单一聚合度和特定N-乙酰化壳寡糖的分离及抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳寡糖是壳聚糖的降解产物,具有多种生物活性,如抗肿瘤、抗氧化、抑菌、免疫调节等。然而,以往的文献报道中,均是采用含有不同分子量和乙酰度的壳寡糖混合物进行的生物活性研究,这使得很难明确具体哪个或哪些寡糖分子在生物活性中发挥作用,也限制了对机理的深入研究。因此,为了进一步研究壳寡糖的生物活性,制备特定聚合度和乙酰度的壳寡糖是非常必要的。但由于壳寡糖单体间电荷密度和分子量差别较小,使得其分离纯化非常困难,尤其对聚合度大于4的壳寡糖的分离更是困难,另外,单一聚合度不同乙酰度壳寡糖的制备方法和相关生物活性也未见报道。
     本文对单一聚合度、不同乙酰度的壳寡糖的制备、分离和抗氧化活性进行了研究,并通过X射线衍射(XRD)、红外光谱(FT-IR)、紫外可见光谱(UV-vis)、元素分析、核磁共振波谱(NMR)、质谱(MS)、高效液相色谱(HPLC)等分析手段对降解和分离纯化产物的理化性质进行了全面的解析;确定了单一聚合度、不同乙酰度壳寡糖的色谱分离条件,建立了高分辨分离全脱乙酰化壳寡糖的离子交换色谱模型,并研究了特定聚合度和乙酰度壳寡糖的抗氧化活性,获得主要研究结果如下:
     1.微波辅助壳聚糖氧化降解工艺:微波辐射能够有效的加快壳聚糖的氧化降解速率,并使其在更低的过氧化氢浓度和温度下进行。降解产物的XRD分析表明壳聚糖降解过程中其晶形结构被改变,当壳聚糖分子量降至5.5kDa以下时变为无定形态,此时降解产物有较好的水溶性。紫外可见光谱分析表明降解过程中由于断链和开环会有羰基的产生且褐变加剧,但氧化副反应的羧基没有从FT-IR谱图中观察到。另外,元素分析结果表明降解过程中脱胺副反应被有效的抑制,产物保持了壳聚糖的基本化学结构。
     2.确定了特定聚合度壳寡糖的制备色谱分离条件:离子交换色谱能够依据氨基数量的差异对不同聚合度的壳寡糖进行有效的分离。采用CM Sephadex C-25对低聚合度全脱乙酰化壳寡糖进行分离,可以得到六个高纯度的单一聚合度壳寡糖,通过ESI/MS和HPLC分析,结果表明六个壳寡糖组分分别为壳二糖,壳三糖,壳四糖,壳五糖,壳六糖和壳七糖,纯度分别为的纯度99.3%,98.9%,98.3%,99.1%,99.0%和92.9%。获得的所有单一聚合度壳寡糖的纯度均大于以往文献的报道,各个分离组分产率分别为75,60,60,55,35和20mg/天,基本可以满足壳寡糖生物活性实验的要求。另外,我们建立了一个高分辨的壳寡糖分离色谱模型,壳寡糖的容量因子k和聚合度DP之间符合方程㏑k=0.686+0.926㏑DP,(R2=0.997),该公式对于更高聚合度壳寡糖单体的分离以及单一聚合度壳寡糖单体的放大制备具有指导意义。采用CM Sepharose Fast Flow首次完成了聚合度大于6的全脱乙酰壳寡糖的分离,得到五个窄聚合度的全脱乙酰化壳寡糖组分,其寡糖聚合度分布为DP6-7(41.31%,50.22%), DP7-8(22.47%,70.13%),DP9-10(53.06%,27.99%), DP10-12(18.45%,49.36%,22.31%)和DP>12。
     3.单一聚合度、特定乙酰度壳寡糖的制备工艺:采用离子交换色谱可依据氨基数量对合成的N-乙酰化壳寡糖混合物进行有效的分离,本文共分离得到8种单分子量N-乙酰化壳寡糖,包括N-乙酰壳三糖、N,N‘-二乙酰壳三糖、N-乙酰壳六糖、N,N‘-二乙酰壳六糖、N,N‘,N‘‘-三乙酰化壳六糖、N,N‘,N‘‘,N‘‘‘-四乙酰壳六糖、N,N‘,N‘‘,N‘‘‘,N‘‘‘‘-五乙酰壳六糖、N,N‘,N‘‘,N‘‘‘,N‘‘‘‘,N‘‘‘‘‘-六乙酰壳六糖。一级质谱分析表明分离得到的N-乙酰化单分子量壳寡糖是相对纯的。另外,采用ESI-MS/MS对分离得到的两种乙酰化壳三糖进行糖链序列分析,结果表明N-乙酰壳三糖和N,N‘-二乙酰壳三糖的异构体主要组分分别为DDA和ADA。而六种不同乙酰度的壳六糖除N,N‘,N‘‘,N‘‘‘,N‘‘‘‘,N‘‘‘‘‘-六乙酰壳六糖之外,其它几种壳六糖成分是非常复杂的,可能含有多种糖链序列不同的异构体,具体成分分析还有待进一步研究。
     4.抗氧化活性研究:对分离得到的每一种特定聚合度和乙酰度的壳寡糖进行了抗氧化活性实验,包括羟自由基清除活性,超氧阴离子清除活性和还原能力测定。结果表明,低聚合度的壳寡糖具有更强的羟自由基清除活性和还原能力,而超氧阴离子清除活性最强的壳寡糖聚合度为10-12,结合其成分分析进一步推测壳十一糖有可能是最佳的清除超氧阴离子的壳寡糖分子。对制备的两种部分乙酰化壳三糖和全脱乙酰化壳三糖的抗氧化活性进行比较,结果显示高乙酰度的壳三糖具有更强的抗氧化活性,这说明N-乙酰基对壳寡糖的抗氧化活性起重要作用。
     本文提出的壳寡糖单体制备方法还适用于其它聚合度和乙酰度壳寡糖的制备,获得的研究结果包括壳寡糖抗氧化活性与其聚合度和乙酰度之间的关系等,为进一步筛选壳寡糖的生物活性、研究其相关的活性机制以及寡糖在食品、医药等行业的广泛应用奠定了基础。
Chitooligosaccharides (COS), the hydrolyzed product of chitosan, has been reported topossess diverse bioactivities, such as antitumor activity, antioxidant activity, antimicrobial activity,immunity modulatory effect and so on. However, previous studies on biological activities of COSwere mostly performed using mixtures with different molecular weights and various degrees ofacetyltion. It is difficult to know which COS molecules play a leading role in the biological assayand the study of the related mechanism is limited. Therefore, in order to further understand thebioactivities of COS, the preparation of COS with narrow degree of polymerization (DP) andwell-defined degree of acetylation (DA) is required. However, due to small difference of chargedensity and molecular weight between chitooligosaccharides, the separation of COS with singleDP is very difficult, especially for those oligomers with DP>4. In addition, the method ofpreparation of N-acetylated COS with single DP is still unknown.
     This study focuses on the preparation, separation and antioxidant activity of COS withdifferent DP and various DA. The prepare COS and their separated fractions were characterizedwith various analytical techniques, including X-ray diffraction (XRD), fourier-transform infraredspectroscopy (FT-IR), ultraviolet–visible spectroscopy (UV-vis), elemental analysis, nuclearmagnetic resonance spectroscopy (NMR), mass spectrometry (MS), high-performance liquidchromatography (HPLC). We developed a chromatographic procedure for the separation of COSwith single DP and well-defined DA and established a high-resolution chromatographic separationmodel of fully deacetylated COS. Additionally, the antioxidant activities of COS with narrow DPand well-defined DA were investigated. The major results were as follows:
     1.Microwave-assisted oxidative degradation technique of chitosan was developed: oxidative degradation of chitosan was accelerated by microwave irradiation under the condition of lowtemperature and low concentration of H2O2. XRD analysis demonstrated that the crystallinestructure of chitosan was altered with the degradation going on and when the degraded chitosanbecame amorphous (5.5kDa), the product had high water solubility. The result of UV-vis showcarbonyl groups formed during degradation due to chain scission and ring open of chitiosan andbrown compounds increased but no absorbance band corresponding to–COO-was observed inFT-IR spectra. Elemental analysis indicated deamination reaction occurred in the degradationprocess but was inhibited partially. These results suggested that the degraded products remainedthe essential chemical structure of chitosan.
     2.The chromatographic separation conditions of COS with well-defined DP were specified:ion-exchange chromatography could be applied to prepare COS with different DPs according tothe number of amino group on the sugar chains. The prepared COS with low DP was separatedwith CM Sephadex C-25column and six highly purified glucosamine oligomers with single DPswere isolated. ESI/MS and HPLC analysis revealed that the six isolated fractions contained99.3%dimer,98.9%trimer,98.3%tetramer,99.1%pentamer,99.0%hexamer, and92.9%heptamer,respectively. The purities of separated single COSs were higher than those reported in prior studies.The yields of a single round of separation were75,60,60,55,35, and20mg for glucosaminedimers, trimers, tetramers, pentamers, hexamers, and heptamers, respectively, which are adequateto satisfy the needs of most chitooligomers bioactivity assays. Furthermore, a chromatographicseparation model for GlcN homomers was established. The capacity factor (k) of glucosamineoligomers and their degrees of polymerization (DPs) exhibited a good correlation, represented bythe equation㏑k=0.786+0.846㏑DP,(R2=0.997), which is instructive in the separation ofCOSs with higher DP and scale-up preparation of single COS. Additionally, the prepared fullydeacetylated COS with high DP (>6) were firstly separated by CM Sepharose Fast Flow columnand five COS fractions with narrow DP were obtained, which mainly contained glucosamineoligomers with DP6-7(41.31%,50.22%), DP7-8(22.47%,70.13%), DP9-10(53.06%,27.99%),DP10-12(18.45%,49.36%,22.31%), and DP>12, respectively.
     3.The preparation and separation technique of COS with single DP and well-defined DA wasestablished: the N-acetylated COS was synthesized and separated by ion-exchangechromatography according to the number of amino group. In this paper, eight N-acetylated COS with single Mwwere prepared, including N-acetylchitotriose, N, N‘-diacetylchitotriose,N-acetylchitohexaose, N, N‘-diacetylchitohexaose, N, N‘, N‘‘-triacetylchitohexaose, N, N‘, N‘‘,N‘‘‘-tetraacetylchitohexaose, N, N‘, N‘‘, N‘‘‘, N‘‘‘‘-pentaacetylchitohexaose, N, N‘, N‘‘, N‘‘‘,N‘‘‘‘, N‘‘‘‘‘-hexaacetylchitohexaose. All separated fractions were judged to be relative pure basedon the ESI-MS spectra. In addition, The sequence analysis of ESI-MS/MS revealed that the mainisobaric components of the N-acetylchitotriose and N, N‘-diacetylchitotriose were DDA and ADA,respectively. However, the separated chitohexaoses were complex except N, N‘, N‘‘, N‘‘‘, N‘‘‘‘,N‘‘‘‘‘-hexaacetylchitohexaose and their isobaric components need to be further studied.
     4.The antioxidant activities of the separated COSs with well-defined DP and DA werestudied, including hydroxyl and superoxide radical scavenging activity and reducing power. Therelationship between antioxidant activity of COS and their DA and DP was investigated. Theresults indicated that the COS with low DP showed better effect of scavenging hydroxyl radicaland reducing power than that with high DP. There existed optimal chitooligomers with narrow DPranging from10to12and the chitooligomers with DP11was speculated to be optimal.Furthermore, The antioxidant activities of two partially acetylated chitotrioses and originalchitotriose were investigated and the N, N‘-diacetylchitotriose exhibited with high DA the highestantioxidant activity, revealing that the N-acetylation play an important role in the antioxidantactivity of chitooligosaccharides.
     In this study, a separation technique of COS was developed, which also can be used toprepare of other COS with single DP and well-defined DA for bioactivity assay. Furthermore,we revealed that the relationship between antioxidant activity of COS and their DA and DP.These results are instructive to the further bioactivity research of COS and its application in foodand medicine fields.
引文
[1] Domard A. A perspective on30years research on chitin and chitosan[J]. CarbohydratePolymers,2011,84(2):696-703.
    [2] Rinaudo M. Chitin and chitosan: Properties and applications[J]. Progress in Polymer Science,2006,31(7):603-632.
    [3] Allan C R, Hadwiger L A. Fungicidal effect of chitosan on fungi of varying cell-wallcomposition[J]. Experimental Mycology,1979,3(3):285-287.
    [4] Pearce R B, Ride J P. Chitin and related-compounds as elicitors of the lignification response inwounded wheat leaves[J]. Physiological Plant Pathology,1982,20(1):119-123.
    [5] Stossel P, Leuba J L. Effect of chitosan, chitin and some aminosugars on growth of varioussoilborne phytopathogenic fungi[J]. Phytopathologische Zeitschrift-Journal ofPhytopathology,1984,111(1):82-90.
    [6] Zhong Z, Xing R, Liu S, Wang L, Cai S, Li P. Synthesis of acyl thiourea derivatives ofchitosan and their antimicrobial activities in vitro[J]. Carbohydrate Research,2008,343(3):566-570.
    [7] Qin Y, Xing R, Liu S, Li K, Meng X, Li R, Cui J, Li B, Li P. Novel thiosemicarbazonechitosan derivatives: Preparation, characterization, and antifungal activity[J]. CarbohydratePolymers,2012,87(4):2664-2670.
    [8] Tikhonov V E, Stepnova E A, Babak V G, Yamskov I A, Palma-Guerrero J, Jansson H-B,Lopez-Llorca L V, Salinas J, Gerasimenko D V, Avdienko I D, Varlamov V P. Bactericidaland antifungal activities of a low molecular weight chitosan and itsN-/2(3)-(dodec-2-enyl)succinoyl/-derivatives[J]. Carbohydrate Polymers,2006,64(1):66-72.
    [9] Ai H, Wang F, Xia Y, Chen X, Lei C. Antioxidant, antifungal and antiviral activities ofchitosan from the larvae of housefly, Musca domestica L[J]. Food Chemistry,2012,132(1):493-498.
    [10] Li M, Chen X, Liu J, Zhang W, Tang X. Molecular weight-dependent antifungal activity andaction mode of chitosan against Fulvia fulva (cooke) ciffrri[J]. Journal of Applied PolymerScience,2011,119(6):3127-3135.
    [11] Guerra-Sánchez M G, Vega-Pérez J, Velázquez-del Valle M G, Hernández-Lauzardo A N.Antifungal activity and release of compounds on Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. byeffect of chitosan with different molecular weights[J]. Pesticide Biochemistry and Physiology,2009,93(1):18-22.
    [12] Elghaouth A, Arul J, Ponnampalam R, Boulet M. Use of chitosan coating to reducewater-loss and maintain quality of cucumber and bell pepper fruits[J]. Journal of FoodProcessing and Preservation,1991,15(5):359-368.
    [13] Alsarra I A. Chitosan topical gel formulation in the management of burn wounds[J].International Journal of Biological Macromolecules,2009,45(1):16-21.
    [14] Xia W, Liu P, Zhang J, Chen J. Biological activities of chitosan and chitooligosaccharides[J].Food Hydrocolloids,2011,25(2):170-179.
    [15] Okawa Y, Kobayashi M, Suzuki S, Suzuki M. Comparative study of protective effects ofchitin, chitosan, and N-acetyl chitohexaose against Pseudomonas aeruginosa and Listeriamonocytogenes infections in mice[J]. Biological&Pharmaceutical Bulletin,2003,26(6):902-904.
    [16] Muzzarelli R A A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage andbone[J]. Carbohydrate Polymers,2009,76(2):167-182.
    [17] Miwa A, Ishibe A, Nakano M, Yamahira T, Itai S, Jinno S, Kawahara H. Development ofnovel chitosan derivatives as micellar carriers of taxol[J]. Pharmaceutical Research,1998,15(12):1844-1850.
    [18] Liu W G, Sun S J, Zhang X, De Yao K. Self-aggregation behavior of alkylated chitosan andits effect on the release of a hydrophobic drug[J]. Journal of Biomaterials Science-PolymerEdition,2003,14(8):851-859.
    [19] Shepherd R, Reader S, Falshaw A. Chitosan functional properties[J]. Glycoconjugate Journal,1997,14(4):535-542.
    [20] Muzzarelli R A A. Chitins and chitosans as immunoadjuvants and non-allergenic drugcarriers[J]. Marine Drugs,2010,8(2):292-312.
    [21]张运展,班卫平,高学明,孙加龙.制浆废液中溶解木素的壳多糖可絮凝性[J].大连轻工业学院学报,2003,(01):1-4.
    [22] Xing R E, Liu S, Yu H H, Guo Z Y, Wang P B, Li C P, Li Z, Li P C. Salt-assisted acidhydrolysis of chitosan to oligomers under microwave irradiation[J]. Carbohydrate Research,2005,340(13):2150-2153.
    [23]刘松,邢荣娥,于华华,郭占勇,李鹏程.微波辐射对不同介质均相壳聚糖的降解研究[J].食品科学,2005,(10):30-34.
    [24] Einbu A, Grasdalen H, Varum K M. Kinetics of hydrolysis of chitin/chitosan oligoniers inconcentrated hydrochloric acid[J]. Carbohydrate Research,2007,342(8):1055-1062.
    [25] Einbu A, Varum K M. Characterization of chitin and its hydrolysis to GlcNAc and GlcN[J].Biomacromolecules,2008,9(7):1870-1875.
    [26] Horowitz S T, Roseman S, Blumenthal H J. The preparation of glucosamineoligosaccharides.1. separation[J]. Journal of the American Chemical Society,1957,79(18):5046-5049.
    [27] Barker S A, Foster A B, Stacey M, Webber J M. Amino-sugars and related compounds.4.isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin[J].Journal of the Chemical Society,1958,(JUN):2218-2227.
    [28] Domard A, Cartier N. Glucosamine oligomers.1. preparation and characterization[J].International Journal of Biological Macromolecules,1989,11(5):297-302.
    [29] Rogozhin S V, Gamzazade A I, Chlenov M A, Leonova Y Y, Sklyar A M, Dotdayev S K.The partial acidic hydrolysis of chitosan[J]. Polymer Science U.S.S.R.,1988,30(3):607-614.
    [30] Ngo D N, Lee S H, Kim M M, Kim S K. Production of chitin oligosaccharides with differentmolecular weights and their antioxidant effect in RAW264.7cells[J]. Journal of FunctionalFoods,2009,1(2):188-198.
    [31] Block L H, Sabnis S S. Methods of creating a unique chitosan and employing the same toform complexes with drugs, delivery of the same within a patient and a related dosage form.In: Duquesne University of the Holy Ghost;1999.
    [32] Gao S Y, Chen J N, Xu X R, Ding Z, Yang Y H, Hua Z C, Zhang J F. Galactosylated lowmolecular weight chitosan as DNA carrier for hepatocyte-targeting[J]. International Journalof Pharmaceutics,2003,255(1-2):57-68.
    [33] Terbojevich M, Cosani A, Focher B, Naggi A, Torri G. Chitosans from euphausia-superba.1.solution properties[J]. Carbohydrate Polymers,1992,18(1):35-42.
    [34] Yaku F, Muraki E, Tsuchiya K. The preparation of glucosamine ligosaccharide and its Cu (Ⅱ)complex[J]. Cellulose chemistry and technology,1977,(11):421-430.
    [35] Furusaki E, Ueno Y, Sakairi N, Nishi N, Tokura S. Facile preparation and inclusion ability ofa chitosan derivative bearing carboxymethyl-beta-cyclodextrin[J]. Carbohydrate Polymers,1996,29(1):29-34.
    [36] Hirano S, Kondo Y, Fujii K. Preparation of acetylated derivatives of modifiedchito-oligosaccharides by the depolymerization of partially n-acetylated chitosan withnitrous-acid[J]. Carbohydrate Research,1985,144(2):338-341.
    [37] Jia Z S, Shen D F. Effect of reaction temperature and reaction time on the preparation oflow-molecular-weight chitosan using phosphoric acid[J]. Carbohydrate Polymers,2002,49(4):393-396.
    [38] Hasegawa M, Isogai A, Onabe F. Preparation of low-molecular-weight chitosan usingphosphoric-acid[J]. Carbohydrate Polymers,1993,20(4):279-283.
    [39] Defaye J, Gadelle A, Pedersen C. A convenient access to beta-(1-4)-linked2-amino-2-deoxy-d-glucopyranosyl fluoride oligosaccharides and beta-(1-4)-linked2-amino-2-deoxy-d-glucopyranosyl oligosaccharides by fluorolysis and fluorohydrolysis ofchitosan[J]. Carbohydrate Research,1994,261(2):267-277.
    [40] Tishchenko G, im nek J, Brus J, Netopilík M, Pekárek M, WalterováZ, KoppováI, LenfeldJ. Low-molecular-weight chitosans: Preparation and characterization[J]. CarbohydratePolymers,2011,86(2):1077-1081.
    [41] Fedoseeva E N, Semchikov Y D, Smirnova L A. Degradation of chitosan in solutions in thepresence of a redox system[J]. Polymer Science Series B,2006,48(5):295-299.
    [42]林正欢,夏峥嵘,李绵贵,蒋拥华.低聚水溶性壳聚糖的制备研究[J].精细石油化工进展,2002,(10):14-16,20.
    [43] Yue W, He R, Yao P, Wei Y. Ultraviolet radiation-induced accelerated degradation ofchitosan by ozone treatment[J]. Carbohydrate Polymers,2009,77(3):639-642.
    [44] Yue W, Yao P, Wei Y, Mo H. Synergetic effect of ozone and ultrasonic radiation ondegradation of chitosan[J]. Polymer Degradation and Stability,2008,93(10):1814-1821.
    [45] Hsu S C, Don T M, Chiu W Y. Free radical degradation of chitosan with potassiumpersulfate[J]. Polymer Degradation and Stability,2002,75(1):73-83.
    [46]覃彩芹,肖玲,杜予民,樊木,施晓文.过氧化氢氧化降解壳聚糖的可控性研究[J].武汉大学学报(自然科学版),2000,(02):195-198.
    [47] Tian F, Liu Y, Hu K, Zhao B Y. The depolymerization mechanism of chitosan by hydrogenperoxide[J]. Journal of Materials Science,2003,38(23):4709-4712.
    [48] Qin C Q, Du Y M, Xiao L. Effect of hydrogen peroxide treatment on the molecular weightand structure of chitosan[J]. Polymer Degradation and Stability,2002,76(2):211-218.
    [49] Duy N N, Phu D V, Anh N T, Hien N Q. Synergistic degradation to prepare oligochitosan byγ-irradiation of chitosan solution in the presence of hydrogen peroxide[J]. Radiation Physicsand Chemistry,2011,80(7):848-853.
    [50] Kang B, Dai Y, Zhang H, Chen D. Synergetic degradation of chitosan with gamma radiationand hydrogen peroxide[J]. Polymer Degradation and Stability,2007,92(3):359-362.
    [51] El-Sawy N M, Abd El-Rehim H A, Elbarbary A M, Hegazy E S A. Radiation-induceddegradation of chitosan for possible use as a growth promoter in agricultural purposes[J].Carbohydrate Polymers,2010,79(3):555-562.
    [52] Wang S M, Huang Q Z, Wang Q S. Study on the synergetic degradation of chitosan withultraviolet light and hydrogen peroxide[J]. Carbohydrate Research,2005,340(6):1143-1147.
    [53] Shao, J. Studies on preparation of oligoglucosamine by oxidative degradation undermicrowave irradiation[J]. Polymer Degradation and Stability,2003,82(3):395-398.
    [54] Murinov K Y, Romanko T V, Kuramshina A R, Kabal‘nova N N, Murinov Y I. Oxidativedegradation of chitosan under the action of hydrogen peroxide[J]. Russian Journal of AppliedChemistry,2007,80(1):159-161.
    [55] Huang Q Z, Zhuo L H, Guo Y C. Heterogeneous degradation of chitosan with H2O2catalysed by phosphotungstate[J]. Carbohydrate Polymers,2008,72(3):500-505.
    [56] Huang Q Z, Wang S M, Huang J F, Zhuo L H, Guo Y C. Study on the heterogeneousdegradation of chitosan with hydrogen peroxide under the catalysis of phosphotungsticacid[J]. Carbohydrate Polymers,2007,68(4):761-765.
    [57] Huang Q Z, Meng Z H, Feng Y Q, Shi H Z. Study on the heterogeneous degradation ofchitosan with H2O2catalyzed by a new supermolecular assembly crystal:
    [C6H8N2]6H3[PW12O40]·2H2O[J]. Carbohydrate Research,2010,345(1):115-119.
    [58] Fukamizo T, Ohkawa T, Ikeda Y, Goto S. Specificity of chitosanase from bacillus-pumilus[J].Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology,1994,1205(2):183-188.
    [59] Sikorski P, Sorbotten A, Horn S J, Eijsink V G H, Varum K M. Serratia marcescenschitinases with tunnel-shaped substrate-binding grooves show endo activity and differentdegrees of processivity during enzymatic hydrolysis of chitosan[J]. Biochemistry,2006,45(31):9566-9574.
    [60] Amano K I, Ito E. Action of lysozyme on partially deacetylated chitin[J]. European Journalof Biochemistry,1978,85(1):97-104.
    [61] Varum K M, Holme H K, Izume M, Stokke B T, Smidsrod O. Determination of enzymatichydrolysis specificity of partially N-acetylated chitosans[J]. Biochimica Et BiophysicaActa-General Subjects,1996,1291(1):5-15.
    [62] Cabrera J C, Van Cutsem P. Preparation of chitooligosaccharides with degree ofpolymerization higher than6by acid or enzymatic degradation of chitosan[J]. BiochemicalEngineering Journal,2005,25(2):165-172.
    [63] Roncal T, Oviedo A, de Armentia I L, Fernández L, Villarán M C. High yield production ofmonomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a highdeacetylation degree chitosan[J]. Carbohydrate Research,2007,342(18):2750-2756.
    [64] Li J, Du Y, Yang J, Feng T, Li A, Chen P. Preparation and characterisation of low molecularweight chitosan and chito-oligomers by a commercial enzyme[J]. Polymer Degradation andStability,2005,87(3):441-448.
    [65]李艾华,杜予民,李瑾,蔡俊,陈平.聚合度3~6甲壳寡糖的制备与TOF-MS分析[J].分析科学学报,2004,(03):233-236.
    [66]周桂,何子平,邓光辉,黄在银,谭学才.纤维素酶与淀粉酶降解壳聚糖的动力学研究[J].海洋科学,2003,(11):59-62,67.
    [67] Lee D X, Xia W S, Zhang J L. Enzymatic preparation of chitooligosaccharides bycommercial lipase[J]. Food Chemistry,2008,111(2):291-295.
    [68] Chen M, Zhu X, Li Z, Guo X, Ling P. Application of matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in preparation ofchitosan oligosaccharides (COS) with degree of polymerization (DP)5-12containingwell-distributed acetyl groups[J]. International Journal of Mass Spectrometry,2010,290(2-3):94-99.
    [69]陈小娥,方旭波,余辉,廖智.壳寡糖的薄层层析分析[J].浙江海洋学院学报(自然科学版),2008,(04):361-365.
    [70] Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosanmatrices with different degrees of N-acetylation[J]. Carbohydrate Research,2005,340(15):2403-2410.
    [71] Liu H, Bao J, Du Y, Zhou X, Kennedy J F. Effect of ultrasonic treatment on thebiochemphysical properties of chitosan[J]. Carbohydrate Polymers,2006,64(4):553-559.
    [72] Kittur F S, Vishu Kumar A B, Varadaraj M C, Tharanathan R N.Chitooligosaccharides—preparation with the aid of pectinase isozyme from Aspergillus nigerand their antibacterial activity[J]. Carbohydrate Research,2005,340(6):1239-1245.
    [73]魏新林.甲壳低聚糖性质、分级及免疫活性研究[D].江南大学,2004.
    [74]李曙光,白雪芳,杜昱光.壳寡糖的分离分析及其诱抗活性研究[J].中国海洋药物,2002,(06):1-3.
    [75] Chang K L B, Tai M C, Cheng F H. Kinetics and products of the degradation of chitosan byhydrogen peroxide[J]. Journal of Agricultural and Food Chemistry,2001,49(10):4845-4851.
    [76] Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y. Potent angiogenic inhibitioneffects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanismof action in vitro[J]. Carbohydrate Research,2009,344(15):1975-1983.
    [77] Zhang Z, Li C, Wang Q, Zhao Z K. Efficient hydrolysis of chitosan in ionic liquids[J].Carbohydrate Polymers,2009,78(4):685-689.
    [78] Beaudoin M-E, Gauthier J, Boucher I, Waldron K C. Capillary electrophoresis separation of amixture of chitin and chitosan oligosaccharides derivatized using a modified fluorophoreconjugation procedure[J]. Journal of Separation Science,2005,28(12):1390-1398.
    [79] Hattori T, Anraku N, Kato R. Capillary electrophoresis of chitooligosaccharides in acidicsolution: Simple determination using a quaternary-ammonium-modified column and indirectphotometric detection with Crystal Violet[J]. Journal of Chromatography B,2010,878(3-4):477-480.
    [80] Blanes L, Saito R M, Genta F A, DonegáJ, Terra W R, Ferreira C, do Lago C L. Directdetection of underivatized chitooligosaccharides produced through chitinase action usingcapillary zone electrophoresis[J]. Analytical Biochemistry,2008,373(1):99-103.
    [81] Xie Y, Hu J, Wei Y, Hong X. Preparation of chitooligosaccharides by the enzymatichydrolysis of chitosan[J]. Polymer Degradation and Stability,2009,94(10):1895-1899.
    [82] Cederkvist F H, Zamfir A D, Bahrke S, Eijsink V G H, S rlie M, Peter-Katalini J, Peter MG. Identification of a high-affinity-binding oligosaccharide by (+) nanoelectrosprayquadrupole time-of-flight tandem mass spectrometry of a noncovalent enzyme–ligandcomplex[J]. Angewandte Chemie International Edition,2006,45(15):2429-2434.
    [83] Volpi N. On-line HPLC/ESI-MS separation and characterization of hyaluronanoligosaccharides from2-mers to40-mers[J]. Analytical Chemistry,2007,79(16):6390-6397.
    [84] Bahrke S, Einarsson J M, Gislason J, Haebel S, Letzel M C, Peter-Katalinic J, Peter M G.Sequence analysis of chitooligosaccharides by matrix-assisted laser desorption ionizationpostsource decay mass spectrometry[J]. Biomacromolecules,2002,3(4):696-704.
    [85] Haebel S, Bahrke S, Petert M G. Quantitative Sequencing of complex mixtures ofheterochitooligosaccharides by vMALDI-Linear ion trap mass spectrometry[J]. AnalyticalChemistry,2007,79(15):5557-5566.
    [86] Pan S, Wu S. Preparation of water-soluble chitosan by hydrolysis with commercialglucoamylase containing chitosanase activity[J]. European Food Research and Technology,2011,233(2):325-329.
    [87] Vishu Kumar A. Low molecular weight chitosans: preparation with the aid of papain andcharacterization[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2004,1670(2):137-146.
    [88] Taghizadeh M T, Abdollahi R. Sonolytic, sonocatalytic and sonophotocatalytic degradationof chitosan in the presence of TiO2nanoparticles[J]. Ultrasonics Sonochemistry,2011,18(1):149-157.
    [89] Sugiyama H, Hisamichi K, Sakai K, Usui T, Ishiyama J I, Kudo H, Ito H, Senda Y. Theconformational study of chitin and chiltosan oligomers in solution[J]. Bioorganic&Medicinal Chemistry,2001,9(2):211-216.
    [90] Trombotto S, Ladaviere C, Delolme F, Domard A. Chemical preparation and structuralcharacterization of a homogeneous series of chitin/chitosan oligomers[J]. Biomacromolecules,2008,9(7):1731-1738.
    [91] Wang W, Du Y, Qiu Y, Wang X, Hu Y, Yang J, Cai J, Kennedy J F. A new green technologyfor direct production of low molecular weight chitosan[J]. Carbohydrate Polymers,2008,74(1):127-132.
    [92] Hu Y, Du Y, Yang J, Kennedy J F, Wang X, Wang L. Synthesis, characterization andantibacterial activity of guanidinylated chitosan[J]. Carbohydrate Polymers,2007,67(1):66-72.
    [93] Ding P, Huang K-L, Li G-Y, Liu Y-F. Preparation and properties of modified chitosan aspotential matrix materials for drug sustained-release beads[J]. International Journal ofBiological Macromolecules,2007,41(2):125-131.
    [94] Aam B B, Heggset E B, Norberg A L, S rlie M, V rum K M, Eijsink V G H. Production ofchitooligosaccharides and their potential applications in medicine[J]. Marine Drugs,2010,8(5):1482-1517.
    [95] Suzuki S. Immunopotentiating function of N-acetylchitooligosaccharides andchito-oligosaccharides[J]. Nippon Nogeikagaku Kaishi-Journal of the Japan Society forBioscience Biotechnology and Agrochemistry,1988,62(8):1241-1243.
    [96] Qin C Q, Du Y M, Xiao L, Li Z, Gao X H. Enzymic preparation of water-soluble chitosanand their antitumor activity[J]. International Journal of Biological Macromolecules,2002,31(1-3):111-117.
    [97] Maeda Y, Kimura Y. Antitumor effects of various low-molecular-weight chitosans are due toincreased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma180-bearing mice[J]. Journal of Nutrition,2004,134(4):945-950.
    [98] Huang R, Mendis E, Rajapakse N, Kim S K. Strong electronic charge as an important factorfor anticancer activity of chitooligosaccharides (COS)[J]. Life Sciences,2006,78(20):2399-2408.
    [99] Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X. N-Acetylchitooligosaccharide is a potentangiogenic inhibitor both in vivo and in vitro[J]. Biochemical and Biophysical ResearchCommunications,2007,357(1):26-31.
    [100] Calabrese V, Lodi R, Tonon C, Dagata V, Sapienza M, Scapagnini G, Mangiameli A,Pennisi G, Stella A, Butterfield D. Oxidative stress, mitochondrial dysfunction and cellularstress response in Friedreich's ataxia[J]. Journal of the Neurological Sciences,2005,233(1-2):145-162.
    [101] Ngo D N, Kim M M, Kim S K. Chitin oligosaccharides inhibit oxidative stress in livecells[J]. Carbohydrate Polymers,2008,74(2):228-234.
    [102]金黎明,杨艳,刘万顺,韩宝芹,田文杰,范圣第.壳寡糖及其衍生物对CCl4诱导的小鼠肝损伤的保护作用[J].山东大学学报(理学版),2007,(07):1-4,12.
    [103]金黎明,杨艳,刘万顺,韩宝芹,田文杰,范圣第.壳寡糖的抗氧化及肝保护功能[J].沈阳药科大学学报,2008,(04):309-312.
    [104] Sun T, Zhou D, Xie J, Mao F. Preparation of chitosan oligomers and their antioxidantactivity[J]. European Food Research and Technology,2006,225(3-4):451-456.
    [105] Chen A S, Taguchi T, Sakai K, Kikuchi K, Wang M W, Miwa I. Antioxidant activities ofchitobiose and chitotriose[J]. Biological&Pharmaceutical Bulletin,2003,26(9):1326-1330.
    [106] Huang R, Rajapakse N, Kim S K. Structural factors affecting radical scavenging activity ofchitooligosaccharides (COS) and its derivatives[J]. Carbohydrate Polymers,2006,63(1):122-129.
    [107] Kim. In vitro and in vivo antimicrobial activity of water-soluble chitosan oligosaccharidesagainst Vibrio vulnificus[J]. International Journal of Molecular Medicine,2009,24(3).
    [108] Avila-Sosa R, Palou E, Jiménez Munguía M T, Nevárez-Moorillón G V, Navarro Cruz A R,López-Malo A. Antifungal activity by vapor contact of essential oils added to amaranth,chitosan, or starch edible films[J]. International Journal of Food Microbiology,2012,153(1-2):66-72.
    [109] No H K, Park N Y, Lee S H, Meyers S P. Antibacterial activity of chitosans and chitosanoligomers with different molecular weights[J]. International Journal of Food Microbiology,2002,74(1-2):65-72.
    [110] Zheng L Y, Zhu J F. Study on antimicrobial activity of chitosan with different molecularweights[J]. Carbohydrate Polymers,2003,54(4):527-530.
    [111]夏文水,张帆,何新益.甲壳低聚糖抗菌作用及其在食品保藏中的应用[J].无锡轻工大学学报,1998,(04):12-16.
    [112] Hirano S, Nagao N. Effects of chitosan, pectic acid, lysozyme, and chitinase on the growthof several phytopathogens[J]. Agricultural and Biological Chemistry,1989,53(11):3065-3066.
    [113] Vishu Kumar A B, Varadaraj M C, Gowda L R, Tharanathan R N. Low molecular weightchitosans—Preparation with the aid of pronase, characterization and their bactericidalactivity towards Bacillus cereus and Escherichia coli[J]. Biochimica et Biophysica Acta(BBA)-General Subjects,2007,1770(4):495-505.
    [114] Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage[J].International Journal of Food Microbiology,2004,95(2):147-155.
    [115] Varadaraj Mandyam C, Vishu Kumar Acharya B, Gowda Lalitha R, TharanathanRudrapatnam N. Characterization of chito-oligosaccharides prepared by chitosanolysis withthe aid of papain and Pronase, and their bactericidal action against Bacillus cereus andEscherichia coli[J]. Biochemical Journal,2005,391(2):167.
    [116] Sudarshan N R, Hoover D G, Knorr D. Antibacterial action of chitosan[J]. FoodBiotechnology,1992,6(3):257-272.
    [117] Choi B K, Kim K Y, Yoo Y J, Oh S J, Choi J H, Kim C Y. In vitro antimicrobial activity ofa chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans andStreptococcus mutans[J]. International Journal of Antimicrobial Agents,2001,18(6):553-557.
    [118] Kim J Y, Lee J K, Lee T S, Park W H. Synthesis of chitooligosaccharide derivative withquaternary ammonium group and its antimicrobial activity against Streptococcus mutans[J].International Journal of Biological Macromolecules,2003,32(1-2):23-27.
    [119] Tsai G J, Su W H, Chen H C, Pan C L. Antimicrobial activity of shrimp chitin and chitosanfrom different treatments and applications of fish preservation[J]. Fisheries Science,2002,68(1):170-177.
    [120] Jeon Y J, Kim S K. Effect of antimicrobial activity by chitosan oligosaccharideN-conjugated with asparagine[J]. Journal of Microbiology and Biotechnology,2001,11(2):281-286.
    [121] Usami Y, Okamoto Y, Takayama T, Shigemasa Y, Minami S. Effect ofN-acetyl-D-glucosamine and D-glucosamine oligomers on canine polymorphonuclear cells invitro[J]. Carbohydrate Polymers,1998,36(2-3):137-141.
    [122] Usami Y, Minami S, Okamoto Y, Matsuhashi A, Shigemasa Y. Influence of chain length ofN-acetyl-D-glucosamine and D-glucosamine residues on direct and complement-mediatedchemotactic activities for canine polymorphonuclear cells[J]. Carbohydrate Polymers,1997,32(2):115-122.
    [123] Koping-Hoggard M, Varum K M, Issa M, Danielsen S, Christensen B E, Stokke B T,Artursson P. Improved chitosan-mediated gene delivery based on easily dissociated chitosanpolyplexes of highly defined chitosan oligomers[J]. Gene Therapy,2004,11(19):1441-1452.
    [124] Ratanavaraporn J, Kanokpanont S, Tabata Y, Damrongsakkul S. Growth and osteogenicdifferentiation of adipose-derived and bone marrow-derived stem cells on chitosan andchitooligosaccharide films[J]. Carbohydrate Polymers,2009,78(4):873-878.
    [125] Klokkevold P R, Vandemark L, Kenney E B, Bernard G W. Osteogenesis enhanced bychitosan (poly-N-acetyl glucosaminoglycan) in vitro[J]. Journal of Periodontology,1996,67(11):1170-1175.
    [126] Jung W K, Moon S H, Kim S K. Effect of chitooligosaccharides on calcium bioavailabilityand bone strength in ovariectomized rats[J]. Life Sciences,2006,78(9):970-976.
    [127] Ngo D N, Qian Z J, Je J Y, Kim M M, Kim S K. Aminoethyl chitooligosaccharides inhibitthe activity of angiotensin converting enzyme[J]. Process Biochemistry,2008,43(1):119-123.
    [128] Zhou S, Yang Y, Gu X, Ding F. Chitooligosaccharides protect cultured hippocampalneurons against glutamate-induced neurotoxicity[J]. Neuroscience Letters,2008,444(3):270-274.
    [129] Yamada A, Shibuya N, Kodama O, Akatsuka T. Induction of phytoalexin formation insuspension-cultured rice cells by N-acetylchitooligosaccharides[J]. Bioscience,Biotechnology, and Biochemistry,1993,57(3):405-409.
    [130] Fernandes J C, Spindola H, de Sousa V, Santos-Silva A, Pintado M E, Malcata F X,Carvalho J E. Anti-inflammatory activity of chitooligosaccharides in vivo[J]. Marine Drugs,2010,8(6):1763-1768.
    [131] Henning Cederkvist F, Parmer M P, V rum K M, Eijsink V G H, S rlie M. Inhibition of afamily18chitinase by chitooligosaccharides[J]. Carbohydrate Polymers,2008,74(1):41-49.
    [132] Aly M R E, Ibrahim E S I, El Ashry E S H, Schmidt R R. Synthesis of chitotetraose andchitohexaose based on dimethylmaleoyl protection[J]. Carbohydrate Research,2001,331(2):129-142.
    [133] Samain E, Drouillard S, Heyraud A, Driguez H, Geremia R A. Gram-scale synthesis ofrecombinant chitooligosaccharides in Escherichia coli[J]. Carbohydrate Research,1997,302(1-2):35-42.
    [134] Tokuyasu K, Ono H, Hayashi K, Mori Y. Reverse hydrolysis reaction of chitin deacetylaseand enzymatic synthesis of beta-D-GlcNAc-(1->4)-GlcN from chitobiose[J]. CarbohydrateResearch,1999,322(1-2):26-31.
    [135] Tokuyasu K, Ono H, OhnishiKameyama M, Hayashi K, Mori Y. Deacetylation of chitinoligosaccharides of dp2-4by chitin deacetylase from Colletotrichum lindemuthianum[J].Carbohydrate Research,1997,303(3):353-358.
    [136] Aiba S. Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan withchitinase followed by N-acetylation[J]. Carbohydrate Research,1994,265(2):323-328.
    [137] Ledevedec F, Bazinet L, Furtos A, Venne K, Brunet S, Mateescu M. Separation of chitosanoligomers by immobilized metal affinity chromatography[J]. Journal of Chromatography A,2008,1194(2):165-171.
    [138] Wei X, Wang Y, Xiao J, Xia W. Separation of chitooligosaccharides and the potent effectson gene expression of cell surface receptor CR3[J]. International Journal of BiologicalMacromolecules,2009,45(4):432-436.
    [139] Warrand J, Janssen H. Controlled production of oligosaccharides from amylose byacid-hydrolysis under microwave treatment: Comparison with conventional heating[J].Carbohydrate Polymers,2007,69(2):353-362.
    [140] Singh V, Tiwari A. Hydrolytic fragmentation of seed gums under microwave irradiation[J].International Journal of Biological Macromolecules,2009,44(2):186-189.
    [141] Strauss C R, Trainor R W. Invited review-Developments in microwave-assistedorganic-chemistry[J]. Australian Journal of Chemistry,1995,48(10):1665-1692.
    [142] Galema S A. Microwave chemistry[J]. Chemical Society Reviews,1997,26(3):233-238.
    [143] Prashanth K V H, Kittur F S, Tharanathan R N. Solid state structure of chitosan preparedunder different N-deacetylating conditions[J]. Carbohydrate Polymers,2002,50(1):27-33.
    [144] Ulanski P, Rosiak J. Preliminary studies on radiation-induced changes in chitosan[J].Radiation Physics and Chemistry,1992,39(1):53-57.
    [145] Yu H M, Chen S T, Suree P, Nuansri R, Wang K T. Effect of microwave irradiation onacid-catalyzed hydrolysis of starch[J]. Journal of Organic Chemistry,1996,61(26):9608-9609.
    [146] Peniche C, Arguelles-Monal W, Davidenko N, Sastre R, Gallardo A, San Roman J.Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization:preparation, characterization and interpolymer complexation[J]. Biomaterials,1999,20(20):1869-1878.
    [147] Luo W B, Han Z, Zeng X A, Yu S J, Kennedy J F. Study on the degradation of chitosan bypulsed electric fields treatment[J]. Innovative Food Science&Emerging Technologies,2010,11(4):587-591.
    [148] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method fordetermination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350-356.
    [149] Guo Z, Lei A, Zhang Y, Xu Q, Xue X, Zhang F, Liang X.―Click saccharides‖: novelseparation materials for hydrophilic interaction liquid chromatography[J]. ChemicalCommunications,2007,(24):2491.
    [150] Yang Z, Yi Y, Gao C, Hou D, Hu J, Zhao M. Isolation of inulin-type oligosaccharides fromChinese traditional medicine: Morinda officinalis How and their characterization usingESI-MS/MS[J]. Journal of Separation Science,2010,33(1):120-125.
    [151] Havlicek J, Samuelson O. Separation of oligosaccharides by partition chromatography onion exchange resins[J]. Analytical Chemistry,1975,47(11):1854-1857.
    [152] Vente J A, Bosch H, de Haan A B, Bussmann P J T. Comparison of sorption isotherms ofmono-and disaccharides relevant to oligosaccharide separations for Na, K, and Ca loadedcation exchange resins[J]. Chemical Engineering Communications,2005,192(1):23-33.
    [153] Levison P R. Large-scale ion-exchange column chromatography of proteins-Comparisonof different formats[J]. Journal of Chromatography B-Analytical Technologies in theBiomedical and Life Sciences,2003,790(1-2):17-33.
    [154] Ballance S, Aarstad O A, Aachmann F L, Skj k-Br k G, Christensen B E. Preparation ofhigh purity monodisperse oligosaccharides derived from mannuronan by size-exclusionchromatography followed by semi-preparative high-performance anion-exchangechromatography with pulsed amperometric detection[J]. Carbohydrate Research,2009,344(2):255-259.
    [155] Wei Y A, Hendrix D L, Nieman R. Diglucomelezitose, a novel pentasaccharide in silverleafwhitefly honeydew[J]. Journal of Agricultural and Food Chemistry,1997,45(9):3481-3486.
    [156] Fujimoto Y, Hattori T, Uno S, Murata T, Usui T. Enzymatic synthesis ofgentiooligosaccharides by transglycosylation with β-glycosidases from Penicilliummulticolor[J]. Carbohydrate Research,2009,344(8):972-978.
    [157] Yang X B, Zhao Y, He N W, Croft K D. Isolation, characterization, and immunologicaleffects of alpha-galacto-oligosaccharides from a new source, the Herb Lycopus lucidusTurcz[J]. Journal of Agricultural and Food Chemistry,2010,58(14):8253-8258.
    [158] Guo Z, Liu H, Chen X, Ji X, Li P. Hydroxyl radicals scavenging activity of N-substitutedchitosan and quaternized chitosan[J]. Bioorganic&Medicinal Chemistry Letters,2006,16(24):6348-6350.
    [159] Nishikimi M, Appaji Rao N, Yagi K. The occurrence of superoxide anion in the reaction ofreduced phenazine methosulfate and molecular oxygen[J]. Biochemical and BiophysicalResearch Communications,1972,46(2):849-854.
    [160] Yen M T, Yang J H, Mau J L. Antioxidant properties of chitosan from crab shells[J].Carbohydrate Polymers,2008,74(4):840-844.
    [161] Koryckadahl M, Richardson T. Photogeneration of superoxide anion in serum of bovinemilk and in model systems containing riboflavin and amino-acids[J]. Journal of DairyScience,1978,61(4):400-407.
    [162] Zhang Z, Wang X, Yu S, Yin L, Zhao M, Han Z. Synthesized oversulfated and acetylatedderivatives of polysaccharide extracted from Enteromorpha linza and their potentialantioxidant activity[J]. International Journal of Biological Macromolecules,2011,49(5):1012-1015.
    [163] Je J Y, Park P J, Kim S K. Radical scavenging activity of hetero-chitooligosaccharides[J].European Food Research and Technology,2004,219(1):60-65.
    [164] Liu H T, Li W M, Xu G, Li X Y, Bai X F, Wei P, Yu C, Du Y G. Chitosan oligosaccharidesattenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelialcells[J]. Pharmacological Research,2009,59(3):167-175.
    [165] Yuan W P. Antioxidant activity of chito-oligosaccharides on pancreatic islet cells instreptozotocin-induced diabetes in rats[J]. World Journal of Gastroenterology,2009,15(11):1339.
    [166] Kim K W, Thomas R L. Antioxidative activity of chitosans with varying molecularweights[J]. Food Chemistry,2007,101(1):308-313.
    [167] Park P J, Je J Y, Kim S K. Free radical scavenging activity of chitooligosaccharides byelectron spin resonance spectrometry[J]. Journal of Agricultural and Food Chemistry,2003,51(16):4624-4627.
    [168] Xing R, Liu S, Guo Z, Yu H, Wang P, Li C, Li Z, Li P. Relevance of molecular weight ofchitosan and its derivatives and their antioxidant activities in vitro[J]. Bioorganic&Medicinal Chemistry,2005,13(5):1573-1577.
    [169] Zhong Z, Ji X, Xing R, Liu S, Guo Z, Chen X, Li P. The preparation and antioxidantactivity of the sulfanilamide derivatives of chitosan and chitosan sulfates[J]. Bioorganic&Medicinal Chemistry,2007,15(11):3775-3782.
    [170] Yang Y, Shu R, Shao J, Xu G, Gu X. Radical scavenging activity of chitooligosaccharidewith different molecular weights[J]. European Food Research and Technology,2005,222(1-2):36-40.
    [171] Xing R E, Liu S, Guo Z Y, Yu H H, Li C P, Ji X, Feng J H, Li P C. The antioxidant activityof glucosamine hydrochloride in vitro[J]. Bioorganic&Medicinal Chemistry,2006,14(6):1706-1709.
    [172] Song Q, Li Q, Li G, Ding C. Preparation of highly deacetylated chitosan by phase transfercatalyst[J]. Chinese Journal of Synthetic Chemistry,2005,13(2):187-189.
    [173] Einbu A, Grasdalen H, V rum K M. Kinetics of hydrolysis of chitin/chitosan oligomers inconcentrated hydrochloric acid[J]. Carbohydrate Research,2007,342(8):1055-1062.
    [174] Galeotti F, Volpi N. Online reverse phase-high-performance liquidchromatography-fluorescence detection-electrospray ionization-mass spectrometry separationand characterization of heparan sulfate, heparin, and low-molecular weight-heparindisaccharides derivatized with2-aminoacridone[J]. Analytical Chemistry,2011,83(17):6770-6777.
    [175] Paul R H (Editor). Chapter5Retention Models for Ion-Exchange. In: Journal ofChromatography Library[M]. Amsterdam: Elsevier,1990. pp.133-162.
    [176] Ebel J. Oligoglucoside elicitor-mediated activation of plant defense[J]. Bioessays,1998,20(7):569-576.
    [177] Vander P, Varum K M, Domard A, El Gueddari N E, Moerschbacher B M. Comparison ofthe ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistancereactions in wheat leaves[J]. Plant Physiology,1998,118(4):1353-1359.
    [178] Freier T, Koh H S, Kazazian K, Shoichet M S. Controlling cell adhesion and degradation ofchitosan films by N-acetylation[J]. Biomaterials,2005,26(29):5872-5878.
    [179] Huang L, Liu C. Preparation of hydrophobing acyl chitosan with long fatly chain[J]. Journalof Huachiao University,2005,26(4):439-441.
    [180] Domon B, Costello C E. A systematic nomenclature for carbohydrate fragmentations inFAB-MS/MS spectra of glycoconjugates[J]. Glycoconjugate Journal,1988,5(4):397-409.
    [181] Vijayakrishnan B, Issaree A, Corilo Y E, Ferreira C R, Eberlin M N, Peter M G. MSn of thesix isomers of (GlcN)2(GlcNAc)2aminoglucan tetrasaccharides (diacetylchitotetraoses):Rules of fragmentation for the sodiated molecules and application to sequence analysis ofhetero-chitooligosaccharides[J]. Carbohydrate Polymers,2011,84(2):713-726.
    [182] Tokuyasu K, Ono H, Mitsutomi M, Hayashi K, Mori Y. Synthesis of a chitosan tetramerderivative, beta-D-GlcNAc-(1->4)-beta-D-GlcNAc-(1->4)-beta-D-GlcNAc-(1->4)-D-GlcN through a partial N-acetylation reaction by chitin deacetylase[J]. CarbohydrateResearch,2000,325(3):211-215.
    [183] dos Santos A L, El Gueddari N E, Trombotto S, Moerschbacher B M. Partially acetylatedchitosan oligo-and polymers induce an oxidative burst in suspension cultured cells of thegymnosperm Araucaria angustifolia[J]. Biomacromolecules,2008,9(12):3411-3415.
    [184] Kosaraju S L, Weerakkody R, Augustin M A. Chitosan Glucose Conjugates: Influence ofExtent of Maillard Reaction on Antioxidant Properties[J]. Journal of Agricultural and FoodChemistry,2010,58(23):12449-12455.
    [185] Lieder R, Thormodsson F, Ng C H, Einarsson J M, Gislason J, Petersen P H, SigurjonssonO E. Chitosan and Chitin Hexamers affect expansion and differentiation of mesenchymalstem cells differently[J]. International Journal of Biological Macromolecules,2012,51(4):675-680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700