距离比值迭代分形及复迭代函数系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将分形几何与计算机图形学结合,实现分形体的可视化以及利用分形模拟自然景物是计算机图形学中的重要研究方向之一。应用计算机图形学研究分形几何有助于揭示分形本身的结构和性质,还可以进行艺术创作,生成分形艺术图形。本文针对分形图形学中存在的若干问题进行研究,主要的创新工作如下:
    1.提出了一种构造分形图的新方法:距离比值迭代法。该方法采用两点迭代,利用其距离比值的迭代收敛速度来绘制分形图。不同于逃逸时间算法,距离比值迭代法绘制的广义M-J集在映射稳定区域内具有丰富的细节,并且能够绘制一些逃逸时间算法无法绘制的映射分形图。
    2.详尽研究了复映射f(z)=z~α+c构成的距离比值广义M-J集的性质。讨论了对于不同的参数c和指数α,距离比值广义M-J集构图特征的变化,说明了距离比值广义M-J集与传统M-J集的区别和联系。讨论了一些以往未被研究过的映射所产生的分形集,如复映射f(z)=z~α的距离比值广义J集,复映射f(z)=z~α+c(0<α<1)的距离比值广义M集等。
    3.全面系统地考查了距离比值迭代方法可能的扩展。包括:不同初始迭代点对构图的影响;迭代过程中引进其他映射对结果图的影响;各种周期点、周期轨道时距离比值迭代方法的变化等。
    4.研究了复映射族f(z)=z~2+c_i的迭代性质和规律,研究了其成为迭代函数系统的条件,分析了其吸引子的空间范围及不动点的分布规律等。
    5.提出了一个基于迭代函数系统的模拟干笔飞白效果的纹理模型。该模型采用迭代函数系统的吸引子作为笔迹,能够用于现有毛笔模型中,较好的实现干笔飞白效果。
Since the introduction of fractal by Mandelbrot, fractals have experiencedconsiderable success in quantifying the complex structure exhibited by many naturalpatterns and have captured the imaginations of both scientists and artists. Manyresearchers perform research on the generation method of fractal and draw manybeautiful images. The research of fractal has experienced a slow progressing phase. Itis needed to conclude current rendering methods and introduce new algorithm.
    The research of fractal needs the application of computer graphics method. One ofthe reasons why fractal concept can be accepted by people rapidly is the help of thecomputer graphics method. By giving a deep research on the application of computergraphics in fractal rendering, we can increase the comprehension of fractal and extendfractal application region. Meanwhile, the nature of complex structure of fractal needsthe fractal rendering method to be improved.
    The basic idea of current fractal rendering algorithm is to treat fractal as point sets,select different color for pixel during iteration process and render it on screen, such aschaos game method for rendering IFS and escape time algorithm for renderingcomplex mapping. These methods have following shortages:
    1. Current render method of complex mapping can only render the borderbetween the stable region and escape region, and cannot display the detail of stableregion and escape region and it is difficult to understand fractal image structure.
    2.The iteration fractal image of some complex mapping is difficult to rendering.It is needed to modify current method or develop new method to research the iterativeproperties of the mapping.
    3. There is no related work about making fractal image with some painting style,so it is possible to extend the application region of fractal image.
    From above discussion we can see there are many problems in fractal technology.This dissertation tries to innovate and break through on these problems, introduce new
    fractal rendering method to rendering process and improve fractal image rendering andutilize it to a new level. The innovations of this dissertation are listed as follows:1. Propose the distance ratio iteration method to construct fractal image.The distance ratio iteration method takes two points to perform iteration andutilizes its convergence speed to render fractal image of complex mapping. Thegeneralized Mandelbrot and Julia sets based on distance ratio have rich detail in stableregion. The distance ratio iteration method can render fractal image of some complexmapping which cannot be rendered by escape time algorithm. This dissertation sturdieson the iteration properties of distance ratio and proves its convergence theorem. Basedon these theorems, we introduce three methods for rendering distance ratio fractal,including convergence time method, inverse iteration layer method and mix method.These algorithms can render many fractal images of complex mapping, such aspolynomial mapping, exponent mapping, logarithm mapping and 3x+1 mapping.The escape time algorithm treat all convergence points as a same point, so itcannot render structure of stable region. However, distance ratio method useconvergence time to classify point set and can get complex structure.The fractal image rendered by distance ratio method is the two dimensionprojection of complete four dimension point sets because distance ratio takes twopoints to perform iteration. Distance ratio iteration method provide a general methodfor rendering 2d-4d fractal object.2.Research on the generalized Julia set based on distance ratio for f(z)=zα+c.Firstly we research the visual structure of DRJ for nonparameter mapping f(z)=z2and analysis its buds distribute rule, give formula of each level width. Secondly, weresearch the evolution rule of DRJ for mapping f(z)=zα(1<α<2) and rendering variousexponent mapping ‘s fractal image.We study the generalized Julia set based on distance ratio for f(z)=z2+c anddiscuss the image properties for mapping with attractive fixed point, two period orbitand p period orbit. We state the symmetry theorem of DRJ and prove the border ofDRJ is the mapping‘s Julia set. So the distance ratio iteration method can be a methodfor rendering the inner structure of Julia set. We state the reason of two phase structureexist in DRJ when mapping has two period orbit and give a new algorithm to renderDRJ when the mapping has p period orbit.This dissertation discusses the chooson of z2 for DRJ. Firstly, we research thesituation when z2 is a fixed complex number and discuss image structure for differentlocation of z2. Then we research the situation which z2=g(z1) and give the notation oftwo mapping compose distance ratio Julia set. We discuss some complex mapping
    composed distance ratio Julia set and state the extend ability of distance ratio iterationmethod.We research the generalized Julia set based on distance ratio for f(z)=zα+c andstate the shortage of escape time algorithm in this situation and the advantage ofdistance ratio iteration method. The distance ratio Julia set is a fine Julia set and it canrender the detail that not in Julia set.3.Research on generalized Mandelbrot set based on distance ratio for f(z)=zα+c.Taking complex mapping f(z)=zα+c as an example, we generates images of thegeneralized Mandelbrot set based on distance ratio and states conjectures on theirvisual characteristics. Comparing with escape time algorithm, it consists of abundantdetails in the convergent region and more complex structure can be generated.Therefore, distance ratio iteration method can be used as a new method for renderinginner structure of M-set when α>1.DRM for α<0 is composed of two parts: outer curve polygon and innerconstellation. The curve polygon has |α|+1 edges and is covered by petal structures inouter layer;Inner constellation is composed of a central planet and surroundingsatellites. The central planet has |α|+1 protuberances and tangent with curve edge ofoutside polygon in the middle points. The DRM is the complement of M-set incomplex plane.When 0<α<1, M-set generated by escape time algorithm is a kind of simplegeometry image, because the attractive region of the mapping changes.4.Research on the complex iterated function system f(z) =z2+ciThe dissertation researches the iteration properties of complex mapping setf(z)=z2+c by taking them as an complex iterated function system. Firstly we discuss thecondition of the complex mapping family to become an NIFS. Then the dissertationresearches some common problems in NIFS, such as the relationship between attractorand the fixed point of mapping, the selection of mapping parameter, and the bound ofattractor.Based on above discussion, we can make such conclusion: the complex mappingset is a iteration function system, only if |ci|≤0.25 and the initial iteration point z locatesin the intersection of the mappings of the Julia set or |z|<0.5. The attractor generated bythe complex IFS satisfying this condition converge to the cycle whose center is theorigin and radius is(1 ? 1 ? 4 R)/ 2. The equations for computing fixed points are listedin the former part.
    5.Propose a model to render dry brush effect of Chinese brush work.Some article states that there is fractal character in Chinese paint and calligraphy.So the fractal image can be used to Chinese painting and calligraphy. We propose acalligraphy model based on iteration function system construct by complex mappingfamily f(z)=z2+ci. The models construct iterated function system based on user's brushspeed and contrail renders the attractor by chaos game algorithm as final dry brushstroke. It is easy to combine this model to current brush model.In conclusion, this dissertation has academic significance and value of application,and it enriches the research of fractal geometry. It also provides constructive methodand techniques for research of fractal geometry.
引文
[1] Mandelbrot B.B. The Fractal Geometry of Nature. New York, Freeman. 1977.
    [2] Falconer, K. Fractal Geometry – Mathematical Foundations and Applications, John Wiley & Sons, 1990.
    [3] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge University Press, 1952.
    [4] Koch H.von. Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Archiv f?r Matemat., Astron. och Fys. 1, 681-702, 1904.
    [5] Dickau R. M. "The Sierpinski Carpet." http://mathforum.org/advanced/robertd/carpet.html
    [6] Hausdorff F. "Dimension und ?u?eres Ma?." Math. Ann. 79, 157-179, 1919.
    [7] Schroeder M. "Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise." New York: W. H. Freeman, pp. 41-45, 1991.
    [8] Weisstein E.W. "Capacity Dimension." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CapacityDimension.html
    [9] Mandelbrot B.B. Les objets fractals: forme, hasard et dimension. Paris: Flammarion, 1975.
    [10] Tricot C. Two Definations of Fractional Dimension. Math, Proc. Camb. Phil. Soc., 1982, 54-74.
    [11] Grassberger P, Procaccia I, Characterization of strange attractors. Physical Review Letters, 1983, 50:346-349.
    [12] Mandelbrot B.B. Self-affine fractals and fractal dimension. Physica Scripta, 1985, 32, 257–260.
    [13] Dekking F.M. Recurrent sets: A fractal formalism. Technical Report 82-32, Technische Hogeschool, Delft (NL), 1982
    [14] Mandelbrot B.B., Ness J. Fractional brownian motions, fractional noises and applications. SIAM Review, 10, 422--437, 1968.
    [15] Mandelbrot B.B. Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 1974, 331-358.
    [16] Zahle U. A general Rice formula, Palm measure, and horizontal-window conditioning for random fields. Stochastic Processes and their Applications 17, 265–283, 1984
    [17] Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, 1963
    [18] Stewart I. The Lorenz attractor exists. Nature, vol 406, No 6799, 948-949, 2000
    [19] M.Henon. A two-dimensional mapping with a strange attractor, Comm.Math.Phys. 50, 69, 1976.
    [20] Grebogi C., Ott E., Yorke J.A. Super persistent chaotic transients. Ergod. Th. & Dyn. Syst. vol. 5, 341-372, 1985.
    [21] Fatou P. Sur les solutions uniformes de certaines equations fonctionelles. C. R. Acad. Sci. Paris, 1906, 143, 546-548.
    [22] Fatou P. Sur les equations fonctionelles. Bull. Soc. Math. France 48, 1920, 33-94;208-314.
    [23] Douady A, Hubbard J H. Iteration des Polynomes Quadratiques Complexes. CRAS Paris1982, 294, 123--126.
    [24] Hutchinson J.E. Fractals and self-similarity. Indiana University Mathematics Journal, 30:713--747, 1981.
    [25] Barnsley M. Fractals Everywhere. Academic Press, San Diego, 1993
    [26] Karel Culik II, Simant Dube, Balancing order and chaos in image generation. Computers & Graphics 17(4): 465-486, 1993
    [27] Bedford T. Dimension and Dynamics for Fractal Recurrent Sets. J. London Math. Soc. 33(2), 89-100, 1986.
    [28] Kaplan J.L. and Yorke J. A. Chaotic behavior of multidimensional dif-ference equations. In Functional Differential Equations and Approximation of Fixed Points, volume 730 of Lecture Notes in Mathematics, pages 204-227. SpringerVerlag, Berlin, 1979.
    [29] J. Farmer, E. Ott and J. Yorke, The dimension of chaotic attractors, Physica 7D (1983), 153--180.
    [30] A. Arneodo, G. Grasseau, M. Holschneider. Wavelet Transform of Multifractals, Phys. Rev. Lett. 61, 2281–2284 (1988)
    [31] C.Beck. Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals , Physica 41D, 67 (1990)
    [32] Z. Kov'acs, T. T'el, Bivariate thermodynamics of multifractals as an eigenvalue problem, Phys. Rev. A45, 2270-84 (1992).
    [33] 汪富泉,李后强.分形几何与动力系统.黑龙江教育出版社,1993
    [34] 张济忠.分形.清华大学出版社.1995
    [35] 谢和平,薛秀谦.分形应用中的数学基础与方法.科学出版社,1997
    [36] 曾文曲,王向阳.分形理论与分形的计算机模拟.东北大学出版社,1993,
    [37] 曾文曲,文有为,孙炜.分形小波与图像压缩.东北大学出版社,2002
    [38] 李水根,吴纪桃.分形与小波.科学出版社,2002
    [39] 陈宁,朱伟勇.M-J 混沌分形图谱.东北大学出版社,1998
    [40] 王兴元,广义 M-J 集的分形图谱.大连理工大学出版社.2002
    [41] Pickover, C. A. (1990). Computers, pattern, chaos and beauty., New York: St. Martin's Press
    [42] A. Douady. Does a Julia set depend continuously on the polynomial? In Complex dynamical systems: The mathematics behind the Mandelbrot set and Julia sets. ed. R.L. Devaney, Proc. of Symposia in Applied Math., Vol. 49, Amer. Math. Soc., 1994, pp. 91-138
    [43] A. Douady, J.H. Hubbard. Etude dynamique des polyn?mes complexes, I-II. Pub. Math. d'Orsay, 1984.
    [44] A. Douady, J.H. Hubbard. On the dynamics of polynomial-like mappings. Ann. Sci. école Norm. Sup., 18(1985), 287-343.
    [45] A. Douady, Algorithms for computing angles in the Mandelbrot set, in ``Chaotic Dynamics and Fractals,'' ed. Barnsley and Demko, Academic Press (1986) 155-168
    [46] A. Douady, Disques de Siegel et anneaux de Herman, Seminar Bourbaki, Astérisque, 152-153 (1987) 151-172
    [47] A. Douady and C. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math., 157 (1986) 23-48
    [48] A. Douady and J. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993) 263-297
    [49] D. Sullivan, Conformal dynamical systems, Lect. Notes Math. 1007 (1983) 725-752
    [50] D. Sullivan, Quasiconformal homeomorphisms and dynamics I Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418.
    [51] 黄永念, Mandelbrot 集及其广义情况的整体解析特性. 中国科学(A 辑), 1991. 8: 823-830.
    [52] Gujar UG, Bhavsar VC. Fractals from z←zα+c in the complex c-plane. Computers & Graphics, 1991, 15(3):441-449.
    [53] Wang XY, Liu XD, Zhu WY, Gu SS. Analysis of c-plane Fractal Images from z←zα+c for (α<0). Fractals, 2000, 8(3): 307-314.
    [54] 陈宁, 朱伟勇.复映射 z←zw+c (w=α+iβ)构造 M 集.计算机研究与发展,1997,34(12): 899-907.
    [55] Chen N, Zhu WY. Bud-Sequence conjecture on M fractal image and M-J conjecture between c and z planes from z←zw+c (w=α+iβ). Computers and Graphics, 1998,22(4):537~546.
    [56] 焉德军,张洪,朱伟勇.复迭代 z → z + c的 Mandelbrot 集和 Julia 集.沈阳工业大学学报,1999,21(2):169~171.
    [57] 朱志良,焉德军,朱伟勇.复迭代 z n +1 → z nm+ c的广义 Mandelbrot 集.东北大学学报(自然科学版),2000,21(5):469~472.
    [58] 谭建荣,程 锦.复映射 z → ( z ) ?a+ c(a≥2)的广义 M 集及其对称周期检测法.软件学报, 14(3), 666-674.
    [59] A. Lakhtakia, V.V. Varadan, R. Messier & V.K. Varadan, On the symmetries of the Julia sets for the process z←zp+c, Journal of Physics A: Mathematical and General, 20, 1987, 3533 -3535.
    [60] Gujar UG, Bhavsar VC, Vangala N. Fractal Images from z←zα+c in the Complex z-plane. Computers & Graphics, 1992, 16(1): 45-49.
    [61] Dhurandhar SV. Analysis of z-plane Fractal Images from z←zα+c for α<0. Computers & Graphics, 1993, 17(1): 89-94.
    [62] Glynn EF. The Evolution of the gingerbread man. Computers & Graphics, 1991, 15(4): 579-582.
    [63] 陈宁, 朱伟勇.复映射 z←zw+c(w=α+iβ)构造 J 分形图.计算机研究与发展,1998,35(11): 1020-1023.
    [64] 王兴元,石其江.一类复指数映射的广义 M-J 集.自然科学进展,2004,14(8):934-940.
    [65] 王兴元.复 C 平面上广义 M 集非边界区域分形结构的研究.自然科学进展, 2001, 11(7): 771~776.
    [66] 王兴元,朱伟勇.正实数阶广义 J 集的嵌套拓扑分布定理.东北大学学报(自然科学版), 1999, 20(5):489~492
    [67] 王兴元,顾树生.负实数阶广义 J 集的演化.中国图象与图形学报,2001,6(5):491~495
    [68] Sasmor JC. Fractals for Functions with Rational Exponent. Computers & Graphics, 2004, 28(4):601-615
    [69] Hooper KJ. A Note on Some Internal Structures of the Mandelbrot Set. Computers & Graphics, 1991, 15(2):295-297.
    [70] Philip KW. Field lines in the mandelbrot set. Computers & Graphics, 1992, 16 (4): 443-447.
    [71] 王兴元.负实数阶广义 M 集内部结构的探讨.计算机辅助设计与图形学学报, 2001, 13(10):868~872
    [72] Wang XY. Fractal structures of the non-boundary region of the generalized Mandelbrot set. Progress in Natural Science, 2001, 11(9): 693~700
    [73] Carlson PW. Pseudo 3D Rendering Methods for Fractals in the Complex Plane. Computers & Graphics,1996, 20(5):751-758.
    [74] Carlson PW. Two artistic orbit trap rendering methods for Newton M-set fractals. Computers & Graphics, 1999, 23(6):925-931.
    [75] 陈宁,朱伟勇.有理复映射 ( m ?m 1z) m z? m1? cJ 集及其自相似外环分维估计.计算机研究与发展, 1997, 34(8): 566-570.
    [76] 陈宁,朱伟勇.复映射 ( )?? e i π2z m+c????构造广义 Mandelbrot 集及 Julia 集.计算机研究与发展, 1997, 34(5): 393-396.
    [77] Rochon D. A Generalized Mandelbrot Set for Bicomplex Numbers. Fractals, 2000, 8(4):355-368.
    [78] Rochon D. On A Generalized Fatou-Julia Theorem. Fractals, 2003, 11(3):213-219.
    [79] F. Peherstorfer, C. Stroh. Julia and Mandelbrot sets of Chebyshev Families. International Journal of Bifurcation and Chaos, 2001, 11(9), 2463-2481.
    [80] Qiao JY. The Julia Set of the Mapping z←zexp(z+μ).Chinese Science Bulletin. 1994, 39(7), 529-533.
    [81] J. P. Dumont, C. A. Reiter. Visualizing generalized 3x+1 function dynamics, Computers & Graphics, Volume 25, 2001, 883–898.
    [82] J.L. Pe. The 3x+1 fractal. Computers & Graphics, 2004, 28(3):431-435.
    [83] Lakhtakia A. A Julia sets of swiched process. Computers & Graphics, 1991, 15(4):597-599.
    [84] 王兴元.开关广义 M-J 集.东北大学学报:自然科学版,2001,22(5),509-512.
    [85] Liu XD, Zhu ZL, Wang GX, Zhu WY. Composed Accelerated Escape Time Algorithm To Construct The General Mandelbrot Sets. Fractal, 2001, 9(2), 149-153.
    [86] V.Drakopoulos, N.Mimikou, T.Theoharis. An overview of parallel visualisation methods for Mandelbrot and Julia sets. Computers & Graphics, 2003, 27(4):635-646
    [87] M.Frame, T. Cogevina. An infinite circle inversion limit set fractal. Computers & Graphics, 2000, 24(5):797-804.
    [88] J.Leys. Sphere inversion fractals. Computers & Graphics, 2005, 29(3):463-466.
    [89] A.Norton. Generation and Display Geometric Fractals in 3-D. Computer Graphics, 1982, 16(3), 61-67.
    [90] J.C. Hart, D.J. Sandin, L.H. Kauffman. Ray tracing deterministic 3D fractals. Computer Graphics , 1989 , 23 (3) : 289-296
    [91] J.C. Hart, L.H. Kauffman, D.J. Sandin. Interactive visualization of quaternion Julia sets. In : Proceedings of the 1st Conference on Visualization'90 , San Francisco , California , 1990 , 209-218
    [92] Bogush A., Gazizov A.Z., Kurochkin Yu. A., Stosui V. T. On symmetry properties of quaternionic analogs of Julia sets. In : Proceedings of the 9th Annual Seminar NPCS22000 , Minsk : Belarus , 2000 , 304-309
    [93] T.W. Gintz. Artist's statement CQUATS--a non-distributive quad algebra for 3D renderings of Mandelbrot and Julia sets. Computers & Graphics , 2002 , 26 (2) : 367-370
    [94] 程锦,谭建荣. 基于三元数的三维广义 M 集表示及其绘制算法. 计算机学报. 2004, 27(6), 729-735.
    [95] UltraFractal software. http://www.ultrafractal.com/
    [96] Fractint software. http://spanky.triumf.ca/www/fractint/fractint.html
    [97] XaoS software. http://wmi.math.u-szeged.hu/~kovzol/xaos/doku.php
    [98] Chaospro software. http://www.chaospro.de/
    [99] Soler's Fractal gallery. http://soler7.com/Fractals/FractalsSite.html
    [100] Fractoviaauthoritative source of fractal generators. http://www.fractovia.org/
    [101] Fractal landscapes. http://www.fractal-landscapes.com
    [102] Fractal Artwork. http://www.phidelity.com/ph2/fractals
    [103] Richard P. Taylor, Adam P. Micolich, David Jonas. Fractal analysis of Pollock's drip paintings. Nature 399, 1999, 422.
    [104] Branka Spehar, Colin W.G. Clifford, Ben R. Newell, Richard P. Taylor. Universal aesthetic of fractals. Computers & Graphics, 2003, 27, 813-820.
    [105] Mark Townsend fractal painting. http://www.fractalartcontests.com/2000/en/entry-430-4.htm
    [106] M. Barnsley, A.D. Sloan. A better ways to compress images. BYTE, JAN, 215-223.
    [107] J.E. Hutchinson. Fractals and self-simlarity. Indiana University mathematics Journal, 30:713-747, 1981.
    [108] A.E. Jacquin. Fractal image coding based on a theory of iterated contractive image transformations. Pro. SPIE: Vis. Commun. Image Processing, 1990, Vol 1360, 227-239.
    [109] A. Lindenmayer. Mathematical models for cellular interactions in development i&ii. Journal of Theoretical Biology, 1968.
    [110] A.R. Smith. Plants, fractals and formal languages. Computer Graphics, 1984, 19:July 1-10.
    [111] 张海江,王秀锦,孙济州,石永欣,李丹.应用分形仿真水墨扩散轮廓.计算机辅助设计与图形学学报, 2004, 16(4): 555-558.
    [112] A. Hertzmann. A Survey of Stroke-Based Rendering. IEEE Computer Graphics and Applications 23 (4): 70-81, 2003.
    [113] P. Dominguez, G. Sienra. A Study of the Dynamics of λsinz. International Journal of Bifurcation and Chaos, 2002, 12(12), 2869-2883.
    [114] 付冲,王培荣,徐喆,朱伟勇.复映射 z←sinz2+c 的广义 M-J 混沌分形图谱.东北大学学报(自然科学版), 2004, 25(10), 950-953.
    [115] 吕以辇.复解析动力系统.科学出版社.1995.
    [116] C.A.Pickover, E.Khorasni. Computer graphics generated from the iteration of algebraic transformations in the complex plane, Computer& Graphics,1985, 9(2):147-151
    [117] E.R.Vrscay, C.J.Roehric. “Missing moment” and perturbative method for polynomial iterated function systems. Physical: D, 1991, 50, 478~492.
    [118] Eduard Groller. Modeling and Rendering of Nonlinear Iterated Function Systems. Computers & Graphics 18(5), 1994, 739-748.
    [119] Zair CE, Tosan E. Fractal modeling using free form techniques. Computer Graphics Forum, 1996, 15(3):269-278.
    [120] Edalat Abbas. Power Domains and Iterated Function Systems. Information and Computation 124(2), 1996, 182-197.
    [121] 葛显良,应用泛函分析,浙江大学出版社. 2001,191-193.
    [122] D. W. Kwo, Chinese Brushwork: Its History, Aesthetics, and Techniques, George Prior, London, 1981.
    [123] Strassmann, S. Hairy Brushes. Computer Graphics (ACM), 1986, 20(4): 225-232
    [124] Hsu S C, Lee I. Drawing and animation using skeletal strokes. In Computer Graphics Proceedings, Annual conference Series, ACM SIGGRAPH, New York, 1994. 109-118
    [125] Siong Chua, Y. Bezier brushstrokes. Computer-Aided Design, 1990. 22(9): 550-555
    [126] Wong, H. T. F. and H. H. S. Ip. Virtual brush: a model-based synthesis of Chinese calligraphy. Computers & Graphics, 2000, 24(1): 99-113.
    [127] Xu, S., M. Tang. Virtual hairy brush for painterly rendering. Graphical Models, 2004, 66(5): 263-302.
    [128] 石永鑫,孙济洲,张海江,贾文丽. 基于粒子系统的中国水墨画仿真算法. 计算机辅助设计与图形学学报. 2003, 15(16): 667-672.
    [129] 宓晓峰,唐敏,林建贞,董金祥. 基于经验的虚拟毛笔模型. 计算机研究与发展. 2003, 40(18): 1245-1251.
    [130] Chu, N. S. H. and C.-L. Tai. Real-time painting with an expressive virtual Chinese brush. IEEE Computer Graphics and Applications, 2004, 24(5): 76-85.
    [131] Yu, J. and Q. Peng. Realistic synthesis of cao shu of Chinese calligraphy. Computers & Graphics, 2005, 29(1): 145-153.
    [132] Ip, H. H. S., H. T. F. Wong. Fractal coding of Chinese scalable calligraphic fonts. Computers & Graphics, 1994, 18(3): 343-351.
    [133] 王东生,曹磊. 混沌、分形及其应用. 中国科学技术大学出版社. 1995.
    [134] Peitgen H.O, Richter P.H. The beauty of fractals. Berlin: Springeverlag, 1986: 54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700