动态和静态压力作用对山羊颞下颌关节盘细胞凝胶组织基质代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     采用酶消化结合组织块培养法对山羊颞下颌(temporomandibular joint, TMJ)关节盘细胞进行体外培养和扩增,探索TMJ关节盘细胞体外培养及扩增的新方法。对山羊关节盘细胞进行体外琼脂糖凝胶三维培养,探讨动态压力和静态压力对凝胶组织细胞外基质分泌的影响。
     方法:
     1.在无菌条件下,切取一月龄山羊TMJ关节盘,剪至1.0 mm3的碎块,用0.25%胰酶、0.1%Ⅰ型胶原酶消化关节盘组织块,将消化好的组织块置入6孔板中培养。在倒置相差显微镜下连续观察细形态变化及贴壁率,甲苯胺蓝染色、Ⅰ型胶原免疫组化染色进行细胞鉴定,测定其生长曲线。
     2.将关节盘细胞培养至第2代时,转入琼脂糖凝胶中进行三维培养。仿照Shram系统构建体外立体培养的细胞动态压力加载模型。培养三天后将组织块随机分为三组:一组为动态加力组,即参照Shram等压力加载条件给予关节盘细胞凝胶组织0.2Mpa,频率0.1Hz的周期性压力;另一组为静态加力组,即关节盘细胞凝胶组织在0.2MPa静态压力作用下培养;对照组凝胶组织在常规条件下静态培养。加力完成后对琼脂糖凝胶内的关节盘细胞进行组织学染色和免疫组化染色,Ⅰ型胶原免疫组化染色结果使用图像分析系统做半定量分析。
     结果:
     1.原代培养的关节盘纤维软骨细胞4天可观察到贴壁细胞,7天贴壁细胞逐渐增多,第10天时细胞彼此相连,铺满平底,细胞以梭形为主,部分为多角形。传代后12小时贴壁率达90%,大部分为多角形,4-5天即可长满瓶底。甲苯胺蓝染色可见异染颗粒,Ⅰ型胶原免疫组化染色胞浆内可见棕黄色颗粒。
     2.在琼脂糖凝胶中培养的关节盘细胞能够维持其表型,能够正常合成细胞外基质。受0.2MPa,频率0.1Hz的周期性压力和0.2 MPa的静态压力刺激后,GAG和Ⅰ型胶原的表达均增加,且两者无显著性差异。
     结论:
     1.酶消化结合组织块培养法培养的山羊TMJ关节盘细胞具有较强的增殖能力,可作为TMJ关节盘组织工程中获取大量原代细胞的实用方法。
     2.周期性动态压力和间断静态压力都对关节盘细胞的细胞外基质合成具有促进作用,力学刺激同细胞外基质的分泌密切相关。在本实验条件下,两种压力模式产生的结果无显著性差异。
Objective:
     The purpose of this study was to search a novel method suitable for proliferation of temporomandibular joint (temporomandibular joint, TMJ) disc cells, to observe the biological characteristics of cultured TMJ disc cells and to investigate how dynamic and static compression influences extracellular matrix synthesis of goat temporomandibular joint disc cells cultured in agrose gel.
     Methods:
     1. The small pieces (1.0 mm3 in size) of isolated and chopped TMJ disc tissues, which were dissected from two one-month-goats under sterile conditions, were digested with 0.25% trypsin and 0.1% typeⅠcollagenase, then put into 6-well plate to be cultured with DMEM. The phase contrast microscope was used to observe the morphological changes and attachment efficiency of TMJ cells. Immunohistochemical staining for type I collagen and toluidine blue staining for proteoglycans were used for identifying extracellular matrix characterization. The cell growth curve was plotted.
     2. Temporomandibular joint disc cells were mixed with agarose, serum and medium to form agrose-gel constructs. After cultured for 3d in static state, the constructs were divided into three groups:dynamic compression group, static compression group and static comparison group. The compression unit was set up followed the method of Sharam et al. The constructs were exposed to 0.2MPa, 0.1Hz cyclic loading and 0.2MPa static loading. Each group was cultured for 2 weeks.2 weeks later, the TMJ disc cells were identified with Safranin-O,Toluidine blue and immunohistochemistry of collagen type I staining,and the histochemistry analysis was used to examine distribution of extracellular matrix in constructs.
     Results:
     1. On the 4th day of culture, primary TMJ disc cells (fibrochondrocytes) could be seen in adherence to the dishes. After the 7th days, the number of adhesive fibrochondrocytes was increased. On the day 10, the cells were spindle-shaped and some of them were polygon-shaped, started to contact with each other to form a monolayer on which cells covering the bottom of the 6-well plate. At the 12th hour after passage, the seeding efficiency of the fibrochondrocytes was 90%. From the 5th to 6th day after passage, the bottom of the culture bottle was filled with these cells. Immunohistochemical staining for type I collagen and toluidine blue staining for GAGs exhibited positive results.
     2. Agarose gel was found to provide a good microenvironment for the formation of extracellular matrix. The amount of the extracellular matrix in dynamic compression group and static compression group increased compared with the static comparison group, however, there was no significant difference between the dynamic compression group and the static compression group.
     Conclusions:
     1. The goat TMJ disc cells present proliferous ability in vitro culture using enzyme digestion with explant culture method. It shows that the method is a practical way to obtain numberous primary cells for the TMJ disc tissue engineering.
     2. The compression has an important effect on metabolism of constructs composed of TMJ disc cells and agarose gel. Both the dynamic and static compression can promote the production of main extracellular matrix in native TMJ disc tissue such as GAGs and type I collagen.
引文
[1]Allen KD, Athanasiou KA. Tissue Engineering of the TMJ disc:a review. Tissue Eng.2006;12(5):1183-1196
    [2]Detamore MS, Athanasiou KA. Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc. Tissue Eng,2003; 9(6): 1065-1087
    [3]Araujo VG, Figueiredo CA, Joazeiro PP, Mora OA, Toledo OM. In vitro rapid organization of rabbit meniscus fibrochondrocytes into chondro-like tissue structures.Submicrosc Cytol Pathol,2002; 34(3):335-343
    [4]Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension.2001;23;294(5547):1708-12
    [5]曲锦域,陈慧敏,刘剑刚,林共周.软骨细胞培养过程中细胞反分化的研究.北京医科大学学报,1992;24(4):330-333
    [6]Benya PD, Shaffer SD. Dedifferentiation chondrocytes reexpress the differentiated collagen phenotype when culture in agarose gels. Cell,1982;30:215-224
    [7]Binette F, McQuaid DP, Haudenschild DR, Yaeger PC, McPherson JM, Tubo R. Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro. J Orthop Res,1998; 16(2):207-216.
    [8]Schulze M, Kuettner KE, Cole AA. Adult human chondrocytes in alginate culture: preservation of the phenotype for further use in transplantation models. Orthopade, 2000;29(2):100-106
    [9]Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr. Human intervertebral disc cells from the annulus:three-dimensional culture in agarose or alginate and responsiveness to TGF-betal.1997; 235(1):13-21.
    [10]Cook JL, Kreeger JM, Payne JT, Tomlinson JL. Three-dimensional culture of canine articular chondrocytes on multiple transplantable substrates.1997; 58 (4):419-424.
    [11]Bagley J, Rosenzweig M, Marks DF, Pykett MJ. Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device.1999;27(3):496-504.
    [12]Tun T, Miyoshi H, Ema H, Nakauchi H, Ohshima N. New type of matrix support for bone marrow cell cultures:in vitro culture and in vivo transplantation experiments. 2000;46(5):522-526
    [13]Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. 1998;228(1):8-13
    [14]Nickel JC, Mclachlan KR. In vitro measurement of the stress distribution p roperties of the pig temporomandibular joint disc.Arch Oral Biol,1994;39(5):439-448
    [15]Chin LPY, Aker FD, Zarrinia K. The Viscoelastic properties of the human temporomandibular joint disc. J Oral Maxillofac Surg,1996;54(3):315-318
    [16]Kang H, Bao GJ, Qi SN. Biomechanical responses of human temporomandibular joint disc under tension and compression. Int J Oral Maxillofac Surg. 2006;35(9):817-821
    [17]康宏,易新竹,李晓箐,徐小川.人体颞下颌关节盘内部胶原构筑与力学性能关系研究,华西口腔医学杂志,1998;16(3):251-252
    [18]匡世军,张志光.关节盘的组织结构及其生物学特性的研究进展,国际口腔医学杂志,2008;35(3):304-306
    [19]舒维娜,康宏.山羊颞下颌关节盘细胞透射电镜观察,现代口腔医志,2008;22(6):612-614
    [20]Kobayashi J. Studies on matrix components relevant to structure and function of the TMJ. Kokubyo Gakkai Zasshi.1992; 59(1):105-123
    [21]Lee J, Cuddihy MJ, Kotov NA.Three-dimensional cell culture matrices:state of the art. Tissue Eng Part B Rev.2008;14(1):61-86
    [22]Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science:An Introduction to Materials in Medicine. San Diego:Elsevier Academic Press,2004
    [23]Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H, Ono K.Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br.1989;71(1):74-80
    [24]van Susante JL, Buma P, Schuman L, Homminga GN, van den Berg WB, Veth RP. Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage:an experimental study in the goat. Biomaterials.1999; 20(13):1167-1175
    [25]Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47-55
    [26]Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials.2003; 24(24):4353-4364
    [27]Hubbell JA. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol.2003;14(5):551-8
    [28]Silva EA, Mooney DJ. Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol.2004; 64:181-205.
    [29]Lum L, Elisseeff J. Injectable hydrogels for cartilage tissue engineering. In: Ashammakhi N, Ferretti P.(Eds.), Topics in Tissue Engineering 2003; University of Oulu.
    [30]Koyano T, Minoura N, Nagura M, Kobayashi K. Attachment and growth of cultured fibroblast cells on PVA/chitosan-blended hydrogels. J Biomed Mater Res. 1998;39(3):486-490
    [31]Auger FA, Rouabhia M, Goulet F. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels:clinical and fundamental applications. Med Biol Eng Comput.1998; 36(6):801-812
    [32]Stokols S, Tuszynski MH. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials.2004; 25(27): 5839-5846
    [33]Aydelotte MB, Greenhill RR, Kuettner KE. Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res.1988; 18(3):223-234
    [34]Aulthouse AL, Beck M, Griffey E, Sanford J, Arden K, Machado MA, Horton WA. Expression of the human chondrocyte phenotype in vitro. In Vitro Cell Dev Biol. 1989;25(7):659-668
    [35]Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB. Chondrocytes in agarose culture synthesize a mechanically functional extracellular-matrix. J Orthop Res.1992;10(6):745-758
    [36]Mouw JK, Case ND, Guldberg RE, Plaas AH, Levenston ME.Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthritis Cartilage.2005;13(9):828-836
    [37]Rahfoth B, Weisser J, Sternkopf F, Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage. 1998;6(1):50-65
    [38]Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP. Chondrocyte cells respond mechanically to compressive loads. J Orthop Res.1994;12(3):311-320
    [39]Knight MM, Lee DA, Bader DL. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim Biophys Acta.1998;1405(1-3):67-77.
    [40]Sawae Y, Shelton JC, Bader DL, Knight MM. Confocal analysis of local and cellular strains in chondrocyte-agarose constructs subjected to mechanical shear. Ann Biomed Eng.2004; 32(6):860-870
    [41]Kelly TA, Ng KW, Wang CC, Ateshian GA, Hung CT.Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J Biomech.2006;39(8):1489-1497
    [42]Gruber HE, Hoelscher GL, Leslie K, Ingram JA, Hanley EN Jr.Three-dimensional culture of human disc cells within agarose or a collagen sponge: assessment of proteoglycan production.2006;27(3):371-376
    [43]Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 1992; 10(6):745-758
    [44]Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108(Pt4):1497-1508
    [45]Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res.1997;15(2):181-188
    [46]Lee DA, Noguchi T, Frean SP, Lees P, Bader DL.The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology. 2000;37(1-2):149-161
    [47]Chowdhury TT, Bader DL, Lee DA.Dynamic compression inhibits the synthesis of nitric oxide and PGE(2) by IL-lbeta-stimulated chondrocytes cultured in agarose constructs. Biochem Biophys Res Commun.2001;285(5):1168-1174
    [48]Mauck RL, Seyhan SL, Ateshian GA, Hung CT. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng.2002;30(8):1046-1056
    [49]Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage.2003;11(12):879-890
    [50]Kelly TA, Wang CC, Mauck RL, Ateshian GA, Hung CT.Role of cell-associated matrix in the development of free-swelling and dynamically loaded chondrocyte-seeded agarose gels. Biorheology.2004; 41(3-4):223-237
    [51]Ng KW, Mauck RL, Statman LY, Lin EY, Ateshian GA, Hung CT. Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct. Biorheology.2004; 41(3-4):223-237
    [52]Toyoda T, Seedhom BB, Yao JQ, Kirkham J, Brookes S, Bonass WA. Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose.Arthritis Rheum.2003;48(10):2865-2872
    [53]Xu X, Urban JP, Tirlapur U, Wu MH, Cui Z, Cui Z. Influence of perfusion on metabolism and matrix production by bovine articular chondrocytes in hydrogel scaffolds. Biotechnol Bioeng.2006; 93(6):1103-1111
    [54]Hu JC, Athanasiou KA. Low-density cultures of bovine chondrocytes:effects of scaffold material and culture system. Biomaterials.2005; 26(14):2001-2012
    [55]Buckley CT, Thorpe SD, O'Brien FJ, Robinson AJ, Kelly DJ.The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J Mech Behav Biomed Mater.2009;2(5):512-521
    [56]Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P. New insight into agarose gel mechanical properties.Biomacromolecules.2000; 1 (4):730-738
    [57]Balgude AP, Yu X, Szymanski A, Bellamkonda RV. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. 2001;22(10):1077-1084
    [58]Dillon GP, Yu X, Sridharan A, Ranieri JP, Bellamkonda RV. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed.1998; 9(10):1049-1069
    [59]Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res.2002;59(1):63-72
    [60]Wang Y, De Isla N, Decot V, Marchal L, Cauchois G, Huselstein C, Muller S, Wang BH, Netter P, Stoltz JF. Influences of construct properties on the proliferation and matrix synthesis of dedifferentiated chondrocytes cultured in alginate gel. Biorheology.2008;45(3-4):527-538
    [61]Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P. New insight into agarose gel mechanical properties. Biomacromolecules.2000;1(4):730-738
    [62]Scandiucci de Freitas P, Wirz D, Stolz M, Gopfert B, Friederich NF, Daniels AU.Pulsatile dynamic stiffness of cartilage-like materials and use of agarose gels to validate mechanical methods and models. J Biomed Mater Res B Appl Biomater. 2006;78(2):347-357
    [63]Gu WY, Yao H, Huang CY, Cheung HS. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J Biomech.2003;36(4):593-598
    [64]Ng KW, Wang CC, Mauck RL, Kelly TA, Chahine NO, Costa KD, Ateshian GA, Hung CT. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J Orthop Res.2005; 23(1):134-141
    [65]Demarteau O, Wendt D, Braccini A, Jakob M, Schafer D, Heberer M, Martin I.Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochemical and Biophysical Research Communication, 2003;310(2):580-588
    [66]程杰平,马洪顺,褚怀德.骨性关节炎对膝关节软骨力学性质影响的实验研究,医用生物力学杂志,2005;20(1):25-27
    [67]Roche S, Ronziere MC, Herbage D, Freyria AM. Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials.2001;22(1):9-18
    [68]Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissueengineered cartilage. J Orthop Res 1999;17(1):130-138
    [69]Iwasa J, Ochi M, Uchio Y, Katsube K, Adachi N, Kawasaki K.Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif Organs.2003;27(3):249-255
    [70]Kawasaki K, Ochi M, Uchio Y, Adachi N, Matsusaki M.Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels. J Cell Physiol.1999;179(2):142-148
    [71]Uchio Y, Ochi M, Matsusaki M, Kurioka H, Katsube K. Human chondrocyte proliferation and matrix synthesis cultured in Atelocollagen gel. J Biomed Mater Res. 2000; 50(2):138-143
    [72]Ragan PM, Chin VI, Hung HH, Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch Biochem Biophys.2000;383(2):256-264
    [73]Ohsawa S, Yasui N, Ono K. Contraction of collagen gel by the dedifferentiated chondrocytes. Cell Biol Int Rep.1982;6(8):767-774
    [74]Buckley CT, Thorpe SD, O'Brien FJ, Robinson AJ, Kelly DJ.The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J Mech Behav Biomed Mater.2009; 2(5):512-521
    [75]Hunter GK, Holmyard DP, Pritzker KP. Calcification of chick vertebral chondrocytes grown in agarose gels:a biochemical and ultrastructural study. J Cell Sci.1993;104 (Pt 4):1031-1038
    [76]Aymard P, Martin DR, Plucknett K, Foster TJ, Clark AH, Norton IT. Influence of thermal history on the structural and mechanical properties of agarose gels.Biopolymers.2001;59(3):131-144
    [77]Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT.The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage.2003;11(12):879-890
    [78]Hu JC, Athanasiou KA. The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs. Tissue Eng,2006;12(5):1337-1344
    [79]张英,崔磊,曹谊林.力学环境对软骨基质代谢的影响,中国生物工程杂志,2003;23(7):80-83
    [80]De Croos JN, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA.Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol.2006;25(6):323-331
    [81]Ringe J, Kaps C, Burmester GR, Sittinger M. Stem cells for regenerative medicine:advances in the engineering of tissues and organs. Naturwissenschaften. 2002;89(8):338-351
    [82]Gray ML, Pizzanelli AM, Grodzinsky AJ, Lee RC. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res. 1988;6(6):777-792
    [83]Hunter CJ, Imler SM, Malaviya P, Nerem RM, Levenston ME. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials.2002;23(4):1249-1259
    [84]张旻,王美清,王景杰,王捍国,刘晓东.机械压力对兔髁突软骨碱性磷酸酶活性及细胞增殖的影响,第四军医大学学报,2003;24(17):1563-1565
    [85]杨红梅,罗颂椒.机械压力对大鼠下颌髁突软骨细胞增殖活性影响的体外研究,华西口腔医学杂志,1999;7(4):331-334
    [86]陈开云,罗颂椒.机械压力对青春期大鼠咀嚼肌细胞增殖活性影响的体外研究,华西口腔医学杂志,2003;21(5):403-405
    [87]Larsson T, Aspden RM, Heinegard D, Effects of mechanical load on cartilage matrix biosynthesis in vitro.Matrix.1991;11(6):388-394
    [88]Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res.1992;10(5):610-620
    [89]Knight MM, Lee DA, Bader DL. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim Biophys Acta.1998;1405(1-3):67-77
    [90]Sharma G, Saxena RK, Mishra P. Differential effects of cyclic and static pressure on biochemical and morphological properties of chondrocytes from articular cartilage. Clin Biomech (Bristol, Avon).2007;22(2):248-255
    [91]Mizuno S, Tateishi T, Ushida T, Glowacki J. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J Cell Physiol.2002;193(3):319-327
    [92]范卫民,蔡俊.周期性压力对组织工程软骨的影响及其作用机制.中华实验外科杂志,2006;23(8):977-979
    [93]Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A.Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res. 2002;20(4):842-848
    [94]Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE.Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 1999;17(1):130-138
    [95]Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung·CT, Ateshian GA.Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels.J Biomech Eng.2000;122(3):252-260
    [96]Bushmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB.Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995; 108 (4):1497-1508
    [97]Hall AC, Urban JP, Gehl KA. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res.1991;9(1):1-10
    [98]Parkkinen JJ.Ikonen J,Lammi MJ,Laakkonen J,Tammi M,Helminen HJ.Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys.1993;300(1):458-465
    [99]Jortikka MO, Parkkinen JJ, Inkinen RI, Karner J, Jarvelainen HT, Nelimarkka LO, Tammi MI, Lammi MJ.The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys. 2000;374(2):172-180
    [100]Lammi MJ, Inkinen R, Parkkinen JJ, Hakkinen T, Jortikka M, Nelimarkka LO, Jarvelainen HT, Tammi MI.Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochem J.1994;304 (Pt 3):723-730
    [101]Lee DA, Frean SP, Lees P, Bader DL. Dynamic mechanical compression influences nitric oxide production by articular chondrocytes seeded in agarose. Biochem Biophys Res Commun.1998;251(2):580-585
    [102]Mills DK, Fiandaca DJ, Scapino RP. Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J Orofac Pain,1994;8(2):136-154
    [103]Detamore MS, Orfanos JG, Almarza AJ, French MM, Wong ME, Athanasiou KA. Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc.Matrix Biol,2005;24(1):45-57
    [104]康宏,易新竹,徐小川,陈孟诗.颞下颌关节盘对不同力学类型的反应性研究一扫描电镜研究,实用口腔医学杂志,1999;15(2):83-85
    [105]舒维娜,康宏,张卫平,李欣,包广洁.山羊颞下颌关节盘细胞体外培养和表征在组织构建中的涉及意义,中国组织工程与临床研究,2009;13(46):9022-9026
    [106]康宏,易新竹,李晓箐,徐小川.人体颞下颌关节盘内部胶原构筑与力学性能关系研究,华西口腔医学杂志,1998;16(3):251-252
    [107]Teng SY, Xu YH, Cheng M, Li Y. Biomechanical properties and collagen fiber orientation of TMJ discs in dogs. J Craniomandib Disord.1991;5(2):107-114
    [108]Tanaka E, Dalla-Bona DA, Iwabe T, Kawai N, Yamano E, van Eijden T, Tanaka M, Miyauchi M, Takata T, Tanne K.The effect of removal of the disc on the friction in the temporomandibular joint. J Oral Maxillofac Surg,2006; 64(8):1221-1224
    [109]包广洁,康宏,董玛,朱任之,巢永烈,易新竹,陈孟诗.应力水平对猪颞下颌关节盘生物力学特性的影响,生物医学工程学杂志,2000;17(4):418-420
    [110]Detamore MS, Athanasiou KA. Use of a rotating bioreactor toward tissue engineering the temporomandibular joint disc. Tissue Eng,2005;11(7-8):1188-1197
    [111]Almarza AJ, Athanasiou KA. Effects of hydrostatic pressure on TMJ disc cells. Tissue Eng.2006;12(5):1285-1294
    [112]Chow JW, Wilson AJ, Chambers TJ, Fox SW. Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats. J Bone Miner Res.1998;13(11):1760-1767
    [113]张旻,王美青,王景杰.G蛋白及蛋白激酶C在髁突软骨细胞力学信号转导过程中的作用,实用口腔医学,2005;21(2):163-166
    [114]Landesberg R, Takeuchi E, Puzas JE. Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch Oral Biol, 1996;41(8-9):761-767
    [115]Nakano T, Scott PG. A quantitative chemical study of glycosaminoglycans in the articular disc of the bovine temporomandibular joint. Arch Oral Biol,1989;34(9): 749-757
    [116]Puelacher WC, Wisser J, Vacanti CA, Ferraro NF, Jaramillo D, Vacanti JP. Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage. J Oral Maxillofac Surg,1994;52(11):1172-1178
    [1]Allen KD, Athanasiou KA. Tissue Engineering of the TMJ disc:a review. Tissue Eng.2006,12(5):1183-1196
    [2]Detamore MS, Athanasiou KA.. Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc. Tissue Eng,2003,9(6): 1065-1087
    [3]Araujo VG, Figueiredo CA, Joazeiro PP, Mora OA, Toledo OM. In vitro rapid organization of rabbit meniscus fibrochondrocytes into chondro-like tissue structures.Submicrosc Cytol Pathol,2002,34(3):335-343
    [4]苏雪莲,康宏.工程化颞下颌关节盘组织的细胞源问题:现状与展望.生物医学工程学杂志,2010,27(2):463-466
    [5]Springer IN, Fleiner B, Jepsen S, Acil Y. Culture of cells gained from temporomandibular joint cartilage on non-absorbable scaffolds. Biomaterials,2001, 22(18):2569-2577
    [6]Almarza AJ, Athanasiou KA.Seeding Techniques and Scaffolding Choice for Tissue Engineering of the Temporomandibular Joint Disk. Tissue engineering,2004, 10(11-12):1787-1795
    [7]Michael S, Detamore KA. Athanasiou. Effects of growth factors on temporomandibular joint disc cells. Archives of Oral Biology,2004,49(7):577-583
    [8]Detamore MS, Athanasiou KA..Use of a Rotating Bioreactor toward Tissue Engineering theTemporomandibular Joint Disc. Tissue Eng,2005,11(7-8):1188-1197
    [9]Almarza AJ, Athanasiou KA.Effects of Initial Cell Seeding Density for the Tissue Engineering of the Temporomandibular Joint Disc. Annals of Biomedical Engineering, 2005,33(7):943-950
    [10]Almarza AJ, Athanasiou KA.Evaluation of three growth factors in combinations of two for temporomandibular joint disc tissue engineering. Archives of Oral Biology, 2006,51(3):215-221
    [11]Allen KD, Athanasiou KA.Growth factor effects on passaged TMJ disk cells in monolayer and pellet cultures. Orthod Craniofac Res,2006,9(3):143-152
    [12]司徒镇强,吴军正主编.细胞培养.西安:世界图书出版公司.2007,第58-59页
    [13]张晨,王玉彬,柏树令,高景恒.改良的软骨组织块培养法.实用美容整形外科杂志,2000,11(2):63-65
    [14]Cortes O, Garcia C, Perez L, Boj J, Alcaina A. Pulp cell cultures obtained with two different methods for in vitro cytotoxicity tests. Eur Arch Paediatr Dent.2006, 7(2):96-99
    [15]王艳,浦颖艳,方琳,孙丽君,胡晓翠,邱红,苏长青,曹祥荣,江淑芳.改良组织块法培养人肺成纤维细胞及其形态学观察.江苏大学学报(医学版),2008,18(2):166-167
    [16]Cheung LK, Shi XJ, Zheng LW. Surgical induction of temporomandibular joint ankylosis:an animal model. J Oral Maxillofac Surg.2007,65(5):993-1004
    [17]Wang YL,Li XJ, Qin RF,Lei DL, Liu YP, Wu GY, Zhang YJ, Yan-Jin, Wang DZ, Hu KJ. Matrix metalloproteinase and its inhibitor in temporomandibular joint osteoarthrosis after indirect trauma in young goats. Br J Oral Maxillofac Surg. 2008,46(3):192-197
    [18]Zhu SS, Hu J, Li N, Zhou HX, Luo E. Autogenous coronoid process as a new donor source for reconstruction of mandibular condyle:an experimental study on goats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2006,101(5):572-580
    [19]Anderson DE, Athanasiou KA. A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint. Arch Oral Biol. 2009,54(2):138-145
    [20]Anderson DE, Athanasiou KA. Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering. Ann Biomed Eng. 2008,36(12):1992-2001
    [21]Johns DE, Wong ME, Athanasiou KA. Clinically relevant cell sources for TMJ disc engineering. J Dent Res.2008,87(6):548-552
    [22]舒维娜,康宏.山羊颞下颌关节盘纤维软骨细胞透射电镜观察.现代口腔医学杂志,2008,22(6):612-614
    [23]舒维娜,康宏,张卫平,李欣,包广洁.山羊颞下颌关节盘细胞类型及分布表征在组织构建中的设计意义.中国组织工程研究与临床康复,2009,46(13):9022-9026
    [24]Kang H, Bao GJ, Qi SN. Biomechanical responses of human temporomandibular joint disc under tension and compression. Int J Oral Maxillofac Surg. 2006,35(9):817-821
    [25]Loeser RE Chondrocyte integrin expression and function. Bioeheology.2000. 37(1-2):109-116
    [26]Hayman DM, Blumberg TJ, Scott CC, Athanasiou KA.The effects of isolation on chondrocyte gene expression. Tissue Eng,2006,12(9):2573-2581
    [27]Mills DK, Fiandaca DJ, Scapino RP. Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J Orofac Pain,1994,8(2):136-154
    [28]匡世军,张志光,何一青,廖明庭,苏凯,张娟.兔颞下颌关节盘纤维软骨细胞分离培养的实验研究.中山大学学报(医学科学版),2006,27(3):318-321
    [29]张志光,郑卫平,苏凯,许跃.兔关节软骨细胞的分离、培养和形态学特征.中山大学学报:医学科学版,2004,25(1):63-66
    [30]Almarza AJ, Athanasiou KA. Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng,2004,32(1):2-17
    [31]舒维娜,康宏,张卫平,李欣,包广洁.山羊颞下颌关节盘细胞体外培养研究.实用口腔医学杂志,2010,26(2):165-168
    [1]Tanaka E, Dalla-Bona DA, Iwabe T, et al. The effect of removal of the disc on the friction in the temporomandibular joint. J Oral Maxillofac Surg,2006; 64(8):1221-1224
    [2]Gray ML, Pizzanelli AM, Grodzinsky AJ, Lee RC. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res.1988;6(6):777-792.
    [3]Larsson T, Aspden RM, Heinegard D, Effects of mechanical load on cartilage matrix biosynthesis in vitro.Matrix.1991;11(6):388-394
    [4]Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res.1992;10(5):610-620.
    [5]Hall AC, Urban JP, Gehl KA. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res.1991;9(1):1-10
    [6]Parkkinen JJ, Ikonen J, Lammi MJ,et al. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys.1993;300(1):458-465
    [7]Jortikka MO, Parkkinen JJ, Inkinen RI, et al. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys.2000;374(2):172-180
    [8]Lammi MJ, Inkinen R, Parkkinen JJ,et al. Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochem J.1994;304 (Pt 3):723-730
    [9]Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res.1997;15(2):181-188
    [10]Almarza AJ, Bean AC, Baggett LS, Athanasiou KA. Biochemical analysis of the porcine temporomandibular joint disc. Br J Oral Maxillofac Surg.2006;44(2):124-128
    [11]Mills DK, Fiandaca DJ, Scapino RP. Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J Orofac Pain.1994; 8(2):136-154
    [12]康宏,易新竹,李晓箐,徐小川.人体颞下颌关节盘内部胶原构筑与力学性 能关系研究,华西口腔医学杂志,1998;16(3):251-252
    [13]Teng SY, Xu YH, Cheng M, Li Y. Biomechanical properties and collagen fiber orientation of TMJ discs in dogs. J Craniomandib Disord.1991;5(2):107-114.
    [14]Detamore MS, Orfanos JG, Almarza AJ, French MM, Wong ME, Athanasiou KA. Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol.2005;24(1):45-57.
    [15]Almarza AJ, Bean AC, Baggett LS, Athanasiou KA. Biochemical analysis of the porcine temporomandibular joint disc. Br J Oral Maxillofac Surg.2006;44:124-128
    [16]Lumpkins SB, McFetridge PS, Regional variations in the viscoelastic compressive properties of the temporomandibular joint disc and implications toward tissue engineering. J Biomed Mater Res A.2009;90(3):784-91.
    [17]Perez del Palomar A, Doblare M. The effect of collagen reinforcement in the behaviour of the temporomandibular joint disc. J Biomech.2006;39:1075-1085
    [18]匡世军,张志光.关节盘的组织结构及其生物学特性的研究进展,国际口腔医学杂志,2008;35(3):304-306
    [19]舒维娜,康宏,张卫平,李欣,包广洁.山羊颞下颌关节盘细胞体外培养研究.实用口腔医学杂志,2010;26(2):165-168
    [20]Koolstra JH, Tanaka E., Tensile stress patterns predicted in the articular disc of the human temporomandibular joint. J Anat.2009;215(4):411-416.
    [21]Vunjak-Novakovic G, Martin I, Obradovic B,et al, Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res.1999;17(1):130-138
    [22]Croos JA, Dhaliwal SS, Grynpas MD,et al.Cyclic compressive meehanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biology, 2006;25(6):323-331
    [23]Benya P, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when culture in agrarose gels. Cell,1982;30(1):215-224
    [24]Gruber HE, Hoelscher GL, Leslie K, Ingram JA, Hanley EN Jr. Three-dimensional culture of human disc cells within agarose or a collagen sponge: assessment of proteoglycan production. Biomaterials.2006; 27(3):371-376
    [25]Davisson T, Kunig S, et al.Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res,2000;20(4):842-848
    [26]范卫民,蔡俊.周期性压力对组织工程软骨的影响及其作用机制.中华实验外科杂志,2006;23(8):977-979
    [27]Smith RL, Lin J, Trindade MC, et cl.Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type Ⅱ collagen and aggrecan mRNA expression. J Rehabil Res Dev.2000;37(2):153-161
    [28]Garima Sharma, R.K.Saxena,Prashant Mishra.Differential effects of cyclic and static pressure on biochemical and morphological properties of chondrocytes from articular cartilage.Clin Biomech.2007;22(2):248-255
    [29]Mizuno S, Tateishi T, Ushida T, etal.Hydrostatie fluid pressure enhances matrix synthesis and accumulation by bovine chondroeytes three-dimensional eulture.J Cell P hysiol.2002;193(3):319-327
    [30]Chowdhury TT,Bader DL,Shelton JC,et al,Temporal regulation of chondrocyt metabolism in agarose constructs subjected to dynamic compression.Archives Biochem BioPhys.2003;417(l):105-111
    [31]Ikenoue T, Trindade MC, Lee MS,et al.Mechanoregulation of human articular chondrocyte aggrecan and typeⅡ collagen expression by intermittent hydrostatie pressure in vitro. J Orthop Res.2003;21(1):110-116
    [32]Smith RL, Lin J,Trindade MC, et al.Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte typeⅡ collagen and aggrecan mRNA expression.J Rehabil Res Dev.2000;37(2):153-161
    [33]Detamore MS, Athanasiou KA. Use of a rotating bioreactor toward tissue engineering the temporomandibular joint disc. Tissue Eng.2005;11(7-8):1188-97
    [34]Almarza AJ, Athanasiou KA. Effects of hydrostatic pressure on TMJ disc cells. Tissue Eng.2006; 12(5):1285-1294
    [35]Kelly TA, Ng KW, Ateshian GA, Hung CT. Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs.Osteoarthritis Cartilage.2009; 17(1):73-82
    [36]Kelly TN, Kenneth WN,Wang CC,et al.Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures.Journal of Biomechanics.2006;39(8):1489-1497
    [37]Sharma G, Saxena RK, Mishra P, Differential effects of cyclic and static pressure on biochemical and morphological properties of chondrocytes from articular cartilage. Clin Biomech (Bristol, Avon).2007;22(2):248-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700