):1243-1247
    [12]赵栋,龚涛,梁湖沂,陈琳琳,张志荣.星点设计-效应面优化法优化注射用Cheliensisin A冻干乳剂.华西药学杂志.2007,22(3):275-279
    [1]Bangham AD, Standish MM, Watkins JC.Diffusion of univalent ions across the lamellae of swollen phospholipids.J Mol Biol.1965,13(1):238-252.
    [2]Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx. 2005,2(1):99-107
    [3]Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z. J Control Release.Cationic compounds used in lipoplexes and polyplexes for gene delivery.2004,100 (2): 165-180.
    [4]Lasic DD. Novel applications of liposomes. Trends Biotechnol.1998,16 (7): 307-321.
    [5]Taylor TM, Davidson PM, Bruce BD, Weiss J. Liposomal nanocapsules in food science and agriculture.Crit Rev Food Sci Nutr.2005,45(7-8):587-605.
    [6]Verma I, Pandey R, Khuller GK. Liposomes as adjuvant for anti-mycobacterial vaccine development. Indian J Exp Biol.2004,42(10):949-954.
    [7]Rahman YE, Cerny EA, Tollaksen SL, Wright BJ, Nance SL, Thomson JF. Liposome-encapsulated actinomycin D:potential in cancer chemotherapy. Proc Soc Exp Biol Med.1974,146(4):1173-1176.
    [8]Mozafari MR. Liposomes:an overview of manufacturing techniques. Cell Mol Biol Lett.2005,10(4):711-719.
    [9]邓英杰主编,脂质体技术[M].北京,人民卫生出版社,2007
    [1]Bargoni A, Cavalli R, Zara GP, Fundaro A, Caputo O, Gasco MR.Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part Ⅱ—tissue distribution. Pharmacol Res.2001,43(5):497-502.
    [2]Zara GP, Cavalli R, Fundaro A, Bargoni A, Caputo O, Gasco MR. Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharmacol Res.1999,40(3):281-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700