微流控芯片内植物原生质体的培养及其化学融合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物原生质体因少了细胞壁更便于各种实验研究,自20世纪七十年代以来,已被学者们广泛的研究和应用。植物原生质体方面的研究主要包括原生质体的培养与融合两大方面,通过原生质体培养可以观察细胞再生过程、获得细胞次生代谢产物等,而原生质体融合可以进行外缘遗传物质的导入、病毒的转染等,从而选育优质杂种、改良遗传性状等。植物原生质体已被应用于生命科学的许多领域,其重要性是不言而喻的。微流控芯片技术是20世纪九十年代发展起来的一项新兴技术,被誉为在20世纪科技史上有深远影响的事件之一,成为诸多交叉领域中基础与应用的重要发展前沿。
     微流控芯片上对细胞的研究有很多,但多集中在动物细胞、细菌、昆虫方面,对于植物细胞的相关研究很少,基于植物原生质体的重要性与微流控芯片的技术优势,本研究设计了一个微流控芯片,在这个芯片内实现了烟草叶肉原生质体与小白菜无菌苗子叶原生质体的培养,并首次采用PEG化学融合的方法,实现了原生质体芯片内的融合。
     主要结果如下:
     (1)设计并制备实验所需的微流控芯片。
     (2)培育出实验所需的小白菜无菌苗,经酶解纯化获得小白菜子叶原生质体,并用二乙酸荧光素检测活性。在相同实验条件下,分别在传统培养皿和微流控芯片内对小白菜原生质体进行培养,并对两种方法进行比较。
     (3)在实验室条件下种植得到烟草叶片,将无菌处理过的烟草叶片酶解纯化及活力检测,得到干净且活力为95%的烟草叶肉原生质体。在相同温度及光照条件下,比较传统培养与微流控芯片培养的异同,得出微流控芯片内烟草原生质体培养与传统培养皿内培养经历相同的过程,但是为微流控芯片内烟草原生质体在启动分裂的时间上比传统培养要快1 d左右。应用三种液体培养基(NT6、NT1和MS培养基)对烟草叶肉原生质体进行培养,通过比较烟草原生质体一次分离频率及形成细胞团频率,得出最适合烟草原生质体培养的培养基为NT1。
     (4)应用PEG化学融合法,对小白菜无菌苗子叶原生质体及烟草叶肉原生质体进行化学融合,同时应用微流控芯片与传统方法对烟草叶肉原生质体进行融合,通过对融合率及二源融合率比较发现,微流控芯片内更有利与烟草叶肉原生质体二源融合的发生。
Since the seventies of 20th century, the protoplast have been extensively studied and applied by scholars, as plant protoplasts can be used much more easily without cell wall. The studies of protoplast mainly include protoplast culture and fusion. Cell regeneration process can be observed and secondary metabolites can be obtained through protoplast culture; while the protoplast fusion can transfer genetic material and get the virus infection to gain the high-quality hybrid breeding and improvement of genetic traits. Plant protoplasts have been used in many areas of life science, its importance is self-evident. Microfluidic device is a new technology which has far-reaching implications in the history of science and technology in the nineties of 20th century, and foreword area of basis and application in kinds of interdisciplinary science.
     Many works has been done about cells in microfluidic chips, mostly focused on animal cells, bacteria, insect, seldom for plant cells. Based on the importance of plant protoplasts and the advantage of microfuidic chip, we designed a integrated microfluidic device, in which tobacco protoplasts and cotyledon protoplasts of Brassica campestris ssp. chinensis Makino were cultured, and chemical (PEG) fusion was finished for the first time. The main results are as follows:
     (1) The necessary microfluidic device has been devised and made.
     (2) Cultivating seedling of Brassica campestris ssp. chinensis Makino, protoplasts that were got by enzyme digestion and purification had been detected by FDA for vitality. Protoplasts were cultivated in both the traditional dish and the microfluidic device, the results of which were compared.
     (3) Under the laboratory conditions, the sterile tobacco leaves were treated by enzyme and purification to obtain the clean tobacco mesophyll protoplasts which had vitality of 95% by activity assay. At the same temperature and lighting conditions, tobacco protoplasts cultivated in the microfluidic device had the same process as in the dish by comparing traditional culture and culture in the microfluidic device, but the start division time of tobacco protoplasts within the microfluidic device is faster than traditional culture about 1 day. Application of three kinds of liquid medium (NT6, NT1 and MS medium) on the tobacco mesophyll protoplasts culture, the NT1 was the most suitable medium for mesophyll protoplast culture of tobacco through compared the frequency of the cell divison and the formation of the derived cell clusters.
     (4) Application of PEG chemical fusion method, Cotyledon protoplasts of Brassica campestris ssp. chinensis Makino Chinese cabbage and tobacco mesophyll protoplasts were fused by PEG. tobacco mesophyll protoplasts were fused in the microfluidic device and the dish, comparison of fusion rate and the two sources of integration rate showed that the fusion of two sources of tobacco mesophyll protoplast more favorable occurred in the microfluidic device.
引文
蔡起贵,郭仲琛,钱迎倩,姜荣锡,周云罗. 1987.玉米原生质体植株再生.植物学报, 29(5): 453~458
    陈名红,陈毅坚,李天飞,吴渝生. 2006.烟草种间叶肉原生质体融合方法的研究.云南民族大学学报(自然科学版), 15(3): 230~234
    陈名红,李天飞,陈学军. 2005.培养基及植物激素对烟草原生质体再生植株的影响.种子( Seed), 24(9): 76~79
    陈喜文,陈德富,周朴华,李宗道. 1995.苧麻子叶原生质体的分离和初步培养.湖南农学院学报, 21(2): 107~110
    邓秀新,章文才,万蜀渊. 1988.柑桔原生质体分离及再生成株研究.园艺学报, 15: 99~102
    方肇伦,方群. 2001.微流控芯片发展与展望.现代科学仪器, 4: 3~6
    付春华,文晓鹏,郭文武. 2004.国庆1号温州蜜柑原生质体培养再生植株阴.山地农业生物学报, 23(2): 124~128
    侯喜林,曹寿椿,佘建明,蔡小宁,陆维忠. 2000.不结球白菜子叶原生质体培养再生植株.南京农业大学学报, 23 (4): 17~20
    胡家金,甘霖,熊兴耀,肖浪涛,张秋明. 2000.适宜原生质体分离的美味猕猴桃愈伤组织的筛选.湖南农业大学学报, 26(2): 105~107
    胡尚连,王丹. 2004.植物生物技术.成都:西南交通大学出版社, 105
    黄绍兴,王慧中,吕德扬. 1995.紫花苜蓿根原生质体植株再生.科技通报, 11(4): 232~234
    黄文川,杨其光. 2000.一种简化有效的普通烟草原生质体培养方法.西北农业大学学报, 28(3): 101~103
    黄文川. 2001.烟草种间体细胞杂交高代材料的性状鉴定.中国农学通报, 17(2): 33~42
    霍乃蕊,韩克光. 2006.细胞融合技术的发展及应用.激光生物学报, 15(2): 209~213
    贾勇炯,陈放,李英,何小莉. 1994.从水稻根部悬浮培养细胞分离原生质体及植株再生.生物工程学报, 10(2): 168~172
    金红. 2004.草木樨状黄芪甲硫氨酸抗性系的原生质体培养及植株再生.生物工程学报, 20(2): 221~226
    蓝悠,李全文,陈缵光. 2007.微流控芯片技术在蛋白质分析中的应用进展.化学研究与应用, 19(4): 345~350
    李春艳,李妮亚,陈少良. 2005.植物原生质体培养与融合的研究进展.海南师范学院学报(自然科学版), 18(3): 264~268
    李杰,黄敏仁,王明庥,蔡汝. 2003.植物原生质体培养和体细胞融合技术研究进展.仲恺农业技术学院学报, 16 (4): 64~71
    李文彬,陈正华,宋玉华,张大卫. 1986.芥菜型油菜原生质体再生成植株的研究遗传学报, 13(3):184~187
    李贤,钟仲贤. 1996.甘蓝原生质体培养和融合的研究.上海农业学报, 12(3): 23~27
    刘培,褚晓明. 1996.硬紫草悬浮细胞原生质体培养形成愈伤组织及其体细胞克隆变异.植物生理学报, 22(3): 243~250
    刘巧红,江莉,顾红. 2001.甜菜原生质体培养及大块愈伤组织的产生.中国甜菜糖业, 2: 14~15
    刘选明,官春云. 1997.油菜原生质体培养与融合技术的研究进展.湖南农业大学学报, 23(5): 483~492
    陆荣生,韩美丽. 1998.木本植物原生质体培养研究进展.广西林业科学, 27(4) : 197~201
    吕长平,郑玉生,石雪晖,张秋明,杨国顺,邓建平. 2003.草莓原生质体的培养和植株再生.江西农业大学学报, 25(2): 254~257
    罗建平,贾敬芬,顾晔. 2000.沙打旺胚性原生质体培养以及高频再生植株.生物工程学报, 16(1): 17~21
    骆启章,龚明良,丁昌敏. 1979.烟草原生质体培养及植株再生.中国烟草,试刊: 16~19
    马锋旺,李嘉瑞. 1999.山桃原生质体培养再生愈伤组织.西北农业学报, 8(3): 73~76
    马晖玲,李玉珠. 2007.植物原生质体培养的影响因素分析.甘肃农业大学学报, 8: 38~43
    潘增光,邓秀新. 2000.苹果原生质体分离培养及植株再生.园艺学报, 27(2): 95~101
    钱迎倩, L.C福克, P.J雷妮. 1983.大豆一烟草融合体的亚显微结构和同工酶分析.植物学报, 25(5):397~402
    沈前华,杨柏云,郭金平,杨宁生,钟青萍. 1996.大花蕙兰原生质体分离的影响因素研究.江西农业学报, 8 (1) : 36~40
    舒文华,耿华珠,孙勇如. 1994.紫花首蓓原生质体培养与植株再生.草地学报, 2(2): 40~44
    孙蒙祥,杨弘远,周嫦, Koop HU. 1995.烟草雌性细胞原生质体的融合实验.植物学报, 37(1): 1~6
    王光远,夏镇澳. 1987.水稻原生质体再生成熟植株.实验生物学报, 6: 45~46
    王之,张苏锋,胡正海. 1998.陆地棉胚性愈伤组织原生质体的制备、培养及植株再生.植物学报, 40(3): 234~240
    吴家道,杨剑波,向太和,吴李君. 1994.水稻原生质体高效培养技术的研究.安徽农业科学, 22 (4) : 305 ~ 309
    吴耀武. 1994.二棱大麦与豌豆原生质体融合的研究.西北农业学报, 3(1): 9~12
    奚元龄,颜昌敬. 1992.植物细胞培养手册.北京:农业出版社
    谢丛华,柳俊. 2004.植物细胞工程.北京:高等教育出版社
    许智宏,卫志明. 1997.植物原生质体培养和遗传操作.上海:上海科学技术出版: 20~30
    张红梅,王俊丽. 2002.植物原生质体游离培养及应用.河北林果研究, 17(4): 376~382
    赵军良,逯保德,梁爱华,赵美华. 2005.大白菜原生质体培养再生体系的优化.西北植物学报, 25(3): 546~551
    Alison M S, Oktay K, Heikyung Suh, Rudolf J, Joel V. 2009. Micro?uidic control of cell pairing and fusion. Nature Methods, 6(2): 147~152
    Arscotta S, Gaca S L, Rolandob C. 2005. A Polysilicon Nanoelectrospray-mass Spectrometry Source Based on A Microfluidic Capillary Slot. Sensors and Actuators B, 106 (2): 741~749
    Atanassov I I , Atanassova S A, Dragoeva A I, Atanassov A I. 1998. A new CMS source in Nicotiana developed via somatic cybridization between N. tabacum and N. alata. Theor Appl Genet, 97: 982 ~985
    Carlson PS, Smith HH, Dearing RD. 1972. Parasexual interspecific plant hybridization. Proc. Nat. Acad. Sci USA, 69: 2292~2294
    Chang W-J, Akin D, Sedlak M, Ladisch MR, Bashir R. 2003. Poly(di-methylsiloxane) (PDMS) and silicon hybrid biochip for bacterial cul-ture. Biomed Microdev, 5: 281~290
    Cocking E C. 1960. A method for the isolation of plant protoplasts and vacuoles. Nature(London), 187:927~929
    Dodge A, Fluri K, Rooij NF, Verpoote E. 2001. Electrokinetically driven microfluidic chips with surfacemodified chambers for heterogeneous immunoassays. Anal Chem, 73 ( 14): 3400
    Durand J, Potrykus I, Donn G. 1973. Plantes issues de protoplasts de Petunia. Z. Pflanzenphysio, 69:26~34 Fu L L, Yang X Y, Zhang X L, Wang Z W, Feng C Hi, Liu C X, Jiang P Y, Zhang J L. 2009. Regeneration and identification of interspecific asymmetric somatic hybrids obtained by donor-recipient fusion in cotton. Chinese Science Bulletin, 54(17): 3035~3043
    Fujimura T. 1985. Regeneration of rice plant from protoplant. Plant Tissue culture letters, 2: 74~75
    Gel M, Suzuki S, Kimura Y, Kurosawa O, Techaumnat B, Oana H, Washizu M. 2009. Microorifice-Based High-Yield Cell Fusion on Microfluidic Chip: Electrofusion of Selected Pairs and Fusant Viability. Ieee transactions on nanobioscience, 8(4): 300~305
    Gouri C, Samir R. S, Srabani D, Sen SK. 1985. Regeneration of plantlets from mesophyll protoplasts of Brassica juncea (L.) Czern. Plant Cell Reports, 4: 245~247
    Han JH, Heinze BC, Yoon JY. 2008. Single cell level detection of Escherichia coli in microfuidic device. Biosens. Bioelectron, 23:1303~1306
    Hanstein, J.von. 1880. Das Protoplasma als Trager der pflanzlichen und thierischen Lebensverrichtungen. Winter, Heidelberg
    Harrison DJ, Manz A, Fan ZH, Ludi H, Widmer HM. 1992. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem, 64 :1926~1932
    Ji H M, Victor S, Chen Y, Heng CK, Lim T M, Levent Yobas. 2008. Silicon-based microfilters for whole blood cell separation. Biomed Microdevices, 10: 251~257
    Hu N, Yang J, Zheng XL, Yin ZQ, Xu HW, Zhang XG, Cao Y, Yang J, Xia B, Xu R, Yan JW, Jiang F. 2009. Polyimide Membrane Based Cell-electrofusion Chip. Chinese journal of analytical chemistry, 37(8): 1247~1250
    Huancaruna-Perales E, Shibate M. 1993. Plant regeneration from leaf protoplasts of apple . Plant Cell Tissue and Organ Culture, 34: 71~76
    Inatomi, K. I, Izuo S I, Lee S S, Ohji H, Shiono S. 2003. Electrophoresis of DNA in Micro-pillars Fabricated in Polydimethylsiloxane . Microelectronic Engineering, 70(1): 13~18
    Ju J, Ko J-M, Kim SH, Baek JY, Cha H-C, Lee S H. 2006. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum. Bioprocess Biosyst Eng, 29: 163~168
    Ko J-M, Ju Jongil, Lee S H, Cha H-C. 2006. Tobacco protoplast culture in a polydimethylsiloxane-based microfuidic channel. Protoplasma, 227: 237~240
    Jacobson SC, Ramsey JM. 1995. Microchip electrophoresis with sample stacking. Electrophoresis, 16(4) : 481~486.
    Jenes B, Pauk J. 1989. Plant regeneration from protoplast derived calli in rice using dicamba. Plant Sci, 63(2): 187~198
    Jurjen E, Floor W, Helene A, Ralph S.D C, Brian C.W, Istvan V, Albertvanden B. 2004. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems. Electrophoresis, 25: 3740~3745
    Kao KN, Michayluc MR. 1974. A mehtod for high frequency intergeneric fustion of plnatportoplasts.Planta, 115: 355~367
    Keller WA, Melchers G. 1973. The effect of high pH and calcium on tobacco leaf protoplast fusion . Z Naturforsch, 288: 737~741
    Klercker, J. 1892. Eine Methode zur Isolierung lebender Protoplasten. Ofvers.Vetensk. Akad. Forh. Stock, 49: 463~475
    Kratha K K, Michanyluk M R, Kao K N, Gamborg O L, Constabel F. 1974. Callus formation and plant regeneration from mesophyll protoplasts of rape plants (Brassica napus L. CV. Zephyr). Plant Sci Iett, 3: 265~271
    Kunitake H, Kagami H, Mii M. 1991. Somatic embryogenesis and plant regeneration from protoplast of Satsum amandarin (Citrus unshiu Marc.). Sci Hort, 47: 27~33
    Leclerc E, Sakai Y, Fujii T. 2004. Perfusion culture of fetal human hepato-cytes in microfuidic environments. Biochem Eng J, 20: 143~148
    Zhang L, Yin X F. 2007. Parallel separation of multiple samples with negative pressure sample injection on a 3-D Microfluidic array chip. Electrophoresis, 28: 1281~1288
    LI RB. 1998. Protoplast culture and plant regeneration of indica rice by nurse culture and capsulation technique. Guang xi Science, 5 (3): 230 ~236
    M. Y. Zhang, T. Johnson, L. P. Lee, M. R. K. Mofrad. 2008. Microfluidic environment for high density hepatocyte culture. Biomed Microdevices, 10:117~121
    Ma R, Guo YD, Pulli S. 2003. Somatic embryogenesis and fertile green plant regeneration from suspension cell - derived protoplasts of rye ( Secale cereale L. ). Plant Cell Rep, 22: 320~327
    Manz A, Graber N, Widmer H.M. 1990. Miniaturizedto talch emicalan alysissy stems: A novel concept for chemical sensing. Sens. Actuators B, 1: 244~248
    Medgyesy P, Menczel L, Maliga P. 1980. The use of cytoplasmic streptomycin resistance: chloroplast transfer from Nicotiana tabacum into Nicotiana sylvestris and isolation of their somatic hybrids. Mol Gen Genet, 179: 693~698
    Melchers G, Sacristfin MD, Holder AA. 1978. Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res Commun 43: 203~218
    Zhang M Y., Philip J.L, Hung P J., Johnson T, Luke P.L, Mohammed R. K.M. 2008. Microfluidic environment for high density hepatocyte culture. Biomed Microdevices, 10: 117~121
    Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. PhysiolPlant, 15:473~497
    Nyman M, Wallin A. 1998. Plant regeneation from trawberry (Fragaria×ananssa) mesophyll protoplasts. Plant Physiol, 133: 375~377
    Ochatt S J, Chevreau E, Gallet M. 1992. Organogenesis from Passe Crassane and Old Home pear (Pyrus comnis L.) protoplsats and isoenzymatic trueness-to-type of the regenerated plants. Theor Appl Genet, 83: 1013~1018.
    Pace S J, Wilmington D. 1990. Slicon semiconductor wafer for analyzing micronic biological samples. U.S. Patent, 4908112
    Power JB, Davey MR, Anthony P, Lowe KC. 2004. Protoplast culture and regeneration In: Goodman RM, ed. Encyclopedia of plant and crop science. New York: Marcel Dekker Inc, 1065~1068
    Power, JB, Cummins, SE, Cocking, EC. 1970. Fusion of isolated plant protoplasts. Nature, 225: 1016~1018Hu Q, Andersen S B, Hansen L N. 1999. Plant regeneration capacity of mesophyll protoplasts from Brassica napus and related species. Plant Cell, Tissue and Organ Culture, 59: 189~196
    Saxena PK, Gill R. 1987. Plant regeneration from mesophyll protoplasts of the tree legume Pithecellobium dulce Benth. Plant Sci, 46(1): 33~42
    Schuch M W, Peters J A. 2002. Regeneration of apple shoots (Malus domesticus Borkh.) cv Gala. Revista Brasileira de Fruticultura (Brazil), 24(2): 301~305
    Schweiger HG, Dirk J, Koop HU, Kranz E, Neuhaus G, Spangenberg G, Wolf D. 1987. Individual selection, culture and manipulation of higher plant cells. Theor Appl Genet, 73: 769~783
    Senda M. Takeda I. Abe S. Nakamura T. 1979. Induction of cell fusion of plant protoplasts by electrical stimulation. Plant and Cell Physiol, 20: 1441~1443
    Shepardj F. 1982. Cultivar dependent cultural refinements in potato protoplast regeneration. Plant Science Letters, 26: 127~132.
    Shillito RD, Paszkoooski J, Potrykus I. 1983. Agarose plating and a bead type culture technique enable and stimulate development of protoplast2derived colonies in a number of plant species. Plant Cell Report, 2: 244~247
    Sun Y, Li W, Li X. 1979. Influence of medium on the division of cells regenerated from mesophyll protoplasts of tobacco and plant regeneration. Acta Genetica Sinica, 6(4): 427~433
    Takebe I, Labib G, Melcher G. 1971. Regeneration of whole plants from isolated mesophyll protoplasts of tobacco.Naturwissenschaften, 58: 318~320
    Nagata T, Takebe I. 1970. Cell Wall Regeneration and Cell Division in Isolated Tobacco Mesophyll Protoplasts. Planta, 92: 301~308
    Nagata T, Takebe I. 1971. Plating of Isolated Tobacco Mesophyll Protoplasts on Agar Medium. Planta, 99: 12~20
    Upadhya MD. 1975. Isolation and culture of mesophyll protoplasts of potato (Salanum tuberosun L. ). Potato Res, 18: 438 ~445
    Uttara C, Samir R S. 2010. Intergeneric protoplast fusion between Calocybe indica (milky mushroom) and Pleurotus ?orida aids in the qualitative and quantitative improvement of sporophore of the milky mushroom. World J Microbiol Biotechnol, 26: 213~225
    Vardi A, Spiegel-Roy P. 1982. Plant regeneration from citrus protoplasts: variability in methodological requirements among cultivars and species. Theor Appl Genet, 62: 171~176
    Veera RN Chikkala, Gregory D.Nugent, Philip J.Dix, Trevor W.Stevenson. 2009. Regeneration from leaf explants and protoplasts of Brassica oleracea var. botrytis (cauli?ower). Scientia Horticulturae, 119: 330~334
    Verne M, Chapman, Frank H Ruddle. 1972. Glutamate oxaloacetate transaminase (got) genetics in the mouse: polymorphism of got-1, Genetics, 70(2): 299~305
    Vonarnold S, Eriksson T. 1977. A revised medium for growth of pea mesophyll protoplasts. Plant Physiol, 39: 257~260
    Walker GM, Ozers MS, Beebe DJ. 2002. Insect cell culture in micro?u-idic channels. Biomed Microdev, 4: 161~166
    Wang J, Ibanez A, Chatrathi MP, Escarpa A. 2001. Electrochemical enzyme immunoassays on microchip platforms. Anal Chem, 73 (21): 5323~5327
    Wang J, Pumera M, Collins GE, Mulchandani A. 2002. Measurements of chemical warfare agent degradation products using an electrophoresis microchip with contactless conductivity. Anal. Chem, 74(23): 6121~6125
    Wang YC, Choi MH, Han J. 2004. Two2-Dimensional Protein Separation with Advanced Sample and Buffer Isolation Using Microfluidic Valves . Anal Chem, 76(15): 4426~4431
    WheelerA R, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A. 2003. Microfluidic device for single-cell analysis. Anal Chem, 75 (14): 3581-6
    Cai X D, Duan Y X, Jin Fu, Guo W W. 2010. Production and molecular characterization of two new Citrus somatic hybrids for scion improvement. Acta Physiol Plant, 32:215~221
    Matsubayashi Y, Sakagami Y. 1998. Effects of the medium ammonium - nitrate ratio on compence for asparagus cell division induced by phytosulfokine-a. Plant Cell Reports, 17: 368~372 .
    Yang Y, Guan S, Zhai H, He S, Liu Q. 2009. Development and evaluation of a storage root-bearing sweetpotato somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L. Plant Cell Tiss Organ Cult, 99: 83~89
    Yasunori Akagi, Masatoki Taga, Mikihiro Yamamoto, Takashi Tsuge, Yukitaka Fukumasa-Nakai, Hiroshi Otani, Motoichiro Kodama. 2009. Chromosome constitution of hybrid strains constructed by protoplast fusion between the tomato and strawberry pathotypes of Alternaria alternate. J Gen Plant Pathol, 75: 101~109
    Yi Cao, Jun Yang, Zheng Qin Yin, Hong Yan Luo, Mo Yang, Ning Hu, Jing Yang, Dan Qun Huo, Chang Jun Hou, Zhi Zhong Jiang, Rui Qiang Zhang, Rong Xu, Xiao Lin Zheng. 2008. Study of high-throughput cell electrofusion in a microelectrode-array chip. Microfuid Nanofuid, 5(5), 669~675
    Yoshinori Y, Takahiro A, Naoya T, Yoshikuni E, Shuichi S. 2009. Development of apoly-dimethylsiloxane micro?uidic device for single cell isolation and incubation. SensorsandActuatorsB, 136: 555~561
    Yu C K, Joo H. K, Park S-J, Yoon E-S, Je-Kyun Park. 2007. Microfuidic biomechanical device for compressive cell stimulation and lysis. Sensors and Actuators B, 128: 108~116
    Chen Z Z, Zhang S Y, Tang Z M, Xiao P F, Guo X Y, Lu Z H. 2006. Pool–dam structure based micro?uidic devices for filtering tumor cells from blood mixtures. Surf. Interface Anal, 38: 996~1003
    Zimmerman U, G Pilwat, H-P Richter. 1981. Electric-field-stimulated fusion: increased field stability of cells induced by pronase. Naturwissenschaften 68: 577~579
    Zimmerman U, P Scheurich. 1981. High frequency fusion of plant protoplasts by electric fields. Planta 151: 26~32
    Zubko MK, Zubko EI, Adler K, Grimm B, Gleba YY. 2003. NewCMS-associated phenotype in cybrids Nicotiana tabacumL. (+Hyoscyamus niger L.). Ann Bot, 92: 281~288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700