铸造Ti1100-xNb高温钛合金组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用非自耗电极水冷铜坩埚电弧熔炼炉熔炼了不同含Nb量的Ti1100-xNb,并对合金进行了不同工艺的热处理,利用光学显微镜、扫描电子显微镜、能谱、x射线衍射等分析测试手段,研究了不同状态下Ti1100-xNb的微观组织与元素分布情况,并测试了不同状态下Ti1100-xNb的压缩性能。
     结果表明:Ti1100合金中加入Nb元素后,铸态组织中没有检测出新的相,始终为Ti合金固溶体;晶粒有一定程度的细化,但幅度不大,微观组织为网蓝状组织加部分魏氏组织,片层间富Zr、Mo和Nb;随含Nb量增加,Nb向α片层间富集的趋势越来越大。
     随着含Nb量增加,铸态Ti1100-xNb合金的延伸率先增加后降低,在0.15%附近有极大值,最大可达18%;抗压强度先降低后增加,在0.2%出现峰值,然后又开始下降;屈服强度总体上呈降低趋势。总体上,Nb含量过高对铸态力学性能不利,在0.15-0.2%之间,对综合性能最有利。
     热处理后Ti1100-xNb合金的组织均为网蓝组织加魏氏组织,不加Nb时,以网蓝组织为主;加入Nb后,以魏氏组织为主;相同热处理条件下Nb含量增加基本对片层间距没有影响,但会增加魏氏组织的数量。在适合的热处理温度(950℃)下,Nb含量高时,片层间出现富Zr、Si和Mo的析出物。
     热处理态Ti1100-xNb合金的压缩屈服强度均高于铸态,热处理态压缩屈服强度随含Nb量增加,先降低后增加,在0.1-0.2%之间有一个极值,其中1015℃空冷状态的压缩屈服强度在这一范围内高于不含Nb合金的压缩屈服强度值。含Nb量在0.05-0.1%范围时低温处理(950℃)对延伸率有益。
The Ti1100-xNb alloy with different Nb content was produced by non- consumable electrode arc water-cooled copper crucible furnace and treated by different heat treatment process. Mcrostructure and element distribution were studied by optic microscope, scanning electron microscopy, energy spectrum instrument and X-ray diffraction, and the compressive properties of Ti1100-xNb from different process were tested.
     The results showed that when Nb was added into Ti1100 alloy, there was only titanium solid solution but no new phase detected, and a certain degree of grain refinement could be found a little. The basket weave + widmanstatten structure with the structure characteristics of Ti1100 alloy was obtained. The size between near lamellars was about 1-2μm. The location at these interlamellar interfaces was enriched in zirconium, molybdenum and niobium, and with the increasing of Nb content, the trend of Nb enriched in interlamellar interfaces was growing.
     The prolongation of Ti1100-xNb alloy presented the trend of first increase then decrease with the increase of the Nb content, which had a max value of 18% at the Nb content of 0.15%. While the compressive stress presented the trend of first decrease then increase with the increase of the Nb content and had a max value at 0.2%, and then presented the trend of decrease with the Nb content continued to grow. The compressive yield stress presented the trend of decrease as a whole. The large Nb content is harmful to the as-cast mechanical performances, and the comprehensive property was best when the Nb content was in 0.15-0.2%.
     After heat treatment,the basket weave + widmanstatten structure with the structure characteristics of Ti1100 alloy was obtained,and consisted mostly of the basket weave structure. When Nb was added into Ti1100-xNb, the microstructure was still consisted of basket weave and widmanstatten structure, mostly of the widmanstatten structure.
     There was no effect of the change of Nb content on the lamellar space under the same heat treatment condition; however the number of widmanstatten structure would increase. Under the favorable heat treatment temperature(950℃), when Nb content level was high enough, precipitates rich in Zr,Si and Mo were shown. At the same time the distribution of Nb was not uniform.
     The compressive yield stress of the Ti1100-xNb alloy after heat treatment was higher than that of as-cast Ti1100-xNb alloy. The compressive yield stress of the Ti1100-xNb alloy after heat treatment presented the trend of first decrease then increase with the increase of the Nb content, and had a max value in 0.1-0.2%. The compressive yield stress of the Ti1100-xNb alloy with the the Nb content in 0.1-0.2% was higher than that of Ti1100 after 1015℃air cooling. When the Nb content was in 0.05-0.1%, low temperature treatment (950℃)was benefit to prolongation.
引文
1魏寿庸,何瑜,王青江,刘羽寅.俄航空发动机用高温钛合金发展综述.航空发动机.2005,31:52~58
    2赵永庆.高温钛合金研究.钛工业进展. 2001(1):33~39
    3 X.D. Zhang, D.J. Evans, W.A. Baeslack, H.L. Fraser. Effect of long term aging on the microstructural stability and mechanical properties of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloy. Materials Science and Engineering A. 2003,344:300~311
    4 I. Lonardelli, N. Gey, H.-R. Wenk, M. Humbert, S.C. Vogel, L. Lutterotti. In situ observation of texture evolution duringα→βandβ→αphase transformations in titanium alloys investigated by neutron diffraction. Acta Materialia. 2007,55 :5718~5727
    5周义刚,曾卫东,李晓芹,俞汉清,曹春晓.钛合金高温形变强韧化机理.金属学报1999,351 :45~48
    6 S. Guan, Q. Kang, Q. Wang, Y. Liu, D. Li. Influence of long-term thermal exposure on the tensile properties of a high-temperature titanium alloy Ti-55. Materials Science and Engineering A.1998,243: 182~185
    7蔡建明,李臻熙,马济民,黄旭,曹春晓.航空发动机用600℃高温钛合金的研究与发展.材料导报.2005,19:50~53
    8蔡建明,郝孟一,李学明,马济民,曹春晓.ВТ36高温钛合金的成分特点及组织研究.材料工程.2000,(12): 10~12
    9杨冠军,邓炬,吴之乐,陈杜娟,郑月秋.时效处理对Ti-633G合金组织及拉伸断裂特性的影响.稀有金属材料与工程,1989(11) :7~10
    10杨冠军,邓炬,吴之乐,陈杜娟.热处理对Ti-633G合金显微组织及力学性能的影响.稀有金属材料与工程.1999(6):23~27
    11王蕊宁,奚正平,赵永庆,戚运连,杜宇. Ti53311S合金高温塑性变形行为及加工图.稀有金属材料与工程.2008,37:10~13
    12 M. Li , H. Pan, Y. Lin, J. Luo. High temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloy. Journal of Materials Processing Technology. 2007 (183) :71~76
    13 J. Bania Paul. Next generation titanium alloys for elevated temperature service. ISIJ International,1991,31 (8) : 840~847.
    14 D. F. Neal,P. A. Blenkinsop. Effect of heat treatment on structure and properties of IMI 829. Titanium Science and Technology,Titanium'80, Science and Technology,Proceedings of the 4th International Conference on Titanium. Kyoto,Jpn,1984 (2) : 1287~1129
    15张振祺,洪权,杨冠军,罗国珍. Ti600高温钛合金蠕变前后的组织变化.材料工程.2000(10):18~21
    16赵永庆,赵香苗,朱康英,罗国珍,周廉.阻燃钛合金.稀有金属材料与工程1996,25(5):1~6
    17 L. Zhou,J. Deng. Proc. of Xi’an Imternational Titanium Conference (Eds) L. Zhou,D. Eylon,International Academic Publishers,1998,52~64
    18 Y. Q. Zhao,K.Y. Zhu,H. L. Qu, H. Wu,L.Zhou,Y.G. Zhou, W.D.Zeng,H.Q. Yu. Microstructures of a burn resistant highly stabilizedβ-titanium alloy. Mater. Sci. Eng,2000,A282:153~157
    19 Y. Chena,X. Wan,F. Li,Q. Wang,Y. Liu. The behavior of hydrogen in high temperature titanium alloy Ti-60. Materials Science and Engineering A. 2007 (466): 156~159
    20 Miaoquan Li,Yingying Lin. Grain refinement in near alpha Ti60 titanium alloy by the thermohydrogenation treatment. International Journal of Hydrogen Energy. 2007 (32): 626~ 629
    21 P. Luiz Ferrandini , F. Farias Cardoso , S. Araujo Souza , C. Ramos Afonso,R. Caram. Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys. Journal of Alloys and Compounds. 2007,433: 207~210
    22于兰兰,毛小南,张鹏省. TiC和TiB混杂增强钛基复合材料研究新进展.钛工业进展.2008(4):20 ~23
    23 M. Wang,W. Lu,J. Qin,F. Ma,J. Lu,D. Zhang. Effect of volume fraction of reinforcement on room temperature tensile property of in situ (TiB + TiC)/Ti matrix composites. Materials and Design. 27 (2006) 494~498
    24兰涛,韩传玺,张宝惠,李明强,赵永骞,曲恒磊.粉末冶金.Ti-14Al-21Nb合金的研究.稀有金属材料与工程. 1992,21(3):53~58
    25曲恒磊,周廉,魏海荣.影响TiAl高温氧化的两个因素.材料工程.2000(1) :3~6
    26曲恒磊,李明强,韩传玺,赵永庆,周廉,周义刚. Ti-3Al基合金研究.钛工业进展. 2003,20(3): 11~16
    27 G.B. Viswanathan , S. Karthikeyan , R.W. Hayes , M.J. Mills.Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation.Acta Materialia. 2002,50:4965~4980
    28 R.W. Evans,R.J. Hull,B. Wilshire. The effect of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834. Journal of Materials Processing Technology. 1996,56: 492~501
    29 M.T. Whittaker,W.J. Evans,P.J. Hurley,D. Flynn. Prediction of notched specimen behaviour at ambient and high temperatures in Ti6246. International Journal of Fatigue. 2007,29:1716~1725
    30 W.F. Cui,C.M. Liu,L. Zhou,G.Z. Luo Characteristics of microstructures and second-phase particles in Y-bearing Ti-1100 alloy. Materials Science and Engineering A.2002 ,323: 192~197
    31 M. Es-Souni. Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal 834) Part I. Primary and steady-state creep. Materials Characterization 2001,46:365~379
    32 S.Z. Zhang,H.Z. Xua,G.P. Li,Y.Y. Liu,R. Yang. Effect of carbon and aging treatment on precipitation of orderedα2 in Ti–5.6Al–4.8Sn–2Zr–1Mo–0.35Si–0.7Nd alloy Materials Science and Engineering A.2005 , 408:290~296
    33 X.D. Zhang,P. Bonniwell,H.L. Fraser,W.A. Baeslack,D.J. Evans,T. Ginter,T. Bayha,B. Cornell. Effect of heat treatment and silicon addition on the microstructure development of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloy Materials Science and Engineering A. 2003,343: 210~226
    34杨义,黄爱军,徐峰,李阁平. BT18y钛合金等轴组织与全片层组织的室温拉伸塑性.中国有色金属学报,2005,15(5):768~774
    35 M. J. Bermingham,S. D. McDonald,M. S. Dargusch,D. H. StJohn. The mechanism of grain refinement of titanium by silicon. Scripta Materialia. 2008,58:1050 ~1053
    36洪权,戚运莲,郭萍,曾立英,赵永庆. Ti600合金中硅化物与蠕变性能关系的研究.稀有金属快报. 2007,25(9):19~22
    37林永新.硅在耐热钛合金中的行为.稀有金属材料与工程. 1981 (1):21~31
    38董飞,何国强,张贵田.合金元素Si在钛合金中作用的研究进展.金属热处理. 2007,32(11):5~10
    39朱绍祥,刘建荣,王青江,彭娜,张钧.高温钛合金Ti-60与IM I834的β晶粒长大规律.金属热处理.2007,32(11):11~14
    40杨义,黄爱军,徐峰,李阁平. BT18y钛合金等轴组织与全片层组织的室温拉伸塑性.中国有色金属学报.2005,15(5):768~774
    41 D. Vojtěch , B. Bártová, T.Kubatik. High temperature oxidation of titanium-silicon alloys. Materials science and engineering A. 2003,361:50~57
    42 D. Vojtěch, H. ?ī?ová, K. Jurek, J. Maixner. Influence of silicon on high-temperature cyclic oxidation behaviour of titanium. Journal of alloys and compounds. 2005,394:240~249
    43崔文芳,魏海荣,罗国珍,洪权,周廉. IMI834和Ti1100在550~750℃高温下的氧化行为.稀有金属材料与工程. 1997,26(2):31~35
    44 D. B. Lee,K. B. Park,H. W. Jeong,S. E. Kim. Mechanical and oxidationproperties of Ti-xFe-ySi alloys. Materials science and engineering A. 2002, 328:161~168
    45崔文芳,边为民,罗国珍,洪权,周廉.热暴露对IMI834近α高温钛合金组织和拉伸性能的影响.航空材料学报. 1997,17(4):15~20
    46 S. Hardt, H. J. Marier, H.–J. Christ. High-temperature fatigue damage mechanisms in near-αtitanium alloy IMI834. International journal of fatigue. 1999,21:779~789
    47储茂友,惠松骁,张翥,沈剑韵. BT25y高温钛合金固溶处理及热暴露过程中硅化物的析出机制.电子显微学报. 2004,23(2):168~172雷永泉等.铸造过程物理化学.新时代出版社, 1982: 196
    48崔文芳,周廉,罗国珍,边为民.钇对Ti-1100高温钛合金热稳定性和蠕变行为的影响.中国稀土学报.1998,16(3):237~241
    49邓炬,杨冠军.稀土元素在钛及钛合金中的作用.稀有金属材料工程. 1993,22(5):1~11
    50 V. de Castro , T. Leguey , A. Mu?noz , M.A. Monge , R. Pareja. Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting. Materials science and engineering A. 2006,422:189 ~197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700