基于FGS位平面编码的无线视频编码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位平面编码是精细可扩展性(FGS,Fine Granular Scalable)编码中的关键技术,它使得增强层码流可以在任何地点截断,从而具有可扩展性,适合在internet 或无线通信的环境下传输视频信息。本文系统地讨论了位平面编码及其在视频传输中的应用。
    首先,文章介绍了视频编码的一些知识,主要是熵编码、源编码和混合编码的一些概念;然后,介绍了网络与无线通信的一些特点以及无线视频传输所面临的一些问题,主要包括异构性、带宽限制、延时、丢失和误码等问题。还介绍了传统视频编码在网络传输中的应用,包括最小传输、自适应编码、Transcoding、码流切换及分层可扩展性编码。之后,详细介绍了FGS 的位平面编码技术以及一些主要的应用位平面编码技术的视频编码方法。在增强层使用位平面编码使得增强层码流可以在任何地点截断。解码器重建的视频质量与收到并解码的比特数成正比,具有质量精细变化的特性。在精细的空域可扩展性(FGSS)编码方案中,输入的视频首先进行下采样,然后使用任何非扩展性编码技术将视频压缩到给定的码率以下。在增强层采用位平面编码技术,对增强层需要编码的系数从高位到低位按位平面依次编码,这使得增强层码流可以在任何地点截断,从而具有质量精细变化的特性。视频的精细可扩展子带编码把用于静止图象的子带编码方法引入到FGS 增强层编码之中,不但保留了原方法的可扩展性,而且有效地提高了增强层的编码效率。FGS 增强层编码的水环扫描方式先编码图像帧的感兴趣区域,然后再编码图像的其它部分,有效地提高解码后图像的主观质量,而且保留了FGS 原有的各种优良性能。基于显著系数分布的高效位平面编码根据DCT 残余信号的统计特性,把增强层划分为显著比特组和精细比特组,对于显著比特组,应用位平面编码技术进行编码;再对精细比特组进行Huffman 编码,提高了编码效
With the rapid development of information technology and social progress,multimedia, in particular, video has become more and more an indispensable partof the everyday work and life of human beings. Combined with internet, it hasbeen the goal of modern mobile communication(3G beyond or 4G)to providevarious service quality and personalized content of business for the user at the endof mobile equipment. The progress of wireless video transmission technology hasprofoundly impacted the frame and protocol of wireless network. It has been afocus of study to transmit video effectively in wireless environment.
    For time-based multimedia data like video, the receivers on network have twomain demands. First, to start immediately, that is without long delay. Second, toplay continuously, namely, without being interrupted during playing. So theservers must make the video data to be transmitted into packs with time stamp.Then transmit them to the user through network. And they must make the packs tobe received in time. However these demands can not be guaranteed on the currentnetwork. There are two aspects in solving the problem. First, from the networkpoint of view, the key is how break the current network frame and set up a newnetwork system with quality of service (QoS). However, internet and wirelesscommunication being more and more popular, it is difficult to alternate the currentnetwork frame, and can not be completed within short time. On the other hand,from the signal processing point of view, the key is to study applying the currentvideo coding technology to network transmission and to study new video codingalgorithm satisfying network transmission. Some traditional technologies havebeen applied to network. Such as error resilience, error concealment, channelcoding, adaptive coding, transcoding and bit-stream switching. And some progresshas been made. Among the video coding algorithm suitable for networktransmission, the idea scalable coding is put forward, including temporal scalablecoding, fine granular scalable (FGS) coding and progressive fine granular scalable(PFGS) coding, etc. the data stream of the methods mentioned above havecharacter of scalability and error resilience. They can adapt to the change of band
    width and error. However, the coding property may certainly be degraded. Bit-plane coding is the key technology of FGS coding. With the applying ofthis technology, the enhancement bit stream can be truncated at any position. Sothe bit stream is scalable and suitable for transmitting video through internet orwireless channel. In this paper we discuss the bit-plane coding and it’s applicationin video transmission in detail. First of all, we introduce some basic knowledge of video coding, such asentropy coding, source coding, and mixture coding. Then we introduce thecharacters of internet and wireless channel and the problems of wireless videotransmission. Including Heterogeneity, Band width, Delay, Loss and Error etc.And we also introduce the application of traditional video coding methods to videotransmission on web, such as Minimum Transmission, Adaptive Coding,Transcoding, Bit-stream Switching and Hierarchical Scalable coding. Next weintroduce the bit-plane coding method of the FGS and it’s main application tovideo coding. The bit stream of the enhancement layer can be truncated at anyposition with the application the bit-plane coding to enhancement layer. Thequality of the video reconstructed by the decoder is in proportion to the amount ofthe bits being received and therefore it has the character of fine fluctuation ofquality. In the scheme of fine granular spatial scalability, the input video is downsampled at the beginning, then it is compressed to the given bit rate applying anynon-scalable coding methods. For enhancement layer, the bit-plane codingtechnology is applied. The coefficients to be coded in the enhancement layer arecoded according to the bit plane order from high bit to low. Then the bit stream ofthe enhancement layer can be truncated at any position and have the character ofscalability. The fine scalable sub-band coding method applies sub-band coding instation picture to the enhancement layer coding of FGS. It re-arranges the DCTcoefficients to form sub-band of different frequency. Then define context and codethe sub-band coefficients with the coding method of context algorithm codingbased on bit plane. This coding method based on sub-band can not only improvethe efficiency of enhancement coding, but also remain the scalability of FGS. Thewater ring scanning method of enhancement layer codes the important area of theframe of the video first, then codes the rest of the frame. The method can improvethe subject quality of the decoded picture effectively and remain all the merits of
引文
[1] 钟玉琢,王琪,赵黎,杨晓勤。MPEG-2 运动图象压缩编码国际标准及MPEG 的新近展. 北京:清华大学出版社,2002
    [2] Kenji Matsuo,Koichi Takagi,Atsushi Koike,and Syuichi Matsumoto. A Bit-plane Coding Scheme of MPEG-4 FGS with High Efficiency Based on the Distribution of Significant Coefficients. KDDI R&D Laboratories Inc. 2-1-15 Ohara Kamifukuoka Saitama 356-8502 JAPAN matsuo@kddilabs.jp
    [3] Wu Feng,Li Shipeng,Zhang Yaqin. A framework for efficient progressive fine granularity scalable video coding [J].IEEE Trans on circuits and Systems For Video Technology,2001,11(3):332-344.[8]
    [4] Qi Wang,Zixiang Xiong,Feng Wu,Shipeng Li.Optimal Rate Allocation for Progressive Fine Granularity Scalable Video Coding.IEEE International Conference on Information Technology:Coding and Computing—ITCC2001,Apr,2001Las Vegas,USA
    [5] Draft applications and requirements for scalable coding[S].ISO/IEC JTC1/SC29/WG11,N 4984,Klagenfurt,2002-07.
    [6] Xiaoyan Sun,Feng Wu,Shipeng Li,Wen Gao and Ya-Qin Zhang, MacroBlock based progressive fine granularity scalable video coding. IEEE International Conference on Multimedia and Expo (ICME),461-464.
    [7] 陈贺新,赵岩,桑爱军。视频信号的可调节性压缩编码技术。吉林大学学报(信息科学版) 2002.3
    [8] Weiping Li, Fellow ,IEEE. Overview of Fine Granularity Scalability in MPEG-4 Video Standard . IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001
    [9] 李建欣,朱日宏,丁绪星. 基于多级位平面交错的ROI 图像编码. 中国图象图形学报Feb.2004
    [10] 孙晓艳,高文,吴枫,李世鹏,张亚勤. 基于宏块的具有时域和SNR 精细可伸缩性的视频编码计算机学报2003.3
    [11] Won-Sik Cheong,Kyuheon Kim,Gwang Hoon Park . A New Scanning Method for H.264 Based Fine Granular Scalable Video Coding MM’03, November 2-8, 2003, Berkeley, California, USA.
    [12] 沈燕飞,沈未名,朱立,江舟. 精细可伸缩性视频编码算法的研究计算机工程与应用2003.21
    [13] 丁贵广,计文平,郭宝龙. 嵌入式DCT图像编码算法计算机辅助设计与图形学学报第15 卷第8 期2003 年8 月
    [14] 吴枫,李世鹏,张亚勤. 渐进、精细的可伸缩性视频编码计算机学报, 第23卷第12期2000 年12月
    [15] Weiping Li. Fine granularity scalability using bit-plane coding of DCT coefficients. MPEG98/m4204
    [16] The TML Project WEB-Page, http://kbs.cs.tu-berlin.de/~stewe/vceg/archive.htm.
    [17] ITU-T Rec. H.264 | ISO/IEC 11496-10, “Advanced Video Coding,”Text of Draft International Standard, N5555,March 2003.
    [18] Jie Song. Optimal rate allocation and security schemes for image and video transmission over wireless channels. Submitted to the Faculty of the Graduate School of the University ofMaryland college Park in partial fulfillment of the requirement for the degree of Doctor of philosophy.2000
    [19] Sangeun Han and Bernd Girod. ROBUST AND EFFICIENT SCALABLE VIDEO CODINGWITH LEAKY PREDICTION, Information Systems Laboratory,Stanford University, Stanford CA 94305.sehan, bgirodg@stanford.edu
    [20] Qi Wang,Zixiang Xiong,Feng Wu,Shipeng Li.Optimal Rate Allocation for Progressive Fine Granularity Scalable Video Coding.IEEE International Conference on Information Technology:Coding and Computing—ITCC2001,Apr,2001Las Vegas,USA
    [21] Becher R,Dillinger M. Broadband wireless access and future communication networks[J].Proceedings of the IEEE,2001, 89(1):58-75.
    [22] Shingo Ohmori,etal.The future generations of mobile communications based on broadband access technologies[J]. IEEE Communication Magazine, 2000,(12):134-142.
    [23] Wu Dapeng,etal. Scalable video coding ad transport over brand-band wireless networks[J]. Proceedings of the IEEE , 2001,89(1):6-20.
    [24] Lou H,Podilchuk C, Choi JP. Progressive video streaming over 2G and 3Gwireless systems[A].The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications , 2000:1550-1554.
    [25] Vander Schaar M, Radha H. Adaptive motion compensation fine granular scalability (AMC FGS) for wireless video[J]. IEEE Transactions on Circuits and Systems for Video technology,2002,12(6) 360-371.
    [26] Draft applications and requirements for scalable coding[S].ISO/IEC JTC1/SC29/WG11,N 4984,Klagenfurt,2002-07.
    [27] The status of interframe wavelet coding exploration in MPEG[S].ISO/IEC JTC1/SC29/WG11,N4928,Klagenfurt,2002-07.
    [28] Mrak M,Grgic M,Grgic S. scalable video coding in network applications[A].VIPromcom’2002:205-211.
    [29] http://www.mpeg.org/MPEG/MSSG
    [30] T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, and A. Luthra,“Overview of the H.264/AVC Video Coding Standard,”IEEE Transactions on Circuits and Systems, vol. 13, no. 7,July 2003.
    [31] T. Wiegand (ed.), “Final Committee Draft: Editor’s Proposed Revisions,”Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G50d1, May 2003.
    [32] T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, and A. Luthra, “Overview of the H.264/AVC Video Coding Standard,”IEEE Transactions on Circuits and Systems, vol. 13, no. 7,July 2003.
    [33] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J.Sullivan, “Rate-Constrained Coder Control and Comparison of Video Coding Standards,”IEEE Transactions on Circuitsand Systems, vol. 13, no. 7, July 2003.
    [34] ITU-T, “Video coding for low bitrate communication,”ITU-T Recommendation H.263; version 1, Nov. 1995; version 2, Jan. 1998.
    [35] 3GPP Technical Specification 3GPP TR 26.140: “Multimedia Messaging Service (MMS); Media formats and codecs.”
    [36] S. Wenger, T. Stockhammer, and M.M. Hannuksela, “RTP payload Format for H.264 Video”,draft-wenger-avt-rtph264-01.txt, Internet Draft, Work in Progress, March 2003.
    [37] S. Wenger, “H.264/AVC over IP,”IEEE Transactions onCircuits and Systems, vol. 13, no. 7, July 2003.
    [38] G. Roth, R. Sj?berg, G. Liebl, T. Stockhammer, V. Varsa, and M. Karczewicz, “Common Test Conditions for RTP/IP over 3GPP/3GPP2,”ITU-T SG16 Doc. VCEG-M77, Austin,TX, USA, Apr. 2001.
    [39] J. Ribas-Corbera, P.A. Chou, and S. Regunathan, “A Generalized Hypothetical Reference Decoder for H.264/AVC”,IEEE Transactions on Circuits and Systems, vol. 13, no. 7,July 2003.
    [40] H. Jenkac, T. Stockhammer, and G. Kuhn, “Streaming Media in Variable Bit-Rate Environments”, in Proc. Packet Video Workshop, Nantes, France, April 2003.
    [41] B. Girod, M. Kalman, Y. J. Liang, and R. Zhang, “Advances in video channel-adaptive streaming,”in Proc. ICIP 2002, Rochester, NY, September 2002.
    [42] E.G. Steinbach, N. F?rber, and B. Girod, “Adaptive playout for low latency video streaming,”in Proc. ICIP 2001,Thessaloniki, Greece, October 2001.
    [43] D. Marpe et al., “Video Compression Using Context-Based Adaptive Arithmetic Coding,”IEEE International Conference on Image Processing, Proceedings, Vol. 3, pp. 558-561, Thessaloniki, Greece, October 2001.
    [44] T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, and A. Luthra,“Overview of the H.264/AVC Video Coding Standard,”IEEETransactions on Circuits and Systems, vol. 13, no. 7,July 2003.
    [45] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J.Sullivan, “Rate-Constrained Coder Control and Comparison of Video Coding Standards,”IEEE Transactions on Circuitsand Systems, vol. 13, no. 7, July 2003.
    [46] ITU-T, “Video coding for low bitrate communication,”ITU-T Recommendation H.263; version 1, Nov. 1995; version 2, Jan. 1998.
    [47] ISO/IEC JTC1, “Coding of audio-visual objects –Part 2: Visual,”ISO/IEC 14496-2 (MPEG-4 visual version 1), April 1999; Amendment 1 (version 2), February, 2000;Amendment 4 (streaming profile), January, 2001.
    [48] 3GPP Technical Specification 3GPP TR 26.140: “Multimedia Messaging Service (MMS); Media formats and codecs.”
    [49] S. Wenger, T. Stockhammer, and M.M. Hannuksela, “RTP payload Format for H.264 Video”,draft-wenger-avt-rtph264-01.txt, Internet Draft, Work in Progress, March 2003.
    [50] S. Wenger, “H.264/AVC over IP,”IEEE Transactions onCircuits and Systems, vol. 13, no. 7, July 2003.
    [51] G. Roth, R. Sj?berg, G. Liebl, T. Stockhammer, V. Varsa, and M. Karczewicz, “Common Test Conditions for RTP/IP over 3GPP/3GPP2,”ITU-T SG16 Doc. VCEG-M77, Austin,TX, USA, Apr. 2001.
    [52] J. Ribas-Corbera, P.A. Chou, and S. Regunathan, “A Generalized Hypothetical Reference Decoder for H.264/AVC”,IEEE Transactions on Circuits and Systems, vol. 13, no. 7,July 2003.
    [53] H. Jenkac, T. Stockhammer, and G. Kuhn, “Streaming Media in Variable Bit-Rate Environments”, in Proc. Packet Video Workshop, Nantes, France, April 2003.
    [54] B. Girod, M. Kalman, Y. J. Liang, and R. Zhang, “Advances in video channel-adaptive streaming,”in Proc. ICIP 2002, Rochester, NY, September 2002.
    [55] E.G. Steinbach, N. F?rber, and B. Girod, “Adaptive playout

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700