非线性中立型泛函微分方程数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中立型泛函微分方程(NFDEs)常出现于生物学、物理学、控制理论及工程技术等诸多领域,由于其重要性,近四十年来,人们对这类方程的适定性及其数值方法的收敛性和稳定性进行了大量研究;但另一方面,由于其困难性,迄今国内外文献中对于其理论解和数值解的稳定性研究仍局限于线性问题和一些特殊的非线性问题.本文主要目的是试图将这项研究进一步发展到更为一般的中立型非线性问题.所获主要结果如下:
     (1)提出了Banach空间中非线性NFDEs试验问题类L_(λ~*)(α,β,γ,L,τ_1,τ_2)和D_(λ~*)(α,β,γ,(?),τ_1,τ_2),获得了其理论解的一系列稳定性、收缩性、渐近稳定性及指数渐近稳定性结果.这些结果是本文数值稳定性分析的基础.
     应当指出,2005年,李寿佛建立了Banach空间中非线性刚性Volterra泛函微分方程(VFDEs)稳定性的一般理论(参见[146]),本文的上述结果将该理论进一步发展到非线性NFDEs.在国内外其他文献中,迄今主要研究了有限维空间中的中立型延迟微分方程(NDDEs)理论解的稳定性,尚未见到关于Banach空间中一般的非线性NFDEs理论解的研究工作.而且其中大量工作是针对线性中立型问题的,例如可参见[32-65],仅有Bellen,Guglielmi和Zennaro[93],张诚坚[95],Vermiglio和Torelli[97]以及王晚生和李寿佛[105,109]等人研究了一些特殊的非线性NDDEs的理论解的稳定性.
     (2)研究了Banach空间中非线性NDDEs数值方法的稳定性和收敛性,给出了求解一类多延迟中立型微分方程的线性θ-方法的稳定性和渐近稳定的充分条件,获得了求解非线性变延迟中立型微分方程的一类变系数线性多步方法及若干类型的显式和对角隐式Runge-Kutta法的一系列数值稳定性结果,对于前者,同时获得了收敛性结果.
     此前国内外文献中未见到有关Banach空间中非线性变延迟NDDEs数值方法的稳定性和收敛性研究工作,只有少量文献研究了有限维空间中一些特殊的非线性NDDEs的数值稳定性,例如可参见[83,93,95-109].
     (3)利用一个单边Lipschtiz条件和一些经典Lipschtiz条件,对有限维欧氏空间中求解非线性变延迟中立型微分方程的单支方法和波形松弛方法的误差进行了估计.考虑了中立项的三种不同逼近方式,证明了带线性插值的单支方法是p阶E(或EB)-收敛的当且仅当该方法A-稳定且经典相容阶为p(这里p=1,2),同时给出了波形松弛方法的收敛性结果,部分解决了Bartoszewski和Kwapisz于2004年提到的单边Lipschitz条件不能应用于NFDEs的问题,为今后开展这方面的研究打开了突破口.数值试验结果验证了所获理论结果的正确性.
     (4)获得了求解一类非线性中立型延迟积分微分方程(NDIDEs)的G(c,p)-代数稳定的单支方法和(k,l)-代数稳定的Runge-Kutta法的稳定和渐近稳定的一系列准则.同时利用单边Lipschitz条件,获得了G-稳定单支方法和代数稳定Runge-Kutta方法求解此类型的非线性NDIDEs的收敛性结果.数值试验验证了上述理论结果的正确性.
     据我们所知,迄今仅有少数作者研究了线性NDIDEs的数值稳定性(参见[63-65]).2006年,余越昕和李寿佛[98],余越昕、文立平和李寿佛[103]研究了Runge-Kutta法用于求解另两种类型非线性NDIDEs的稳定性.需要指出的是,非线性延迟积分微分方程(DIDEs)是本文研究的非线性NDIDEs的特殊情形,将本文所获数值稳定性结果应用于DIDEs,相应的结果比已有的结果更为一般和深刻(参见本文第五章第3和第4节).
     (5)获得了Hilbert空间中非线性中立型分片延迟微分方程和非线性中立型变延迟微分方程本身散逸的充分条件.对中立型分片延迟微分方程,证明了一个DJ-不可约的代数稳定的Runge-Kutta方法是(弱)E(λ)-散逸的,只要下列二条件中至少有一个成立:
     1.A~(-1)存在,且|1-b~TA~(-1)e|<1;对一般的中立型有界变延迟微分方程,利用一些新的技巧,获得了DJ-不可约的代数稳定的Runge-Kutta方法的有限维散逸性和无限维散逸性结果.
     在常微分方程(ODEs)和VFDEs系统本身的散逸性和数值方法的散逸性研究中,已经获得了大量重要研究成果,例如可参见[125-144].2007年,程珍和黄乘明[145]给出了Hale型中立型延迟微分方程散逸的充分条件,并讨论了一类线性多步方法的散逸性.一般形式的非线性NDDEs本身及数值方法的散逸性研究在国内外文献中尚未见到.值得指出的是,即使对于非中立型的延迟微分方程,本文所获数值散逸性结果也比已有的同类结果更为一般和深刻(参见本文第六章第3节).
Neutral functional differential equations (NFDEs) can be found in many scientific and technologicalfields such as biology, physics, control theory, engineering and so on. In the last four decades, basic theory of NFDEs and numerical methods for NFDEs have been widely discussed by many authors because of its importance. On the other hand, due to the difficulty of the research, so far stability analysis of the theoretical and numerical solutions are still limited to linear problems and several classes of special nonlinear problems in literature. In this dissertation, the main object is to extend the research to more general case of nonlinear NFDEs. The main results obtained in this dissertation are as follows:
     (1) We introduce the test problem classes L_(λ~*)(α,β,γ,L,τ_1,τ_2)and D_(λ~*)(α,β,γ,(?),τ_1,τ_2) with respect to the initial value problems of nonlinear NFDEs in Banach spaces. A series of stability, contractivity,asymptotic stability and exponential asymptotic stability results of the theoretical solutions to nonlinear NFDEs in Banach spaces are obtained. These results are the basis of numerical stability analysis in this dissertation.
     It should be pointed out that the aforementioned results can be regarded as an extension of the stability theory of nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces established by S. F. Li [146] in 2005. Other related results we have seen in literature are all limited to the stability analysis of the theoretical solutions to neutral delay differential equations (NDDEs) in a finite dimensional spaces. For linear NDDEs we refer to [32-65], and for nonlinear NDDEs, refer to [93, 95, 97, 105, 109].
     (2) We study the stability and convergence properties of numerical methods for nonlinear NDDEs in Banach spaces. Sufficient conditions for the stability and asymptotic stability of linearθ-methods for a class of NDDEs with many delays are obtained, and a series of stability results are obtained for a class of linear multistep methods with variable coefficient and for several classes of explicit and diagonal implicit Runge-Kutta methods when applied to nonlinear NDDEs with variable delay. Moreover, convergence results of a class of linear multistep methods with variable coefficient are also obtained.
     Up to now only a few papers in literature have researched the numerical stability of several classes of special nonlinear NDDEs in finite dimensional spaces, for example, see [83,93,95-109].
     (3) Using a one-sided Lipschitz condition together with some classical Lipschitz conditions, we give the error estimation of one-leg methods and waveform relaxation methods (WRM) for nonlinear NDDEs with variable delay in a finite-dimensional space. We consider three different approaches to approximating neutral term, prove that a one-leg method with linear interpolation is E (or EB)-convergent of order p if and only if it is A-stable and consistent of order p in the classical sense for ODEs, where p = 1,2. We also give the convergence results on waveform relaxation methods. Several numerical tests are given that confirm the theoretical results mentioned above.
     (4) A series of stability and asymptotic stability criteria of G(c, p)-algebraically stable one-leg methods and (k, l)-algebraically stable Runge-Kutta methods for a class of nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. Using a one-sided Lispschitz condition, we also obtain the convergence results of G-stable one-leg methods and algebraically stable Runge-Kutta methods for the class of nonlinear NDIDEs. We have done a series of numerical experiments which confirm the theoretical results mentioned above.
     As far as we know, there are a few papers dealt with the linear numerical stability for NDIDEs (see [63-65]). In 2006, Y. X. Yu and S. F. Li [98], Y. X. Yu, L. P. Wen and S. F. Li [103] discussed the stability of Runge-Kutta methods for another two classes of nonlinear NDIDEs. We would like to point out that nonlinear delay integro-differential equations (DIDEs) is the special case of the nonlinear NDIDEs considered in this dissertation. Applied the results obtained in the present paper, the corresponding results are more general and deeper than the related existing results in literature (see Chapter 6, Section 3 and Section 4).
     (5) Some sufficient conditions for the dissipativity of the solutions to neutral differential equationswith piecewise constant delay and bounded variable delay are obtained. For neutral differential equations with piecewise constant delay, we prove that under one of the following two conditions1. A~(-1) exists and |1 - b~TA~(-1)e| < 1;2. a_(si) = b_i, i = 1,2,…,s,a DJ- irreducible, algebraically stable Runge-Kutta method is (weakly) E(λ)- dissipative. By making use of some new techniques, the finite-dimensional dissipativity and the infinite-dimensional dissipativity results of DJ- irreducible and algebraically stable Runge-Kutta methods for neutral differential equations with bounded variable delay are obtained.
     There are a great deal of results on the dissipativity of the solutions to ordinary differential equations (ODEs) and VFDEs and on the dissipativity of numerical methods for them (for example, see [125-144]). In 2007, Z. Cheng and C. M. Huang [145] gave the sufficient conditions for the dissipativity of the solutions to NDDEs of Hale type and discussed the dissipativity of a class of linear multistep methods. It should be pointed out that even for non-neutral DDEs, the results obtained in this dissertation are more general and deeper than the related existing results in literature (see Chapter 6, Section 3).
引文
[1]郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社, 1992.
    
    [2] J. K. Hale and S. M. Verduyn-Lunel. Introduction to functional differential equations [M]. In Applied Mathmatical Sciences, Vol. 99, New York: Springer, 1993.
    
    [3] V. B. Kolmanovskii and V. R. Nosov. Stability of functional differential equations [M]. London: AcademicPress, 1986.
    
    [4] J. P. Richard. Time-delay systems: an overview of some recent advances and open problems [J]. Automatica,2003, 39: 1667-1694.
    
    [5] J. Hale. Theory of functional differential equations [M]. New York: springer-verlag, 1977.
    
    [6]李森林,温立志.泛函微分方程[M].长沙:湖南科学技术出版社, 1985.
    
    [7]秦元勋,刘永清,王联,郑祖庥.带有时滞的动力系统的运动稳定性(第二版)[M].北京:科学出版社,1989.
    
    [8]徐远通.泛函微分方程与测度微分方程[M].中山:中山大学出版社,1988.
    
    [9] V. B. Kolmanovskii and A. Myshkis. Introduction to the theory and applications of functional differential equations [M]. Dordrecht: Kluwer Academy, 1999.
    
    [10] R. D. Driver. A functional-differential system of neutral type arising in a two-body problem of classical electrodynamics [M]. Internat. Sympos. Nonli. Diff. Eqns. and Nonli. Mech., Acad. Press, 1963.
    
    [11] M. M. Konstantinov and D. D. Bainov. The existenc of the solutions of a systems of functional equations of superneutral type with retarded lag (in Russian) [J]. Diff. Urav., 1974, 10: 11-19.
    
    [12] J. H. Wu. Theory and applications of partial functional differential equations [M]. New York: Springer-Verlag, 1996.
    
    [13] Y. Kuang and A. Feldstein. Boundedness of solutions of a nonlinear nonautonomous neutral delay equation [J] . J. Math. Anal. Appl., 1991, 156: 293-304.
    
    [14] S. P. Lu and W. G. Ge. Existence of positive periodic solutions for neutral population model with taultiple delays [J]. Appl. Math. Comp., 2004, 153: 885-905.
    
    [15] Z. J. Liu and L. S. Chen. Periodic solution of neutral Lotka-Volterra system with periodic delays [J]. J. Math. Anal. Appl., 2006, 324: 435-451.
    
    [16] Y. K. Li. Positive periodic solutions of periodic neutral Lotka-Volterra system with state dependent delays [J]. J. Math. Anal. Appl., 2007, 330: 1347-1362.
    
    [17] A. Bellen, N. Guglielmi and A. Ruehli. Methods for linear systems of circuit delay differential equations of neutral type [J]. IEEE Trans. Circuits Syst. I, 1999, 46 (1): 212-216.
    
    [18] D. Yue and Q. L. Han. A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model [J]. IEEE Trans. Circuits Syst. II, 2004, 51 (12): 685-689.
    
    [19] D. Smith. Singular-perturbation theory: an introduction with applications [M]. Cambridge: Cambridge University Press, 1985.
    
    [20] G. Bocharov and K. P. Hadeler. Structured population models, conservation laws, and delay equations [J]. J. Diff. Eqs., 2000, 168: 212-237.
    
    [21] G. Bocharov and F.A. Rihan. Numerical modelling in biosciences using delay differential equations [J]. J. Comput. Appl. Math., 2000, 125: 183-199.
    
    [22] J. A. Burns and E. M. Cliff- Nonlinear neutral functional differential equations in product spaces [C]. W. N. Everitt and B. D. Sleeman. Ordinary and Partial Differential Equations. Dundee: Proceedings, 1982: 118-134.
    
    [23] A. G. Balanov, N. B. Janson, P. V. E. McClintock, It W. Tucker and C. H. T. Wang. Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string [J]. Chaos, Solitons and Fractals, 2003, 15: 381-394.
    
    [24] A. Bauer. Utilisation of chaotic signals for radar and sonar purpose [J]. NORSIG, 1996, 96: 33-36.
    
    [25] J. T. Ottesen. Modelling of baroflex feedback mechanism with time-delay [J]. J. Math. Biol., 1997, 36: 41-63.
    
    [26] H. Seidel and H. Herzel. Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex [J]. Physica D, 1998, 115: 145-160.
    
    [27] R. Jamaleddine and A. Vinet. Role of gap junction resistance in rate-induced delay in conduction in a cable model of the atrioventricular node [J]. J. Biol. Sys., 1999, 7: 475-499.
    
    [28] Y. Liu. Numerical solution of implicit neutral functional differential equations [J]. SIAM J. Numer. Anal., 1999, 36(2): 516-528.
    
    [29] R. D. Driver. Ordinary and delay differential equations [M]. New York: Springer-Verlag, 1977.
    
    [30] T. S. Zverkina. A modification of finite-difference methods for integrating ordinary differential equations with nonsmooth solutions [J]. Zh. Vychist. Mat. i Mat. Fiz., 1964, 4:149-160.
    
    [31] R. K. Brayton and R. A. Willoughby. On the numerical integration of a symmetric system of differencedifferentialequations of neutral type [J]. J. Math. Anal Appl., 1967, 18: 182-189.
    
    [32] Z. Jackiewicz. One-step methods of any order for neutral functional differential equations [J]. SIAM J. Numer. Anal., 1984, 21: 486-511.
    
    [33] A. Bellen, Z. Jackiewicz and M. Zennaro. Stability analysis of one-step methods for neutral delaydifferentialequations [J]. Numer. Math., 1988, 52: 605-619.
    
    [34] J. X. Kuang, J. X. Xiang and H. J. Tian. The asymptotic stability of one-parameter methods for neutral differential equations [J]. BIT, 1994, 34: 400-408.
    
    [35] G. Da Hu and T. Mitsui. Stability analysis of numerical methods for systems of neutral delay-differential equations [J]. BIT, 1995, 35: 504-515.
    
    [36] T. Koto. A stability property of A-stable collocation based Runge-Kutta methods for neutral differential equations [J]. BIT, 1996, 36: 855-859.
    
    [37] T. Koto. NP-stability of Runge-Kutta methods based on classical quadrature [J]. BIT, 1997, 37: 870-884.
    
    [38] L. Qiu, B. Yang and J. X. Kuang. The iVGP-stability of Runge-Kutta methods for systems of neutral delay differential equations [J]. Numer. Math., 1999, 81(3): 451-459.
    
    [39]张诚坚,高健.中立型微分方程的数值渐近稳定性[J].华中理工大学学报,2000,28:107-109.
    
    [40] H. J. Tian, J. X. Kuang and L. Qiu. The stability of linear multistep methods for linear systems of neutral differential equation [J]. J. Comput. Math., 2001, 19: 125-130.
    
    [41] L. Qiu and T. Mitsui. Stability of the Radau IA and Lobatto IIIC methods for NDDE systems [J]. J. Comput. Appl. Math., 2001, 137: 279-190.
    
    [42] C. M. Huang, Linear stability of general linear methods for systems of neutral delay differential equations [J]. Appli. Math. Lett., 2001, 14: 1017-1021.
    
    [43] Y. H. Cong, B. Yang and J. X. Kuang. Asymptotic stability and numerical analysis for systems of generalized neutral delay differential equations [J]. Mathe. Numer. Sinica (in Chinese), 2001, 11: 257-268.
    
    [44] Y. H. Cong. NGP_G-stability of linear multistep methods for systems of generalized neutral delay differentialequations [J]. Appli. Math. Mech. (English Edition), 2001, 22: 827-835.
    
    [45] Y. H. Cong and B. Yang. Asymptotic stability and numerical analysis for systems of generalized neutral delay differential equations [J]. Chinese J. Num. Math & Appl., 2002, 24: 63-75.
    
    [46] M. H. Song. The stability of Runge-Kutta methods for systems of neutral delay differential equations [J]. J. Natural Science of Heilongjiang University, 2003, 20: 10-14.
    
    [47]徐阳,刘明珠,赵景军.中立型延迟微分方程组多步Runge-Kutta方法的GP_d-稳定性[J].哈尔滨工业大 学学报,2004,36:1372-1-374.
    
    [48] Y. H. Cong, L. Xu and J. X. Kuang. Numerical stability of linear multistep methods for neutral delay differential equations with multiple delays [J]. J. Shanghai Normal University (Nature Science), 2006, 35: 1-6.
    
    [49] Y. H. Cong, L. Xu and J. X. Kuang. Asymptotic stability of numerical methods for neutral delay differential equations with multiple delays [J]. J. Systems Simulation, 2006, 18: 3387-3389.
    
    [50]曹婉容,赵景军.多延迟中立型方程方法的稳定性[J].系统仿真学报,2007,19:2698-2705.
    
    [51] G. Di Hu and G. Da Hu. Some simple stability criteria of neutral delay- differential systems [J]. Appl. Math. Comput., 1996, 80: 257-271.
    
    [52] G. Di Hu and G. Da Hu. Simple criteria for stability of neutral systems with multiple delays [J]. Int. J. Sys. Sci., 1997, 28: 1325-1328.
    
    [53] G. Di Hu, G. Da Hu and M. Z. Liu. Estimation of numerically stable step-size for neutral delaydifferentialequations via spectral radius [J]. J. Comput. Appl. Math., 1997, 78: 311-316.
    
    [54] G. Da Hu. Estimations on numerically stable step-size for neutral delay differential systems with multiple delays [J]. J. Comput. Appl. Math., 1999,102: 221-234.
    
    [55] G. Da Hu. Algebraic criteria for stability of linear neutral systems with a single delay [J]. J. Comput. Appl. Math., 2001, 135: 125-133.
    
    [56] Pink Ju-Hyun. A new delay-dependent criterion for neutral systems with multiple delay [J]. J. Comput. Appl. Math., 2001, 136: 177-184.
    
    [57] D. Q. Cao and P. He. Sufficient conditions for stability of linear neutral systems with a single delay [J]. Appl. Math. Lett., 2004, 17: 139-144.
    
    [58] H. Li, S. M. Zhong and H. B. Li. Some new simple stability criteria of linear neutral systems with a single delay [J]. J. Comput. Appl. Math., 2007, 200: 441-447.
    
    [59] A. Bellen, N. Guglielmi and M. Zennaro. On the contractivity and asymptotic stability of systems of delay differential equations of neutral type [J]. BIT, 1999, 39: 1-24.
    
    [60]匡蛟勋.泛函微分方程的数值处理[M].北京:科学出版社,1999.
    
    [61] A. Bellen and M. Zennaro. Numerical methods for delay differential equations [M]. Oxford: Oxford University Press, 2003.
    
    [62] J. X. Kuang and Y. H. Cong. Stability of numerical methods for delay differential equations [M]. Beijing: Science Press, 2005.
    
    [63] J. J. Zhao, Y. Xu and M. Z. Liu. Stability analysis of: numerical methods for linear neutral Volterra delay -integro-differential equations [J]. Appl. Math. Comput., 2005, 167: 1062-1079.
    
    [64]赵景军,徐阳.中立型Volterra延迟积分微分方程块θ-方法的稳定性[J].系统仿真学报, 2007,19: 3940-3942.
    
    [65] C. J. Zhang and S. Vandewalle. Stability criteria for exact and discrete solutions of neutral multidelayintegro-differential equations [J]. Adv. Comput. Math., 2007, 28 (4): 383-399.
    
    [66] M. D. Buhmann and A. Iserles. Numerical analysis of functional equations with a variable delay [C]. In Numerical Analysis. Dundee, London: Longman, 1991: 17-33.
    
    [67] M. D. Buhmann and A. Iserles. On the dynamics of a discretized neutral equation [J]. IMA J. Numer. Anal., 1992, 12: 339-363.
    
    [68] M. D. Buhmann and A. Iserles. Stability of the discretized pantograph differential equation [J]. Math. Comp., 1993, 60: 575-589.
    
    [69] M. D. Buhmann, A. Iserles and S. P. Nφsett. Runge-Kutta methods for neutral differential equations [C]. R. P. Agarwal. Contribution in Numerical Mathematics. Singapore: World scientific, 1993: 85-98.
    
    [70] A. Iserles. On the generalized pantograph functional-differential equations [J]. European J. Appl. Math.,1993, 4: 1-38.
    
    [71] A. Iserles. Numerical analysis of delay differential equation with variable delays [J]. Ann. Numer. Math.,1994, 1: 133-152.
    
    [72] A. Iserles. Exact and discretized stability of the pantograph equation [J]. Appl. Numer. Math., 1997, 24: 295-308.
    
    [73] A. Iserles and Y. Liu. On neutral functional-differential equations with proportional delays [J]. J. Math. Anal. Appl., 1997, 207: 73-95.
    
    [74] Y. Liu. Stability analysis of θ-methods for neutral functional- differential equations [J]. Numer. Math.,1995, 70: 473-485.
    
    [75] T. Koto. Stability of Runge-Kutta method for the generalized pantograph equation [J]. Numer. Math., 1999, 84: 233-247.
    
    [76] A. Bellen, N. Guglielmi and L. Torelli. Asymptotic stability properties of θ-methods for the pantograph equations [J]. Appl. Numer. Math., 1997, 24: 279-293.
    
    [77] A. Bellen, S. Maset and L. Torelli. Contractive initializing methods for the pantograph equations of neutral type [C]. D.Trigiante. Recent Trends in Numerical Analysis, Advances in the Theory of ComputationalMathematics, 3. 2000: 35-41.
    
    [78] A. Bellen. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delays [J]. IMA J. Numer. Anal., 2002, 22: 529-536.
    
    [79] E. Ishiwata. On the attainable order of collocation method for the neutral functional differential equation with proportional delay [J]. Computing, 2000, 64: 207-222.
    
    [80] N. Guglielmi and M. Zennaro. Stability of one-leg θ-methods for the variable coefficient pantograph equation on the quasi-geometric mesh [J]. IMA J. Numer. Anal., 2003, 23: 421-438.
    
    [81] C. J. Zhang and G. Sun. Boundedness and asymptotic stability of multistep methods for generalized pantograph equations [J]. J. Comput. Math., 2004, 22(3): 447-456.
    
    [82] J. J. Zhao, W. R. Cao and M. Z. Liu. Asymptotic stability of Runge-Kutta methods for the pantograph equations [J]. J. Comput. Math., 2004, 22(4): 523-534.
    
    [83] C. M. Huang and S. Vandewalle. Discretized stability and error growth of the non-autonomous pantographequation [J]. SIAM J. Numer. Anal., 2005, 42: 2020-2042.
    
    [84] C. J. Zhang and S. Z. Zhou. The asymptotic stability of theoretical and numerical solutions for systems of neutral taultidelay differential equations [J]. Science in China, 1998, 41: 504-515.
    
    [85] C. J. Zhang and S. Z. Zhou. Stability analysis of LMMs for systems of neutral multidelay-differential equations [J]. Computers Math. Appl, 1999, 38: 113-117.
    
    [86] Y. Liu. Runge-Kutta-Collocation methods for systems of functional-differential and functional equations [J]. Adv. Comput. Math., 1999, 11: 315-329.
    
    [87]黄乘明,常谦顺.泛函微分与泛函方程Runge-Kutta方法的稳定性分析[J].自然科学进展,2001,11: 568-572.
    
    [88] C. M. Huang and Q. S. Chang. Stability analysis of numerical methods for systems of functionaldifferentialand functional equations [J]. Comput. Math. Appl., 2002, 44:717-729.
    
    [89] S. Q. Gan and W. M. Zheng. Stability of multistep Runge-Kutta methods for systems of functional -differential and functional equations [J]. Appl. Math. Lett., 2004, 17: 585-590.
    
    [90] S. Q. Gan and W. M. Zheng. Stability of general linear methods for systems of functional-differential and functional equations [J]. J. Comput. Math., 2005, 23(1): 37-48.
    
    [91] S. Q. Gan. Asymptotic stability of Rosenbrock methods for systems of functional-differential and functionalequations [J]. Math. Comput. Modell., 2006, 44(1-2): 144-150.
    
    [92] C. J. Zhang. NGP(α)-Stability of general linear methods for NDDEs [J]. Comp. Math. Appl., 2004, 47: 1105-1113.
    
    [93] A. Bellen, N. Guglielmi and M. Zennaro. Numerical stability of nonlinear delay differential equations of neutral type [J]. J. Comput. Appl. Math., 2000, 125: 251-263.
    
    [94] C. J. Zhang and S. F. Li. Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations [J]. Appl. Math. Comput., 2001, 119: 109-115.
    
    [95] C. J. Zhang. Nonlinear stability of natural Runge-Kutta methods for neutral delay differential equations [J]. J. Comput. Math., 2002, 20: 583-590.
    
    [96]黄枝娇,张诚坚.数值求解NDDEs系统的单支方法的非线性稳定性[J].数学物理学报,2002,22A:421-426.
    
    [97] R. Vermiglio and L. Torelli. A stable numerical approach for implicit non-linear neutral delay differential equations [J]. BIT, 2003, 43: 195-215.
    
    [98] Y. X. Yu. Stability analysis of numerical methods for several classes of Volterra functional differential equations [D]. Ph. D. Thesis, Xiangtan: Xiangtan Univ., 2006.
    
    [99]余越昕,文立平,李寿佛.非线性中立塑延迟微分方程Runge-Kutta方法的稳定性[J].系统仿真学报, 2005,17:49-52.
    
    [100]余越昕,文立平,李寿佛.非线性中立型延迟微分方程线性θ-方法的渐近稳定性[J].高等学校计算数学学 报,2006,28:103-110.
    
    [101]余越昕,文立平,李寿佛.非线性中立型延迟微分方程单支方法的数值稳定性[J].计算数学, 2006,28: 357-364.
    
    [102] Y. X. Yu, L. P. Wen and S. F. Li. Stability analysis of general linear methods for nonlinear neutral delay differential equations [J]. Appl. Math. Comput., 2007, 187(2): 1389-1398.
    
    [103] Y. X. Yu, L. P. Wen and S. F. Li. Nonlinear stability of Runge-Kutta methods for neutral delay integrodifferentialequations [J]. Appl. Math. Comput., 2007, 191(2): 543-549.
    
    [104]王晚生.非线性刚性中立型延迟微分方程连续Runge-Kutta法稳定性分析[D].硕士毕业论文,湘潭:湘潭 大学,2004.
    
    [105]王晚生,李寿佛.非线性中立型延迟微分方程稳定性分析[J].计算数学,2004,26(3):303-314.
    
    [106]余越昕,李寿佛.非线性中立型延迟积分微分方程Runge-Kutta方法的稳定性[J].中国科学,2006,36(12): 1343-1354.
    
    [107] W. S. Wang, Y. Zhang and S. F. Li. Nonlinear stability of one-leg methods for delay differential equations of neutral type [J]. Appl. Numer. Math., 2008, 58: 122-130.
    
    [108] W. S. Wang, S. F. Li and K. Su. Nonlinear stability of Runge-Kutta methods for neutral delay differential equations [J]. J. Comput. Appl. Math., 2008, 214: 175-185.
    
    [109] W.S. Wang and S.F. Li. On the one-leg θ-methods for solving nonlinear neutral functional differential equations [J]. Appl. Math. Comput. 2007, 193: 285-301.
    
    [110] Z. Jackiewicz. The numerical solution of Volterra functional differential equations of neutral type [J]. SIAM J. Numer. Anal., 1981, 18: 615-626.
    
    [111] Z. Jackiewicz. Adams methods for neutral functional differential equations [J]. Numer. Math., 1982, 39: 221-230.
    
    [112] Z. Jackiewicz. Quasilinear taultistep methods and variable step predictor -corrector methods for neutral functional differential equations [J]. SIAM J. Numer. Anal., 1986, 23: 423-452.
    
    [113] Z. Jackiewicz. Variable-step variable-order algorithm for the numerical solution of neutral functional differential equations [J]. Appl. Numer. Math., 1987, 3: 317-329.
    
    [114] Z. Jackiewicz and E. Li. The numerical solution of neutral functional differential equations by Adams predictor-corrector methods [J]. Appl. Numer. Math., 1991, 8: 477-491.
    
    [115] Z. Jackiewicz and E. Lo. Numerical solution of neutral functional differential equations by Adams methods in divided difference form [J]. J. Comp. Appl. Math., 2006, 189: 592-605.
    
    [116] H. Hayashi. Numerical solution of retarded and neutral delay differential equations using continuous Runge-Kutta methods [D]. Ph.D. thesis, Canada: Department of Computer Science, University of Toronto, 1996.
    
    [117] W. H. Enright and H. Hayashi. Convergence analysis of the solution of retarded and neutral delay differential equations by continuous numerical methods [J]. SIAM J. Numer. Anal., 1998, 35: 572-585.
    
    [118] C. T. H. Baker. Retarded differential equations [J]. J. Comput. Appl. Math., 2000, 125: 309-335.
    
    [119] C. A. H. Paul. Designing efficient software for solving delay differential equations [R]. MCCM Technical Report, Vol. 368, Manchester, ISSN 2000: 1360-1725.
    
    [120] C. T. H. Baker and C. A. H. Paul. Discontinuous solutions of neutral delay differential equations [J]. Appl. Numer. Math., 2006, 56: 284-304.
    
    [121] Z. Jackiewicz, M. Kwapisz and E. Lo. Waveform relaxation methods for functional differential systems of neutral type [J]. J. Math. Anal. Appl., 1997, 207: 255-285.
    
    [122] Z. Bartoszewski and M. Kwapisz. Delay dependent estimates for waveform relaxation methods for neutral differntial-functional systems [J]. Comput. Math. Appl., 2004, 48: 1877-1892.
    
    [123] W. H. Enright and M. Hu. Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay [J]. Appl. Numer. Math., 1997, 24: 175-190.
    
    [124] H. Brunner. Collacation methods for Volterra integral and related functional differential equations [M]. Cambridge: Cambridge University Press, 2004.
    
    [125] R. Temar. Infinite-dimensional dynamical systems in mechanics and physics [M]. In: Springer applied mathematical sciences series, Vol. 68, Berlin: Springer. 1988.
    
    [126] A. M. Stuart and A. R. Humphries. Model problems in numerical stability theory for initial value problems [J]. SIAM Review, 1994, 36: 226-257.
    
    [127] J. C. Robinson. Infinite-dimensional dynamical systems [M]. Cambridge: Cambridge University Press, 2001.
    
    [128] A. R. humphries and A.M. Stuart. Runge-Kutta methods for dissipative and gradient dynamical systems [J]. SIAM J. Numer. Anal., 1994, 31: 1452-1485.
    
    [129] A. T. Hill. Global dissipativity for A-stable methods [J]. SIAM J. Numer. Anal., 1997, 34: 119-142.
    
    [130] A. T. Hill. Dissipativity of Runge-Kutta methods in Eilbert spaces [J]. BIT, 1997, 37: 37-42.
    
    [131]肖爱国.Hilbert空间中散逸动力系统一般线性方法的散逸稳定性[J].计算数学,2000,22(4):429-436.
    
    [132] C. M. Huang. Dissipativity of Runge-Kutta methods for dynamical systems with delays [J]. IMA J. Numer. Anal., 2000, 20: 153-166.
    
    [133] C. M. Huang. Dissipativity of one-leg methods for dynamical systems with delays [J]. Appl. Numer. Math., 2000, 35: 11-22.
    
    [134]黄乘明,陈光南.延迟动力系统线性θ-方法的散逸性[J].计算数学,2000,22(4):501-506.
    
    [135] C. M. Huang. Dissipativity of multistep Runge-Kutta. methods for dynamical systems with delays [J]. Math. Comp. Model., 2004, 40: 1285-1296.
    
    [136] H. J. Tian. Numerical and analytic dissipativity of the θ-method for delay differential equation with a bounded variable lag [J]. International J. Bifurcation and Chaos, 2004, 14: 1839-1845.
    
    [137] L. Q. Fan, Y. Y. Zhang, J. X. Xiang and H. J. Tian. Numerical dissipativity of two-stage θ-method for delay differential equations [J]. J. System Simulation, 2005, 17: 599-600.
    
    [138] L. P. Wen and S. F. Li. Dissipativity of Volterra functional differential equations [J]. J. Math. Anal. Appl., 2006, 324: 696-706.
    
    [139] A. L. Shen, N. Guo, J. X. Xiang and H. J. Tian. Numerical dissipativity of two-stage Lobatto III-C method for linear delay differential equations with variable coefficients [J]. J. Shanghai normal University,2006, 35: 18-24.
    
    [140] L. P. Wen, Y. X. Yu and S. F. Li. Dissipativity of linear multistep methods for nonlinear differential equations with piecewise delays [J]. Math. Numer. Sinica, 2006, 28: 67-74.
    
    [141] S. Q. Gan. Dissipativity of linear θ-methods for integro-differential equations [J]. Comput. Math. Appl., 2006, 52: 449-458.
    
    [142] S. Q. Gan. Dissipativity of θ-methods for nonlinear Volterra delay-integro-differential equations [J]. J. Comput. Appl. Math., 2007, 206: 898 + 907.
    
    [143] S. Q. Gan. Exact and discretized dissipativity of the pantograph equation [J]. J. Comput. Math., 2007, 25(1): 81-88.
    
    [144] H. J. Tian, L. Q. Fan and J. X. Xiang. Numerical dissipativity of multistep methods for delay differential equations [J]. Appl. Math. Comput., 2007, 188 (1): 934-941.
    
    [145]程珍,黄乘明.非线性中立型延迟微分方程的散逸性[J].系统仿真学报,2007,19:3184-3187.
    
    [146]李寿佛.Banach空间中非线性刚性Volterra泛函微分方程的稳定性分析[J].中国科学(A辑),2005,35(3): 286-301.
    
    [147] M. I. Gil'. Stability of finite and infinite dimensional systems [M]. Boston: Kluwer Academic Publishers, 1998.
    
    [148]李寿佛.一类多步方法的非线性稳定性[J].高等学校计算数学学报, 1987,9(2):110-118.
    
    [149]李寿佛.刚性微分方程算法理论[M].长沙:湖南科学技术出版社,1997.
    
    [150]文立平.抽象空间中非线性Volterra泛函微分方程的数值稳定性分析[D].博士毕业论文,湘潭:湘潭大学, 2005.
    
    [151] L. P. Wen, Y. X. Yu and S. F. Li. The test problem class of Volterra functional differential equations in Banach space [J]. Appl. Math, and Comput., 2006, 179(1): 30-38.
    
    [152]程云鹏.矩阵论[M].西安:西北工业大学出版社,2000.
    
    [153] P. Lancaster and M. Tismenetsky. The theory of matrices [M]. Orlando: Academic Press, 1985.
    
    [154] E. Hairer and G. Wanner. Solving ordinary differential equations II: stiff and differential algebraic problems [M]. Berlin: Springer-Verlag, 1991.
    [155] A. Halanay. Differential equations: stability, oscillatios, time lags [M]. New York: Academic Press, 1966.
    [156] C. T. H. Baker and A. Tang. Generalized Halanay inequalities for Volterra functional differential equations and discretized versions [C]. In: Corduneanu C, Sandberg I W (Ed.), Volterra Equations and Applications (Arlington, TX, 1996), Stability Control Theory Methods Appl., Vol. 10, Gordon and Breach, Amsterdam, 2000; 39-55.
    [157] E. Liz and S. Trofimchuk. Existence and stability of almost periodic solutions for quasilinear delay systems and the Halanay inequality [J]. J. Math. Ana. Appl., 2000, 248: 625-644.
    [158] O. Nevanlinna and W. Liniger. Contractive methods for stiff differential equations, Part I [J]. BIT, 1978, 18: 457-474.
    [159] O. Nevanlinna and W. Liniger. Contractive methods for stiff differential equations, Part II [J]. BIT, 1979, 19: 53-72.
    [160] R. Vanselow. Nonlinear stability behaviour of linear multistep methods [J]. BIT, 1983, 23: 388-396.
    [161] S. F. Li. Nonlinear stability of explicit and diagonal implicit Runge-Kutta methods [J]. Math. Numer. Sinica, 1987, 9: 419-430.
    [162] S. F. Li. Nonlinear stability of a class of multistep multiderivative methods [J]. Natural Science J. of Xiangtan Univ., 1987, 20: 1-8.
    [163] L. P. Wen and S. F. Li. Nonlinear stability of linear multistep methods for stiff delay differential equations in Banach spaces [J]. Appl. Math. Comput., 2005, 168 1031-1044.
    [164] L. P. Wen, Y. X. Yu and S. F. Li. Stability of explicit and diagonal implicit Runge-Kutta methods for nonlinear Volterra functional differential equations in Banach spaces [J]. Appl. Math. Comput., 2006, 183: 68-78.
    [165] C. J. Zhang. D-convergence and stability of a class of linear multistep methods for nonlinear DDEs [J]. J. Comp. Math., 2000, 18: 199-206.
    [166] K. J. in't Hout. A note on unconditional maximum norm contractivity of diagonally split Runge-Kutta methods [J]. SIAM J. Numer. Anal., 1996, 33: 1125-1134.
    [167] S. F. Li. B-theory of Runge-Kutta methods for stiff Volterra functional differential equations [J]. Science in China (Series A), 2003, 46: 662-674.
    [168] S. F. Li. B-theory of general linear methods for stiff Volterra functional differential equations [J]. Appl. Numer. Math., 2005, 53: 57-72.
    [169] N. Guglielmi. Short proofs and a counterexample for analytical and numerical stability of delay equations with infinite memory [J]. IMA J. Numer. Anal., 2006, 26: 60-77.
    [170] W. S. Wang, S. F. Li and K. Su. Nonlinear stability of a class of multistep methods for test problem in Banach spaces [J]. Math. Num. Sinica, 2006, 28: 201-210.
    
    
    [171] M. Zennaro. Natural continuous extensions of Runge-Kutta methods [J]. Math. Comp., 1986, 173: 119-133.
    
    [172] C. M. Huang, H. Y. Fu, S. F. Li and G. N. Chen. Stability analysis of Runge-Kutta methods for non-linear delay differential equations [J]. BIT, 1999, 39: 270-280.
    
    [173] C. M. Huang, S. F. Li, H. Y. Fu and G. N. Chen. Stability and error analysis of one-leg methods for nonlinear delay differential equations [J]. J. Comput. Appl. Math., 1999, 103: 263-279.
    
    [174] C. M. Huang, S. F. Li, H. Y. Fu and G. N. Chen. Nonlinear stability of general linear methods for delay differential equations [J]. BIT, 2002, 42(2): 380-392.
    
    [175] G. Dahlquist. G-stability is equivalent to A-stability [J]. BIT, 1978, 18: 384-401.
    
    [176] C. M. Huang.A-stability is equivalent to B-convergence [J]. Chinese J. Eng. Math., 1995, 12: 119-122.
    
    [177] E. Lelarasmee, A. E. Ruehli and A. L. Sangiovanni-Vincentelli. The waveform relaxation method for time-domain analysis of large scale integrated circuits [J]. IEEE Trans. CAD IC Syst., 1982, 1: 131-145.
    
    [178] K. J. in't Hout. On the convergence of waveform relaxation methods for stiff nonlinear ordinary differentialequations [J]. Appl. Numer. Math., 1995, 18: 175-190.
    
    [179] B. Zubik-kowal and S. Vandewalle. Waveform relaxation for functional-differential equations [J]. SIAM J. Sci. Comput., 1999, 21: 207-226.
    
    [180] Z. Bartoszewski and M. Kwapisz. On the convergence of waveform relaxation methods for differentialfunctionalsystems of equations [J]. J. Math. Anal. Appl., 1999, 235: 478-496.
    
    [181] Z. Bartoszewski and M. Kwapisz. On error estimates for waveform relaxation methods for delay differentialequations [J]. SIAM J. Numer. Anal. 38 (2000) 639-659.
    
    [182] Z. Jackiewicz and M. Kwapisz. Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J. Numer. Anal, 1996, 33: 2303-2317.
    
    [183] L. Torelli. Stability of numerical methods for delay differential equations [J]. J. Comput. Appl. Math., 1989, 25: 15-26.
    
    [184] C. J. Zhang and S. Z. Zhou. Nonlinear stability and D-convergence of Runge-Kutta methods for DDEs .[J]. J. Comput. Appl. Math. 1997, 85: 225-237.
    
    [185] C. M. Huang, S. F. Li, H. Y. Fu and G. N. Chen. D-convergence of one-leg methods for stiff delay differential equations [J]. J. Comput. Math., 2001, 19: 601-606.
    
    [186] C. M. Huang, H. Y. Fu, S. F. Li and G. N. Chen. D-convergence of Runge-Kutta methods for stiff delay differential equations [J]. J. Comput. Math., 2001, 19: 259-268.
    
    [187] C. M. Huang, G. N. Chen, S. F. Li and H. Y. Fu. D-convergence of general linear methods for stiff delay differential equations [J]. Comput. Math. Appl., 2001, 41: 627-639.
    
    [188] C. J. Zhang and S. Vandewalle. Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization [J]. J Comput. Appl. Math., 2004, 164-165: 797-814.
    
    [189] C. J. Zhang and S. Vandewalle. Stability analysis of Runge-Kutta methods for nonlinear Volterra delayintegro-differential equations [J]. IMA J. Numer. Anal., 2004, 24: 193-214.
    
    [190] C. J. Zhang and S. Vandewalle. General linear method:; for Volterra integro- differential equations with memory [J]. SIAM J. Sci. Comput., 2006, 27: 2010-2031.
    
    [191]张诚坚,金杰.刚性多滞量积分微分方程的Runge-Kutta方法[J].计算数学,2007,29:391-402.
    
    [192]张诚坚,何耀耀.刚性多滞量积分微分方程的BDF方法[J].数值计算与计算机应用,2007,28:124-132.
    
    [193] H. Brunner. The numerical solutions of neutral Volterra integro-differential equations with delay arguments[C]. in: Proceeding SCADE'93, Auckland, 1993.
    
    [194] H. Brunner and P. J. van der Houwen. The numerical solutio of Volterra Equations [M]. CWI Monographs3 North-Holland, Amsterdam, 1986.
    
    [195] R. Vermiglio. Natural continuous extensions of Runge-Kutta methods for Volterra integro-differential equations [J]. Numer. Math., 1988, 53: 439-458.
    
    [196] C. T. H. Baker and N. J. Ford. Stability properties of a, scheme for the approximate solution of a delay integro-differential equation [J]. Appl. Numer. Math., 1992, 9: 357-370.
    
    [197] T. Koto. Stability of Runge-Kutta methods for delay integro-differential equations [J]. J. Comput. Appl. Math., 2002, 145: 483-492.
    
    [198] K. Barrage and J. C. Butcher. Non-linear stability of a general class of differential equation methods [J]. BIT, 20 (1980), pp. 185-203.
    
    [199] S. F. Li. Contractivity and asymptotic stability properties of Runge-Kutta methods for Volterra functionaldifferential equations [C]. International Workshop on Numerical Analysis and Computational Methods for Functional Differential and Integral Equations, Hong Kong Baptist University, 2007.
    
    [200] J. C. Butcher. The numerical analysis of ordinary differential equations [M]. New York: John Wiley, 1987.
    
    [201] J. Wiener. Differential equations with piecewise constant delays [C]. In Trends in Theory and Practice of Nonlinear differential equations, (Edited by V. Lakshmikantham). New York: Marcel Dekker, 1984: 547-552.
    
    [202] K. L. Cooke and J. A. Wiener. Retarded differential equations with piecewise constant delays [J]. J. Math. Anal. Appl., 1984, 99: 265-297.
    
    [203] M. Z. Liu, M. H. Song and Z. W. Yang. Stability of Runge-Kutta methods in the numerical solution of equation u'(t) = au(t) + a_0u([t]) [J]. J. Comp. Appl. Math., 2004, 166(2): 361-370.
    
    [204] L. P. Wen and S. F. Li. Stability of theoretical solution and numerical solution of nonlinear differential equations with piecewise delays [J]. J. Comp. Math., 2005, 23(4): 393-400.
    
    [205] K. Burrage and J. C. Butcher. Stability criteria for implicit Runge-Kutta methods [J]. SIAM J. Num. Anal., 1979, 16: 46-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700