纳米二氧化钛的制备及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科学与技术是20世纪和21世纪高科技,纳米科学对其他科学,产业以及社会的发展、进步有着举足轻重的地位。纳米产品已经创造了很大的社会效益和经济效益,纳米技术和纳米科学将会产生又一次工业革命,这也必将是我们人类科学技术发展史上的又一座划时代的里程碑。纳米二氧化钛材料是非常重要的无机材料。纳米TiO2作为光催化剂,具有安全、无毒副作用、性能稳定、成本低廉、无二次污染等优点,因此,纳米TiO2光催化中被得到广泛的应用。但是,也因其自身的空穴-电子对较容易复合以及对太阳利用率低的缺点,使TiO2的催化活性受到一些限制,因此为了克服TiO2本身的缺点来提高其光催化能力和催化活性是本论文的研究内容。可以通过使用多种手段对二氧化钛进行改性,比如:掺杂贵金属的修饰、非金属元素的掺杂、过渡金属元素的掺杂、表面处理等等。本论文主要通过掺杂金属银和钯来提高二氧化钛的催化活性。光催化活性实验结果表明,掺杂银和钯的TiO2比纯的TiO2有更高的催化活性,最佳掺杂量确定为3%。
     1.用溶胶-凝胶法制备了TiO2纳米粉体,并用5M的NaOH溶液对样品进行了处理,用XRD、HRTEM、TEM、FT-IR等手段对样品进行了表征。
     2.以钛酸四丁酯和硝酸银为原料,用溶胶-凝胶法、溶胶-凝胶法-水热法制备掺杂不同含量Ag的TiO2的纳米粉体,用FT-IR、SEM、XRD等手段对样品进行了表征,结果表明:掺杂银和未掺杂的TiO2纳米粉体均为四方相锐钛矿型,平均粒径大约为6~9 nm。适量银的掺杂有效抑制了粒径的增大以及向金红石型的相转化。通过降解刚果红、次亚甲基蓝、甲基橙和罗兰明-B染料,来研究所制备样品的光催化活性;用大肠杆菌、金黄色葡萄球菌和枯草杆菌进行抑菌性实验;用八通道微量仪,测定了大肠杆菌的生长代谢过程中的热功率-时间曲线,计算出生长速率常数,并确定了生长速率常数与样品的抑菌浓度的关系,最终确定了最佳抑菌浓度;实验结果表明:掺杂的TiO2比纯的TiO2活性都高,而且掺杂n(Ag-TiO2)=3%(摩尔比)的光催化活性和抑菌性都是最高的,说明适量的掺杂能有效的提高样品的催化活性。
     3.以钛酸四丁酯和氯化钯为原料,用溶胶-凝胶法制备掺杂不同含量Pd的二氧化钛纳米粉体,实验结果得出表明:掺杂后的TiO2催化活性和抑菌性比纯的二氧化钛粉体都有明显提高,其最佳的掺杂量为n(Pd-TiO2)=3%(摩尔比)。
     4.用水热法将TiO2纳米粉体转化为TiO2纳米管,用HRTEM、TEM、FT-IR、XRD等手段对样品进行了表征,通过TEM可知:纳米管顶端为针状。通过抑菌性实验表明:TiO2纳米管比TiO2纳米粉体的抑菌活性要低。
     最后,对本论文做了简单总结以及对纳米技术的未来发展进行了展望。
Nano science and technology is advanced technology in the 20th and 21th century, and nanoscience enjoys a vital position in the development and progress of other sciences, industry and society. Nanoproducts have created remarkable social and economic returns. Nano science and technology will make the industrial revolution again, which be a new landmark in the distory of development of mankind's technology. Nano titanium dioxide material is very important inorganic material. Nano titanium dioxide is a catalyst. Due to its safety, nonpoisonous side effect, excellent performance, low cost, no secondary pollution,et al, Nano titanium dioxide has been found wide application in the photocatalysis. But photocatalytic activity of Nano titanium dioxide has been restricted,because of electron-hole pair compositing very much and its low utilization for the sun. Overcoming weaknesses of nano titanium dioxide and improving its photocatalytic activity is the sum total content of thesis. Nano titanium dioxide modification by many ways,such as:doped-noble metals; doped-non-metallic elements; doped-transition metals; surface treatment and so on. The thesis improves mainly photocatalytic activity of nano titanium dioxide by doping-Ag and doping-Pd. The photocatalytic activity was tested with congo red dye as the objective decomposition matter. The experiments showed that the TiO2 nanoparticles doped with silver present higher photocatalytic activity than that of pure TiO2, and the optimum molar fraction of Ag in Ag-TiO2 is 3%. Primary Contents of the thesis are as follows:
     Firstly, pure TiO2 has been prepared by the sol-gel process,and the pure TiO2 is been treated by 5 M NaOH. It has been characterized by XRD, FT-IR, HRTEM and SEM techniques, respectively.
     Secondly, TiO2 nanoparticles with various amounts of silver have been prepared by the sol-gel process, and Ag in Ag-TiO2 is 3% preparing by sol-gel hydrothermal using tetrabutyl titanate and silver nitrate as raw materials. They have been characterized by XRD, SEM, HRTEMand FT-IR techniques, respectively. XRD results showed that both the pure TiO2 and Ag-TiO2 nanoparticles were tetragonal anatase phase and the average particle size is in the range of 6~9 nm. It would inhibit the increase of the crystallite size and the phase transformation from the anatase to rutile after TiO2 nanoparticles were doped with the appropriate silver. The photocatalytic activity was tested with congo red dye, Methylene blue, Rhodamine-B and Methyl orange, as the objective decomposition matter which was studied photocatalytic activity of the products; antibacterial experiments were carried on Escherichia coli, Staphylococcus aureus and Bacillus subtilis; by the TAM Air system, the thermal power-time curves of growth and metabolism of the colibacillus determined, the growth rate constant obtained, the relationship between the inhibitory concentration and the growth rate constant ensured, then optimal concentration obtained. The experiments showed that the TiO2 nanoparticles doped with silver present higher photocatalytic activity and bacteria restreint than that of pure TiO2, and the optimum molar fraction of Ag in Ag-TiO2 is 3%. The experiments showed that TiO2 nanoparticles could improve effectively photocatalytic activity after doping with the appropriate silver.
     Thirdly, TiO2 nanoparticles with various amounts of palladium have been prepared by the sol-gel process using tetrabutyl titanate and palladium The experiments showed that the TiO2 nanoparticles doped with palladium present higher photocatalytic activity and bacteria restreint than that of pure TiO2, and the optimum molar fraction of Pd in Pd-TiO2 is 3%, which are in agreement with the literatures.
     Fourthly, TiO2 nanotube had been prepared by the hydrothermal process, and had been characterized by HRTEM, TEM, XRD, and FT-IR techniques, respectively. TEM results showed that the tip of TiO2 nanotube was needle-like.The antibacterial experiments showd that TiO2 nanotube had lower antibacterial activity than TiO2 nanoparticles.
     At last, it gave a brief summary of this thesis and the outlook of nanotechnology future development.
引文
[1]代淑芬.纳米材料的特性和发展[J].无锡南洋学院学报,2008,7(4).
    [2]施利毅等.纳米材料[M].上海:华东理工大学出版社,2007.
    [3]胡庆芳. 纳米材料简介[J].决策与管理,2009,1(53).
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [5]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002.
    [6]王世敏,许祖勋等.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [7]李嘉等.纳米材料的分类及基本结构效应[J].现代技术陶瓷,2003,(2):26-30
    [8]Andre Z, Gunther R. Fracture mode of alumina/silicon carbid nanocomposites. Journal of Material Research.2000,15 (1):234-240.
    [9]Kubo R. J Phys Soc J ap,1962,17:975.
    [10]李维芬.纳米材料的性质[J].纳米材料专栏,1999,19(6).
    [11]KamatP V, Dimitry N D. Solor Energy,1990,44:83.
    [12]江今朝,涂向真等.纳米材料的性质和应用[J].江西化工,2002,2(17).
    [13]张金安,李金焕.纳米材料的相知、功能及其建构方法[J].齐齐哈尔学报,1998,14(2).
    [14]王世敏,赵建洪,王龙海,等.KTN凝胶热处理过程中的反应机理研究[J].无机材料学报.1996,11(2):264.
    [15]汪信,陆路德.纳米金属氧化物的制备及应用研究的若干问题[J].无机化学学报,2000,3(2):213-217.
    [16]苏碧桃,刘秀晖.纳米粒子制备中的高分子[J].西北师范大学学报,1997,33(4):106-107.
    [17]祖箫,李晓娥,卫志贤.超细TiO2的合成研究[J].西北师范大学学报,1998,28(11):51-56.
    [18]武汉大学主编.《分析化学》(第四版)[M].北京:高等教育出版社,2003.
    [19]苏品书.超微离子材料技术.复汉出版社,1989.
    [20]Xie Yi, Qian Y T, et al. Science,1996,272:1926.
    [21]Xie Yi, Qian Y T, et al. Appl PhysLett.1996,27:714.
    [22]Vande Graaf M A C G, Keizer K, Burggraaf A J. Science of Ceramics.1980,10:83
    [23]Roosen A, Hausner H, Cermic Powder. Amsterdam:Elservier,1983,773.
    [24]Mazdiyashi, Ceramic International.1982,8 (2):42.
    [25]李懋强.硅酸盐学报.1994,22:85.
    [26]中国材料研究学会.94秋季中国材料研讨会.低维材料2.北京:化学工业出版社,1994,430.
    [27]Boutonner M, Kizling, etal. Colloids and Surfaces,1982,5:209.
    [28]尾崎义治,贺集诚一郎著,赵修建,张联盟译.超微粒导论.武汉:武汉工业大学出版社,1991,121.
    [29]张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000,122
    [30]Bowen H K. Mater Sci Eng.1980,44:1.
    [31]段波,赵兴中等.材料工程.1994,(6):5.
    [32]孙志刚,胡黎明.化工进展.1997,(2):21.
    [33]Gleter H. Progress in Mater. Sci.1989,33:223.
    [34]王广厚,韩民.物理学进展.1990,10(3):248.
    [35]Kear B H, Chang W, Skandan G S, et al. Nanostruct.Mater.993,3:25.
    [36]童忠良主编.纳米化工产品生产技术[M].北京:化学工业出版社,2006.
    [37]阎峻.纳米材料的表征[J].材料导报,2001,15(4):53-55.
    [38]陈玉萍,徐甲强,方少明.现代测试技术在纳米材料研究中的应用[J].化学研究与应用,2004,16(5):593-596.
    [39]常同钦.纳米材料的测试与表征[J].微纳电子技术,2006,(10):499-501.
    [40]蔡元霸,梁玉仓.纳米材料的概述、制备及其结构表征[J].结构化学,2001,20.
    [41]张梅.纳米材料的研究现状及展望[J].导弹与航天运载技术,2005(3):11-16.
    [42]王小丹,铁绍龙.纳米氧化锌的性能及其在涂料中的应用[J].电镀与涂饰,2005,24(3):27-30.
    [43]王永礼,屠恒贤.微观表面的表征技术与方法[J].安徽工业大学学报,2005,22(4):369-371.
    [44]余琴仙,李涛,李静先.纳米材料的制备、表征及应用研究进展[J].中国陶瓷工业,2002,9(6):56-59.
    [46]Calvert P. Rough guide to nanoworld. Nature,1996,383(26):301.
    [45]李颖,王光祖.纳米材料的测试与表征[J].超硬材料工程,2007,19(2):38-42.
    [47]姚保利,侯洵.纳米光生物分子材料.自然杂志,2000,22(5):253.
    [48]朱振峰,蒲永平.我国纳米结构材料的发展与展望.新材料产业,2001,(3):33.
    [49]张立德.纳米材料的主要应用领域.2001年纳米研讨会论文集.北京:2001,3:59.
    [50]Frank Vizard,陈芳,郭鹏.美军正在研制用于未来城区作战的高技术装备.科技新时代,2000,(9):44.
    [51]Scharles E B, Eric J B, Richard J K, et al. Microwave Absorber Employing Acicular Metallic Filaments[J]. US Patent:5085931,1992.
    [52]崔秀静,张楠.纳米金属材料的研究进展.中国材料咨询,2000,(5):38.
    [53]田军,刘吉平,郝向阳.纳米材料制备技术在纺织上的应用[J].纺织学报,2001,5(22):74.
    [54]田军,刘吉平,刘家安.纳米无机材料在功能纤维中的应用.纳米技术及其应用,中国 科学院,中科创新技术研究发展中心出版社,2001,8.68.
    [55]Ferome Greer Chandler,胡雏于.科技新时代,1998,(3):50
    [56]陈国新,赵石林.纳米UV屏蔽透明涂料的研制[J].现代涂料与涂装,2003(3):13.
    [57]黄家明.纳米材料在橡胶制品中的应用[J].橡胶业,2003,11(3):123.
    [58]Wu Z, Joo H, Ahn I S, et al. Organic dye adsorption on mesoporous hybrid gels [J]. Chem Eng J,2004,102:277.
    [59]陈玉萍,徐甲强,方少明.现代测试技术在纳米材料研究中的应用[J].化学研究与应用,2004,16(5):593-596.
    [60]张梅.纳米材料的研究现状及展望[J].导弹与航天运载技术,2005(3):11-16.
    [61]李德孚.揭开纳米技术的面纱.现代军事,2000,(11):55.
    [62]朱星.材料物理的新进展——纳米固体材料[J].物理,1991,20(4):203.
    [63]何宇亮.纳米硅薄膜[J].物理,1991,20(1):22-28.
    [64]钟俊辉.稀土纳米材料[J].稀土,1996,1(2):41.
    [65]Fox M A, Dulay M T. Chemical Review [J],1993,93:341.
    [66]尹京花,赵莲花等.掺铁TiO2纳米微粒的制备及光催化活性[J].分子催化2006,20(6):569-573.
    [67]王振阳,何洪,戴洪兴等.稀土掺杂TiO2光催化的研究进展[J].中国稀土学报,2006,24:94-99.
    [68]Arabatzis I M, Stergiopoulos T, Bernard M C,et al. Silver modified titanium dioxide thin films for efficient photo degradation of methyl orange [J]. Applied Catalysis B: Environmental,2003,42:187-201.
    [69]Zhao Gaoling, Kozuka H, Yoko T. Sol-gel preparation and photoelectrochemical properties of TiO2 filims containing Au and Ag metal particles [J]. Thin Solid Films, 1996,277:147-154.
    [70]Asahi R,Ohwaki T, Aoki K, etal. Visible-light photocatalysis in nitrogen-doped titanium oxides [J].Science,2001,293:269-271.
    [71]Paola A D, Garcia-Lopez E, Ikeda S, et al. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2 [J]. Catalysis Today,2002,75:87-93.
    [72]Wilke K, Breuer H D. The influence of t ransition metaldoping on t he physical and photocatalytic properties of titania[J]. Journal of Photochemist ry and Photobiology A: Chemistry,1999,121:49-53.
    [73]孙奉玉,吴鸣,李文钊,等.二氧化钛表面光学特性与光催化活性的关系[J].催化学报,1998,19:199.
    [74]张立德,牟季美.纳米材料和纳米技术[M].北京:科学出版社,2001.
    [75]徐悦华,古国榜,李新军.光催化剂改性及固定的研究进展[J].材料导报,2001,15(6):33-35.
    [76]王卫伟,张志焜.过渡金属离子掺杂纳米TiO2的机理和光吸收特性[J].青岛科技大学学报,2003,24(2):102-104.
    [77]崔玉民,范少华张颖.稀土掺杂TiO2纳米微粒的合成、表征及光催化活性[J].北京科技大学学报,2006,28(10):956-958.
    [78]崔玉民.亚硝酸盐的光催化氧化.感光科学与光化学[J].2002,20(4):253.
    [79]管盘铭,夏亚穆,李德宏,等.掺杂TiO2纳米粉的合成、表征及催化性能研究[J].催化学报,2001,22(2):161-164.
    [80]Navio J A, Colon G, Trillas M, etal. Heterogeneous photocatalytic reactions of nitrite oxidation and Cr (Ⅵ) readuction on iron-doped titania prepared by the wet impregnation method [J]. Appl Catal B:Environ,1998,16:187-196.
    [81]Umebayashi T, Yamaki T, Tanaka S, et al. Band Gap Narrowing of Titanium Dioxide by Sulfur Doping [J]. Chem istry Letters,2003,32 (4):330-331.
    [82]Teruhisa Ohno, Miyako Akiyoshi. Tsutomu Umebayashi Preparation of S-doped TiO2 Photocatalysts and Their Ohotocatalytic Activities under Visible Light [J].Applied Catalysis A:General,2004,265:115-121.
    [83]Asahi R, Marikina T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293 (5528):269-271.
    [84]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide [J].Angew Chem Int Edit,2003,42 (40):4908-4911.
    [85]Xie YB,Yuan C W,Li X Z. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system [J]. Colloid Surface A,2005, 252 (1):87-94.
    [86]Yamaki T, Umebayashi T, Sumita T, et al. Fluorine-dop ing in Titanium Dioxide by Ion Implantation Technique [J]. Nuclear Instrum ents and Methods in Physics Research,2003, 206B:254-258.
    [87]ChoiW, Termin A, Hoffmann M R.The Role of Metal Ion Dopants in Quantum Sized TiO2: Correlation between Photoreactivity and Charge Carried Recombination Dynamics [J]. J. Phys. Chem,1994,98 (5):13669-13679
    [88]FARIAS R F D, AIROLDI C. A study about the stabilization of anatase phas at high temperatures on sol-gel cerium and copper doped titania-silica powders [J]. Journal of Non-Crystalline Solids,2005,351:84-88.
    [89]BAIJU K V, SIBU C P, RAJESH K, et al.An aqueous sol-gel route synthesized lanthanadoped titania having an increased anatase phase stability for photocatalytic application [J]. Materials chemistry and physics,2005,90 (1):123-127.
    [90]YANG J, LI D et al. Synthesis and microstructural control of nanocrystalline titania powders via stearic acid method [J]. Materials Science and Engineering:A,2002,328 (1-2):108-112.
    [91]王志义,崔作林.Al2O3异质复合对TiO2纳米晶晶型转变和晶粒生长的影响[J].无机材料学报,2006,21(1):46-52.
    [92]Lopez T, Gomez R, Pecci G, et al. Effect of pH on the Incorporation of Platinum into the Lattice of Sol-gel Titania Phases [J]. M aterials Letters,1999,40:59-65.
    [93]Chao H E, Yun Y U, Xingfang H U,et al. Effect of Silver Doping on the Phase Transformation and Grain Growth of Sol-gel Titania Powder [J]. Journal of the European Ceramic Society,2003,23:1457-1464.
    [94]Jing Liqiang, Sun Xiaojun, Xin Baifu, et al. The Preparation and Characterization of La Doped TiO2 Nanoparticles and Their Photocatalytic Activity [J]. Journal of Solid State Chem istry,2004,177:3375-3382.
    [95]周艺,魏坤,唐绍裘,等.Gd3+掺杂纳米TiO2自然光催化降解甲基橙的研究[J].云南大学学报(自然科学版),2002,24(1A):43-45.
    [96]周艺,李志伟,徐协文,等.Pr3+、Ho3+掺杂TiO2纳米粒子的光催化性能[J].湖南师范大学自然科学学报,2003,26(2):70-72.
    [97]于向阳,程继健,杨阳,等.稀土元素掺杂对TiO2光催化性能的影响[J].华东理工大学学报,2002,26(3):287-289.
    [98]Saila Karvinen. The Effects of Trace Elements on the Crystal Properties of TiO2 [J]. Solid State Sciences,2003,5:811-819.
    [99]余锡宾,王桂华,罗衍庆,等.TiO2微粒的掺杂改性与催化活性[J].上海师范大学学报(自然科学版),2000,29(1):75-82.
    [100]Baifu Xin, Zhiyu Ren, Haiyuan Hu,et al. Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films [J]. Appl. Sur. Sci,2005,252:2050-2055.
    [101]Ben-LinHe, Bin Dong, Hu-Lin Li.Preparation and electrochemical properties Ag-modified TiO2 nanotube anode material for lithium-ion battery [J]. Electrochem Commun.2007,9(3):425-430.
    [102]Ying-ke Zhou, Lin Cao, Fei-bao Zhang, Ben-lin He, Hu-lin Li, [J]. Electrochem.Soc.150 (9) (2003) A 1246.
    [103]Gang Liu, Zhigang Chen,Chunlei Dong, et al. Visible Light Photocatalyst: Iodine-Doped Mesoporous Titania with a Bicrystalline Framework[J]. J. Phys. Chem. B.2006,110 (42): 20823-20828.
    [104]井立强,孙志华,王百齐,等.采用溶胶-水热法合成掺杂La的TiO2纳米粒子及 其表征[J].无机材料学报,2005,20(4):789-793.
    [105]Gang Liu, Zhigang Chen,Chunlei Dong, et al. Visible Light Photocatalyst: Iodine-Doped Mesoporous Titania with a Bicrystalline Framework[J]. J. Phys. Chem. B.2006,110 (42): 20823-20828.
    [106]张健,矫庆泽,张宗俭.掺硼纳米TiO2对农药毒死蜱的光催化降解作用[J].化学研究,2006,17(3):32-35.
    [107]Z. Ding, G. Q. Lu, and P. F. Greenfield.Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water [J]. J. Phys. Chem. B 2000, 104,4815-4820.
    [108]王振阳,何洪,戴洪兴,等.稀土掺杂TiO2光催化的研究进展[J].中国稀土学报,2006,24:94-99.
    [109]Li F B, Li X Z, Hou M F. Photocatalytic degradation of 2-mer-captobenzothiazole in aqueous La3+-TiO2 suspension for odor con-trol [J]. Appl.Catal. B:Environ.,2004,48: 185.
    [110]Ranjit K T, Willner I, Bossmann S H, et al. Lanthanide oxide-doped titanium dioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid [J]. Environ. Sci. Technol,2001,35:1544.
    [111]K. T. R AN JIT, I. W I L L N E R, S. H. B O S S M A N N, et al. Lanthanide oxide-doped titanium dioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid [J]. Environ. Sci. Techno,2001,35 (7): 1544-1549.
    [112]王树峰,朱启安.掺Fe3+附银二氧化钛催化剂的制备及其光催化活性研究[J].功能材料,2006,2(38):179-182.
    [113]Umebayashi T, Yamaki T, Iton H, et al Analysis of electionic structure of 3d transition metal-doped TiO2 based on band calculations [J]. J. Phys. Chem. Solids,2002,63 (10): 1909-1920.
    [114]沈星灿,郭为民,郭艳芳,等.掺铁纳米TiO2的制备及其光催化性能[J].应用化学,2005,22,(10):1070-1074.
    [115]金宗哲主编.无机抗菌材料及应用[M].北京:化学工业出版社,2004.6,237.
    [116]刘义,谭安民,谢昌礼.细胞动力学研究Ⅲ,细菌算术级数式生长[J].物理化学学报,1996.12(5);451.
    [117]张洪林.应用微量热法构建限制性条件下微生物生长模型[J].生物工程学报,1994,4:472.
    [118]南照东,相燕等.细菌指数生长期热谱方程于热力学[J].四川大学学报(自然科学版),1999,36(3):616.
    [119]于游,于淼,张洪林.挥发油对大肠杆菌生长代谢作用的微量热法研究[J].曲阜师范大学学报(自然科学版),2008,34(4).
    [120]Mei Wang, Dao-jun Guo,Hu-lin Li. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation[J]. J. Solid. State.Chem.2005,178,1996-2000.
    [121]Bin Dong, Ben-Lin He, Jier Huang, et al. High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation[J]. J.Pow. Sour,2008, 175,266-271.
    [123]Xinchen Wang, Jimmy C. Yu. Chunman Ho, et al. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania [J]. Langmuir.2005,21,2552-2559.
    [124]Z.Ding, G. Q. Lu, and P. F.Greenfield.Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water [J]. J. Phys. Chem. B 2000, 104,4815-4820.
    [125]T. Uma and M. Nogami. Synthesis and Characterization of Mixed TiO2/ZrO2 Glass Composite Membrane[J]. J. Phys. Chem. C 2007,111,16635-16639.
    [126]Joongjai Panpranot, Kunyaluck Kontapakdee, and Piyasan Praserthdam. Effect of TiO2 Crystalline Phase Composition on the Physicochemical and Catalytic.Properties of Pd/TiO2 in Selective Acetylene Hydrogenation[J]. J. Phys. Chem. B 2006,110, 8019-8024.
    [127]Carlos A. Gonzalez, Alba N. Ardila, C. Montes de Correa et al. Pd/TiO2 Washcoated Cordierite Minimonoliths for Hydrodechlorination of Light. Organochlorinated Compounds [J]. Ind. Eng. Chem. Res.2007,46,7961-7969.
    [128]Lei Ge, Mingxia Xu, Haibo Fang. Synthesis and characterization of the Pd/InVO4-TiO2 co-doped thin films with visible light photocatalytic activities [J]. Appl. Surf. Sci.2006, 253,2257-2263.
    [129]代仕均,胡常伟,杜琳,等.钌-钯掺杂Ti/TiO2阳极电催化降解甲基橙研究[J].化学学报,2008,66(14),1620-1626.
    [130]Tsutomu Umebayashi, Tetsuya Yamaki, Hisayoshi Itoh, et al. Analysis of electionic structure of 3d transition metal-doped TiO2 based on band calculations [J]. J. Phys. Chem. Solids.2002,63(10):1909-1920.
    [131]薛寒松,李华基,胡慧芳,等.镧掺杂二氧化钛纳米管光催化性能[J].中国稀土学报,2008,26(1),18-22.
    [132]蔡河山,刘国光,吕文英,等.钬掺杂提高TiO2纳米晶光催化活性的光谱性能机制研究[J].中国稀土学报,2007,25(1),16-21.
    [133]金宗哲主编.无机抗菌材料及应用[M].北京:湖中学工业出版社,2004,6,237.
    [134]高培基,曲音波.微生物生长与发酵工程[M],山东大学出版社,1990.
    [135]张洪林.应用微量热法构建限制性条件下微生物生长模型[J].生物工程学报,1994,4:472.
    [136]于游,于淼,张洪林.挥发油对大肠杆菌生长代谢作用的微量热法研究[J].曲阜师范大学学报(自然科学版),2008,34(4).
    [137]王竹梅、李月明等.水热合成钛酸盐纳米管的晶型结构及光催化活性[J].人工晶体学报,2007,3(36):653-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700