新型稀土复合催化剂合成单壁碳纳米管及其高压结构相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis of Single-walled Carbon Nanotubes with Rare-earth Metal as Catalyst Component by Arc Discharge and Investigations of Their High Pressure Induced Structural Transition
  • 作者:姚明光
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2007
  • 导师:刘冰冰
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-06-01
摘要
控制单壁碳纳米管的生长、高产率制备具有不同结构的纳米管一直是倍受关注的课题。催化剂的选择是解决这一问题的关键。通过对比分析,选择了与Y具有相似电子结构的稀土元素Ho,深入系统的研究新的复合催化剂Ho/Ni合成碳管。高产率地获得了高纯度的单壁碳纳米管;寻找到碳纳米管合成最优控制条件及其对碳管直径和结构的影响规律;还通过简单地改变等离子气流,极为简便地获得了长达20厘米的条带状纳米管聚集体。
     我们深入、系统地研究了14个新型稀土金属/镍在合成单壁碳纳米管中的催化作用和规律。揭示出系列稀土金属/镍的催化效果规律:3价、4价的稀土金属的催化效果好,2价的稀土金属催化效果极差;在3价、4价的金属中,钬、铒、钇的催化效果更佳。随着稀土金属原子半径减少,样品中小直径的单壁碳管部分也在减小,而大直径的碳管部分增加。发现稀土金属的催化效果与其碳化物的形成能力有关,催化效果好的3价和4价稀土金属,均能形成金属碳化物,而催化效果差的二价金属很难形成金属碳化物,为进一步理解碳管的形成机制提供了线索。这些结果不仅对高产率合成单壁碳纳米管,也对进一步控制合成单壁碳纳米管有重要的指导意义,为制备不同结构的单壁碳纳米管提供了合适的选择体系。
     首次采用近红外激发波长,在位研究了具有宽直径分布的单壁碳纳米管在不同静水压条件下的高压拉曼光谱,探讨了单壁碳纳米管在高压下的结构变化规律。首次在高于14Gpa的压力下仍观察到碳管的基本呼吸模(R-band),在一定压力范围内,观察到切向振动模的频率随压力的升高存在反常的平台现象(G-band平台),同时在平台起始压力点附近,伴随着基本呼吸模强度的明显降低,而且RBM频率近线性地贯穿G-band平台;采用第一性原理模拟了碳管在高压下的结构变化及其相应的拉曼光谱,揭示出碳管在高压下发生了由圆到椭圆再到扁平椭圆结构的形变。G平台的出现和R-band的强度下降可以作为判断高压下碳管发生相变的依据。
The unique structure of single-walled carbon nanotubes (SWNTs) and their fascinating physical and chemical properites imply a great potential in nanoscience and in technological applications. In this thesis, we systemically study the synthesis and characterization of SWNTs with a series of novel rare-earth/Ni as catalyst by arc discharge and investigate the high pressure induced structural transition of SWNTs.
     The properties of SWNTs are strongly dependent on their structure, such as helicity and diameter. The applications of SWNTs require large-scale synthesis of SWNTs with desired nanostructures and with high purity. One of the most critical parameters in SWNTs synthesis is the catalyst used. It has been found that the catalyst has strong effect on the nanostructure and the yield and even the macroscopical morphology of as-synthesized SWNTs. Therefore, to explore and study new high efficiency catalyst for large-scale synthesis of SWNTs is always nessary and important. Such studies will provide valuable information to control the synthesis of SWNTs and further understand the growth mechanism of SWNTs.
     One of the most widely used methods, the DC arc discharge method, can produce SWNTs with a high degree of crystallinity and low defect concentration on a large scale. Here, we synthesize SWNTs in high yield and high purity by this method with a new bimetallic catalyst Ho/Ni for the first time. The morphologies, diameter distribution and the content of SWNTs in the products are characterized by SEM, TEM, Raman spectroscopy, TGA and UV-NIR spectroscopies. Long SWNTs ribbons, consisting of roughly aligned and relatively high purity SWNTs bundles have been synthesized with Ho/Ni as catalyst by using a simple modified arc discharge apparatus. The introduction of Ho/Ni as catalyst and the convection enhanced by the modification of the apparatus play important roles in the formation of these ribbons. Changing the Ho and Ni concentrations in the catalyst hardly affects the diameter distribution but strongly affects the yield of SWNTs. An optimal range of Ho/Ni composition for synthesis of SWNTs with relatively high purity and yield has been obtained. The best yield of SWNTs obtained by Ho/Ni catalyst is as good as the highest yield of SWNTs by Y/Ni catalyst ever reported. The present synthesis process can be easily manipulated and is promising for large-scale production. We also discuss the growth mechanism of SWNTs and suggest that Ho play important roles for enhancing the nucleation ratio of SWNTs in the SWNTs growth process.
     A systematic experimental study has been carried out on the efficiency of a series of novel bimetallic catalysts based on Ni and the rare-earth elements in the synthesis of SWNTs. Most of rare earth metals studied here have not been reported as catalyst component for the synthesis of SWNTs, except for La, Ce, Tb and Y. We employ SEM, TEM, Raman spectroscopy and UV-NIR spectroscopy to study the effect of novel catalysts on the purity and nanostructure of as-synthesized SWNTs. The results indicate that the elements with a valence of +3 or +4 have an obvious catalytic effect and increase the yield of SWNTs dramatically, including La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Lu and Y. Among them, Ho/Ni, Er/Ni and Y/Ni give the best yield. However, those rare earth elements having a valence of +2 are not efficient catalysts, including Sm, Eu, Tm and Yb. We also find a rule of the influence of rare-earth elements on the diameter distribution of as-synthesized SWNTs when analyzed by a combination of Raman and UV-NIR spectroscopy. For the metals having an obvious catalytic effeciency, there is a tendency that the fraction of small-diameter tubes decreases while large-diameter tubes increases with decreasing ionic radius of the rare-earth element used. EDX and X-ray analyses indicate that the rare earth metals having an obvious catalytic effect deposit on the cathode deposits and form rare-earth carbides, whereas the inefficient catalyst metals have not been found in cathode deposits, except for a small amount of Tm present in the form of thulium carbide. Further analysis indicates that there is a very strong correlation between the ability to form rare-earth carbides and the catalytic efficiency for the formation of SWNTs.
     SWNTs can be taken as a representative qusi-one-dimensional model material. The investigation of their structural evolution under high pressure is always an important topic, which can provide information on the stability and phase transitions of SWNTs under compression. In this work, we employ three excitation wavelengths to study the high pressure Raman spectra of SWNTs under hydrostatic and non-hydrostatic conditions. A near IR laser (830nm) is used in this work for the first time. For comparison, other two excitation wavelengths, 514.5 nm and 633 nm are used as well. The IR laser produces a strong Raman signal and gives us the opportunity to observe radial breathing modes even up to 14GPa for the first time. We find that a plateau occurs for the G-band under high pressure. But unlike what is observed in previous studies, the RBM frequencies shift up almost linearly throughout the plateau of the G-band, without an abrupt change. However, near the critical onset pressure where the G-band plateau starts, the intensity of the RBM significantly decreases. This phenomenon occurs regardless of whether a PTM is used or not, and does not depend on the identity of the PTM, on the diameter of tubes, or on the excitation laser. Based on the first principles calculations using the Local Density Approximation (LDA) in density functional theory (DFT), we simulate the structural changes of the chosen SWNT model and calculate the Raman frequencies of the deformed nanotube under compression, yielding the frequencies of the Raman modes as functions of structural evolution. The results indicate that when the structural transition of SWNTs cross-section from an ellipse-like shape to a flattened oval shape is induced, the change of both RBM and G-band in theory is well consistent with that observed in our experiments. The emergence of a pressure plateau for the G-band accompanied by a significant decrease in the intensity of RBM peaks thus can be used as a signature of the structural transition of SWNTs under high pressure.
引文
[1] Halperin W. P., Rev. Modern Phys., 1986, 58: 532.
    [2] 张立德,科学, 1993, 45: 13.
    [3] Ball P.,Garwin L., Nature 1992, 355: 761.
    [4] 苏品书. 超微粒子材料技术.复汉出版社, 1989.
    [5] 曹茂盛,关长斌等.纳米材料导论. 哈尔滨工业大学出版社, 2001.
    [6] 张立德,牟季美.物理,1992, 21(3), 167.
    [7] Iijima S., Helical Microtubules of Graphitic Carbon, Nature, 1991, 354:56
    [8] Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Dresselhaus, M. S., Dresselhaus, G., Avouris, P., Eds.; Springer: Berlin, 2001.
    [9] Gülseren O., Yildirim T., Ciraci S., and Kili? ?., Reversible band-gap engineering in carbon nanotubes by radial deformation, Phys. Rev. B 2002, 65: 155410.
    [10] Merlen A., Bendiab N., Toulemonde P., Aouizerat A., San Miguel A., Sauvajol J. L., Montagnac G., Cardon H., and Petit P., Resonant Raman spectroscopy of single-wall carbon nanotubes under pressure, Phys. Rev. B 2005, 72: 035409.
    [11] Tang J., Qi L.-C.n, Sasaki T., Yudasaka M., Matsushita A., and Iijima S., Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. Lett. 2000, 85: 1887.
    [12] Rols S., Goncharenko I. N., Almairac R., Sauvajol J. L., and Mirebeau I., Polygonization of single-wall carbon nanotube bundles under high pressure, Phys. Rev. B 2001, 64: 153401.
    [13] Baughman, R. H., Zakhidov, A. A., de Heer, W. A., Carbon nanotubes - the route toward applications, Science 2002, 297: 787.
    [14] Kam, N. W. S.; Dai, H. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality, J. Am. Chem. Soc. 2005, 127: 6021.
    [15] Dresselhaus, M. S., Williams, K. A., Eklund, P. C. Hydrogen adsorption in carbon materials, MRS Bull. 1999, 24: 45.
    [16] Oberlin A., Endo M., J. Cryst. Growth, 1976, 32:335.
    [17] 徐光宪,稀土(下)。冶金工业出版社,1995:547。
    [18] Bethune D. S., Kiang C. H., Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-caralyzed growth of carbon nanotubes with single-atomic-layerwalls, Nature, 1993, 363:605
    [19] Henning T. H., Salama F., Carbon in the universe, Science, 1998, 282:2204
    [20] Ajayan P. M., Nanotubes from carbon, Chem. Rev., 1999, 99:1787-1799
    [21] Stone A. J., Wales D. J., Chem. Phys. Lett., 1986, 128:501
    [22] Peigney A., Laurent C. H., Flahaut E., Bacsa R. R., Rousset A., Carbon, 2001, 39:507
    [23] Gao G. H., Cagin T., Goddard W. A., Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes, Nanotechnology, 1998, 9:184-191
    [24] Mintmire J. W., Dunlap B. I., White C. T., Are fullerene tubules metallic, Phys. Rev. Lett., 1992, 68:631
    [25] Saito R., Fujita M., Dresselhaus G., Dresselhaus M. S., Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 1992, 60: 2204
    [26] Service R. F., Superstrong nanotubes show they are smart, Science, 1998, 281:940
    [27] Bachtold A., Struck C., Salvetat J. P., Bonard J. M., Forro L., Nussbaumer T., Schonenberger C., Aharonov-Bohm oscillations in carbon nanotubes, Nature, 1999, 397:673-675
    [28] Tans S. J., Verschueren A. R. M., Dekker C., et al., Room-temperature transistor based a single carbon nanotube, Nature, 1998, 393:49
    [29] Collins P. G., Bradley K., Ishigami M., et al., Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 2000, 287:1801-1804
    [30] Kong J., Franklin N. R., Zhou C., et al, Nanotube molecular wires as chemical sensors, Science, 2000, 287:622-625
    [31] Overney G., Zhong W., Tomanek D. Z., Structural rigidity and low frequency vibrational modes of long carbon. Tubules, Phys. D, 1993, 27:93
    [32] Yakabson B. I., Brabec C.J., Bernhole J., Nanomechanics of carbon tubes: instabilities beyond linear response, Phys. Rev. Lett., 1996, 76:2511
    [33] Treacy M. M. J., Ebbesen T. W., Gibson J. M., Exceptionally high Young' s modulus observed for individual carbon nanotubes, Nature, 1997, 381:678-680
    [34] Yasabson B. I., Smalley R. E., Am Sci.,1997, 65:324
    [35] Yasabson B. I., Mechanical relaxation and "intramolecular plasticity" in carbon nanotubes, Appl. Phys. Lett., 1998, 72:918
    [36] Huang J. Y., Chen S, Wang Z. Q., et al. Superplastic carbon nanotubes - Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes, Nature 2006,439:281.
    [37] Berber S.; Kwon Y.-K.; Tomanek D. Unusually high thermal conductivity of carbon nanotubes, Phys. ReV. Lett. 2000, 84, 4613.
    [38] Yu C.; Shi L.; Yao, Z.; Li D.; Majumdar A. Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 2005, 5: 1842.
    [39] Pop E, Mann D, Wang Q, Goodson K, Dai HJ. Thermal conductance of an individual. single-wall carbon nanotube above room temperature, Nano Lett. 2006, 6: 96-100.
    [40] Schelling, P.; Shi, L.; Goodson, K. E. Mater. Today 2005, 8: 30.
    [41] Zhu W, Bower C, Zhou O, Kochanski G, Jin S. Large current density from carbon nanotube dield emitters. Appl Phys Lett. 1999, 75(6): 873-875
    [42] Jacques L., David G. A., Jeffery B., Paul F., Photoluminescence imaging of suspended single-walled carbon nanotubes, Nano lett, 2006, 6: 1603-1608.
    [43] Iakoubovskii K, Minami N, Kazaoui S, Ueno T, Miyata Y, Yanagi K, Kataura H, Ohshima S, Saito T. IR-extended photoluminescence mapping of single-wall and double-wall carbon nanotubes, J. Phys. Chem. B 2006, 110, 17420-17424.
    [44]http://www.aist.go.jp/aist_j/press_release/pr2006/pr20060214/pr20060214.html
    [45]R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998).
    [46] Itkis ME, Perea DE, Jung R, Niyogi S, Love J, Tang J, Yu A, Kang C, Jung R, Haddon RC. Optimization of the Ni-Y catalyst composition in bulk electric Arc synthesis of single-walled carbon nanotubes by use of near-infrared spectroscopy, J Phys Chem B 2004, 108: 12770–5.
    [47] Appenzeller J., Martel R., Avouris P., et al., Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes, Appl. Phys. Lett., 2001, 78:3313-3315
    [48] Crespi V. H., Coben M. L., Rublo A., In Situ band gap engineering of carbon nanotubes, Phys. Rev. Lett., 1997, 79:2093-2096
    [49] Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ, Multichannel ballistic transport in multiwall carbon nanotubes, Phys. Rev. Lett., 2005, 95 (8):86601
    [50] McEuen P.L., Fuhrer M.S., Park H.K., IEEE Trans on Nanotech, 2002, 1 (1): 78-85
    [51] Avouris P, Chen J. Nanotube electronics and optoelectronics, Mater Today, 2006, 9 (10): 46-54
    [52] Liu X. L., Han S., and Zhou C.W., Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices, Nano Lett., 2006, 6: 34-39.
    [53] Appenzeller J., Knoch J., Derycke V., Martel R., Wind S., Avouris Ph., Field-modulated carrier transport in carbon nanotube transistors, Phys. ReV. Lett. 2002, 89: 126801.
    [54] Javey A., Guo J., Wang Q., Lundstrom M., Dai H., J. Ballistic carbon nanotube field-effect. Transistors, Nature 2003, 424: 654-657.
    [55] Martel R., Schmidt T., Shea H. R., Hertel T., Avouris Ph., Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 1998, 73: 2447-2449
    [56] Dai H. J., Carbon nanotubes: opportunities and challenges, Surf. Sci., 2002, 500:218-241
    [57] Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors, Science 2001, 294: 1317-1320.
    [58] Chen ZH, Appenzeller J, Lin YM, Sippel-Oakley J, Rinzler AG, Tang JY, Wind SJ, Solomon PM, Avouris P. An integrated logic circuit assembled on a single carbon nanotube, Science 2006, 311(5768): 1735-1735.
    [59] Zhu W, Bower C, Kochanski G P, et al, Electron field emission fromnanostructured diamond and carbon nanotube, J. Solid-State Electr, 2001, 45: 921-926
    [60] Cho Y. R., Lee J. H., et al, Phoeolithography-based carbon nanotube pattering forfiled Emission displays, J.Mater Sci Eng, 2001, B79: 128-133
    [61] de Heer W. A., Bacsa W. S., Chatelain A., Gerfin T., Humphrey-Baker R., Forro L., Ugarte D., Aligned nanotube films: Production and optical and electronic properties Science 1995, 268: 845.
    [62]Collins PG, Zettl A. Unique characteristics of cold cathode carbon-nanotube-matrix field emitters, Phys. Rev. B 1997, 55(15):9391-9399
    [63] Bonard J. M., Salvetat J. P., Stockli T., and de Heer W. A., Field emission from single-wall carbon nanotube films, Appl. Phys. Lett. 1998, 73: 918.
    [64] Xu X. P. and Brandes G. R., Appl. Phys. Lett. 1999, 74: 2549.
    [65] Yue G Z, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu J P and Zhou O, A method for fabricating large-area, patterned, carbon nanotube field emitters, Appl. Phys. Lett. 2002, 81: 355–7
    [66] Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J and Milne W, Microwave devices - carbon nanotubes as cold cathodes, Nature 2005, 437: 968.
    [67] Collins P. G., Avouris P., Am Sci., 2000, 88: 62.
    [68] Dai H. J., Hafner J.H., Rinzler A. G., et al., Nanotubes as nanoprobes in scanning probe microscopy, Nature 1996, 384: 147.
    [69] Dillon AC, Jones KM,Bekkedalh TA, et al,Storage of hydrogen in single-walled carbon nanotubes, Nature 1997, 386: 377.
    [70] Liu C, Fan YY, Liu M, et al, Hydrogen storage in single-walled carbonnanotubes at room temperature, Science 1999, 286: 1127-1132.
    [71] Rzepka M., Lamp R. and de la Casa-Lillo MA, Physisorption of hydrogen on microporous carbon and carbon nanotubes, J. Phys. Chem. B 1998, 102: 10894-10898.
    [72] Chen P, Wu X, Lin J, et al. High H2 uptake by alkali-daped carbon nanotube under ambient pressure and moderate temperature, Science 1999, 285: 91-93.
    [73] 张立德, 牟季美. 纳米材料和纳米结构[M] ,北京:科学出版社,2001.[76]
    [74] 贾志杰, 马仁志, 梁吉等. 裂解温度、裂解时间和原料气流量对CVD 法生产碳纳米管的影响. 新型炭材料 [J] . 1998, 77 (2) :16~20.
    [75] Luo J. Z., Cao L. Z., Leng Y. L., et al. The decomposition of NO on CNTs and 1 wt % Rh/CNTs [J ] . Catal Lett 2000, 66: 9197.
    [76] 王晓峰, 梁吉, 碳纳米管超级电容器-锂离子电池复合电源在GSM移动通讯中的应用,电子器件 2004, 27: 547-551.
    [77] Gao B, Kleinhammes A. Electrochemical intercalation of single-walled carbon nanotubes with lithium[J]. Chem Phys Lett, 1999, 307: 153 - 157.
    [78] Zhao B, Hu H, Mandal SK, Haddon RC. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes, Chem Mater 2005, 17 (12): 3235-3241.
    [79] Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes, Nano Lett 6 (3): 562-567 (2006)
    [80] Kong J., Chapline M. G., Dai H. J., Functionalized carbon nanotubes for molecular hydrogen sensors, Adv. Mater., 2001, 13:1384-1386
    [81] Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Smalley RE, et al. Crystalline ropes of metallic carbon nanotubes, Science 1996, 273: 483–7.
    [82] Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett. 1995, 243, 49.
    [83] Maser WK, Munoz E, Benito AM, et al. Formation of single-walled carbon nanotube bundles using CO2 laser vaporization of graphite, Chem Phys Lett 1998, 292: 587.
    [84] Zhang Y, Gu H, Iijima S, Single-wall carbon nanotubes synthesized by laser ablation in a N2 atmosphere, Appl Phys Lett 1998, 73: 26.
    [85] Kataura H, Kimura A, Ohtsuka Y. Formation of thin single-wall carbon. nanotubes by laser vaporization of Rh/Pd-graphite composite Rod, Jpn. J. Appl. Phys 1998, 37: 616.
    [86] Rummeli M H., E B-Palen, Gemming T, Pichler T, Knupfer M, Kalbác M, Dunsch L, Jost O, Silva S. R P., Pompe W, Buchner B, Novel catalysts, room temperature, and the importance of oxygen for the synthesis of single-walled carbon nanotubes, Nano Lett 2005 5: 1209-1215.
    [87] Zhang MF, Yudasaka M, Iijima S. Production of large-diameter single-wall carbon nanotubes by adding Fe to a NiCo catalyst in laser ablation, J. Phys. Chem. B 2004, 108, 12757-12762
    [88] Cheng HM, Li F,Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett 1998 (289):602-610
    [89] Flahaut E, Govindaraj A, Peigney A, Laurent C, Rousset A, Rao CNR. Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions, Chem Phys Lett 1999, 300 (1-2): 236-242.
    [90] Cassell AM, Raymakers JA, Kong J, Dai HJ. Large scale CVD synthesis of single-walled carbon nanotubes, J Phys Chem B 1999, 103 (31): 6484-6492.
    [91] Ci LJ, Wei JQ, Wei BQ, Liang J, Xu CL, Wu DH. Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 2001, 39 (3): 329-335.
    [92] Zhang XF, Cao AY, Sun QH, Xu CL, Wu DH. Patterned growth of well-aligned carbon nanotube arrays on quartz substrates by chemical vapor deposition, J Inorg Mater 18 (3): 613-618 2003
    [93] Wang YH, Kim MJ, Shan HW, Kittrell C, Fan H, Ericson LM, Hwang WF, Arepalli S, Hauge RH, Smalley RE. Continued growth of single-walled carbon nanotubes, Nano Lett 2005, 5 (6): 997-1002.
    [94] Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 2004, 306 (5700): 1362-1364.
    [95] Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM, Direct synthesis of long single-walled carbon nanotube strands, Science 2002, 296 (5569): 884-886.
    [96] Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science 2004, 304 (5668): 276-278.
    [97] Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; Lamy de la, Chappelle, M.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E. Large Scale Production of Single-Walled Carbon Nanotubes by the. Electric-Arc Technique, Nature 1997, 388, 756-758.
    [98] Itkis, M. E.; Perea, D.; Niyogi, S.; Rickard, S.; Hamon, M.; Hu, H.; Zhao, B.; Haddon, R. C. Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution Phase Near-IR Spectroscopy, Nano Lett. 2003, 3, 309-314.
    [99] Williams, K. A.; Tachibana, M.; Allen, J. L.; Grigorian, L.; Cheng, S.-C.; Fang, S. L.; Sumanasekera, G. U.; Loper, A. L.; Williams, J. H.; Eklund, P. C. Single-wall carbon nanotubes from coal, Chem. Phys. Lett. 1999, 310,31-37.
    [100] Zhao TK, Liu YN. Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperatures, Carbon 2004, 42:2765–8.
    [101] Zhou D., Seraphin S., and Wang S., Single-walled carbon nanotubes growing radially from YC2 particles, Appl. Phys. Lett. 1994, 65: 1593.
    [102] Y. Saito, K. Kawabata, and M. Okuda, Single-layered carbon nanotubes synthesized by catalytic assistance of rare-earths in a carbon arc, J. Phys. Chem. 1995, 99: 16076.
    [103] Y. Sato, K. Motomiya, B. Jeyadevan, K. Tohji, G. Sato, H. Ishida, T. Hirata, R. Hatakeyama. Effect of cerium ions in an arc peripheral plasma on the growth of radial single-walled carbon nanotubes, J Appl Phys 2005, 98: 094313.
    [104] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter, Nature 1993;363:603–5.
    [105] Saito Y, Tani Y, Miyagawa N, Mitsushima K, Kasuya A, Nishina Y, High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts, Chem Phys Lett 1998, 294: 593–598
    [106] Tarasov BP, Muradyan VE, Shul_ga YM, Krinichnaya EP, Kuyunko NS, Lai HJ, et al. Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and YNi2 catalysts. Carbon 2003;41:1357–64.
    [107] Bethune DS. Adding metal to carbon: production and properties of metallofullerenes and single-layer nanotubes.In: Andreoni W, editor, The chemical physics of fullerenes 10 (and 5) years later, Kluwer Academic, 1996, pp. 165–81,and references cited therein.
    [108]Kiang CH. Growth of large-diameter single-walled carbon nanotubes. J Phys Chem A 2000, 104: 2454–6.
    [109] Zhao XL, Inoue S, Jinno M, Suzuki T, Ando Y. Macroscopic oriented web of single-wall carbon nanotubes, Chem Phys Lett 2003, 373: 266–271
    [110] Nishide D, Kataura H, Suzuki S, Tsukagoshi K, Aoyagi Y, Achiba Y, High-yield production of single-wall carbon nanotubes in nitrogen gas, Chem Phys Lett, 2003, 372: 45-50.
    [111] Liu C, Cong HT, Li F, Tan P H, Cheng HM, Lu K, Zhou BL, Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method, Carbon 1999, 37: 1865-1868
    [112] Liu C, Cheng HM, Cong HT, Li F, Su G, Zhou BL, Dresselhaus MS. Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes, Adv Mater 2000, 12:1190–2.
    [113] Li HJ, Guan LH, Shi ZJ, Gu ZN. Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge, J Phys Chem B 2004, 108: 4573–5.
    [114] Hutchison J.L., Kiselev N.A., Krinichnaya E.P., Krestinin A.V., Loutfy R.O., Morawsky A.P., Muradyan V.E., Obraztsova E.D., Sloan J., Terekhov S.V., Zakharov D.N., Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method, Carbon 2001, 39: 761–770.
    [115] T Sugai, H Yoshida, T Shimada, T Okazaki, H Shinohara,S Bandow, New synthesis of. high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge, Nano lett, 2003, 3: 769-773.
    [116] Qiu HX, Shi ZJ, Guan LH, You LP, Gao M, Zhang SL, Qiu JS, Gu ZN. High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter, Carbon 2006, 44 (3): 516-521.
    [117] Yang QH, Tong Y, Liu C, Li F, Cheng HM. Some indications of the formation mechanism for double-walled carbon nanotubes by hydrogen-arc discharge, Carbon 2005, 43: 2013–2032.
    [118] Takizawa M., Bandow S, Yudasaka M, Ando Y, Shimoyama H, Iijima S, Change of tube diameter distribution of single-wall carbon nanotubes induced by changing the bimetallic ratio of Ni and Y catalysts, Chem. Phys. Lett. 2000, 326: 351-357.
    [119] Liu, B.; W?gberg, T.; Olsson, E.; Yang, R.; Li, H.; Zhang, S.; Yang, H.; Zou, G.; Sundqvist, B. Synthesis and characterization of single-walled nanotubes produced with Ce/Ni as catalysts, Chem. Phys. Lett. 2000, 320: 365.
    [120] Krestinin, A. V.; Kislov, M. B.; Ryabenko, A. G. Endofullerenes with metal atoms inside as precursors of nuclei of single-walled carbon nanotubes, J. Nanosci. Nanotechnol. 2004, 4: 390.
    [121] Shi, Z. J.; Okazaki, T.; Shimada, T.; Sugai, T.; Suenaga, K.; Shinohara, H. Selective high-yield catalytic synthesis of terbium metallofullerenes and single-wall carbon nanotubes, J. Phys. Chem. B 2003, 107, 2485.
    [122] Iijima S. Growth of carbon nanotubes, Mater Sci And Engineer B. 1993,19: 172-180
    [123] Endo M, Kroto HW. Formation of carbon nanofibers, J Phys Chem, 1992, 96: 6941-6944
    [124] Saito R, Dresselhaus M S, Dresselhaus G. Physical properties of carbon nanotubes. London: Imperial Cooege Press, 1998
    [125] Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube, Nature 2001, 414 (6860): 188-190.
    [126] Du GX, Feng SA, Zhao JH, Song C, Bai SL, Zhu ZP. Particle-wire-tube mechanism for carbon nanotube evolution. J Am Chem Soc 2006, 128 (48): 15405.
    [127] Nasibulin A G., Moisala A, Brown D P., Kauppinen E I., Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors, Carbon 2003, 41: 2711–2724.
    [128] Deng WQ, Xu X, and Goddard W A., III. A two-stage mechanism of bimetallic catalyzed growth of single-walled carbon nanotubes, Nano Lett 2005, 5: 2331-5.
    [129] Gavillet, J.; Thibault, J.; Ste′phan, O.; Amara, H.; Loiseau, A.; Bichara, Ch.; Gaspard, J.-P.; Ducastelle, F. Nucleation and growth of single-wall nanotubes: the role of metallic catalysts, J. Nanosci. Nanotechnol. 2004, 4: 346.
    [130] Raty J. Y.; Gygi F.; Galli G. Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from ab initio molecular dynamics simulations, Phys. ReV. Lett. 2005, 95: 96103.
    [131] Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier JC, Root-growth mechanism for single-wall carbon nanotubes, Phys Rev Lett 2001, 87: 275504.
    [132] Kanzow H, Ding A. Formation mechanism of single-wall carbon nanotubes on liquid-metal particles, Phys. Rev. B 1999, 60: 11180-6.
    [133] Zhu HW, Suenaga K, Hashimoto A, Urita K, Hata K, Iijima S. Atomic-resolution imaging of the nucleation points of single-walled carbon nanotubes, Small 2005, 1: 1180 – 1183.
    [134] Helveg S., Lopez-Cartes C., Sehested J., Hansen P. L., Clausen B. S., Rostrup-Nielsen J. R., Abild-Pedersen F., Norskov J. K., Atomic-scale imaging of carbon nanofibre growth, Nature 2004, 427: 426–429.
    [135] Zhang Y., Li Y., Kim W., Wang D., Dai H., Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles, Appl. Phys. A 2002, 74: 325–328.
    [136] Curl RF, Smalley RE. Fullerenes. Scientific American, 1991, 10: 54~63.
    [137] Popov M., Kyotani M., Nemanich R. J., Koga Y. Superhard phase composed of single-wall carbon nanotubes, Phys Rev B, 2002, 65: 033408.
    [138] Lu JQ, Wu J, Duan WH, Liu F, Zhu BF, Gu BL. Metal-to-semiconductor transition in squashed armchair carbon nanotubes, Phys. Rev. Lett. 2003, 90: 156601,
    [139] Sharma S. M., Karmakar S., Sikk S. K.a, Teredesai P. V., Sood A. K., Govindaraj A., and Rao C. N. R., Pressure-induced phase transformation and structural resilience of single-wall carbon nanotube bundles, Phys. Rev. B 2001, 63: 205417 .
    [140] Monteverde M., Nunez-Regueiro M., Pressure control of conducting channels in single-wall carbon nanotube networks, Phys. Rev. Lett. 2005, 94: 235501.
    [141] Elliott J. A., Sandler J. K. W., Windle A. H., Young R. J., and Shaffer M. S. P., Collapse of single-wall carbon nanotubes is diameter dependent, Phys. Rev. Lett. 2004, 92: 095501.
    [142] Venkateswaran U. D., Rao A. M., Richter E., Menon M., Rinzler A., Smalley R. E., and Eklund P. C., Probing the single-wall carbonnanotube bundle: Raman scattering under high pressure, Phys. Rev. B 1999, 59: 10928.
    [143] Peters M. J., McNeil L. E., Lu J. P., and Kahn D., Structure phase transition in carbon nanotubes bundles under pressure, Phys. Rev. B 2000, 61: 5939.
    [144] Teredesai P. V., Sood A. K., Muthu D. V. S., Sen R., Govindaraj A., and Rao C. N. R., Pressure-induced reversible transformation in single-wall carbon nanotube bundles studied by Raman spectroscopy, Chem. Phys. Lett. 2000, 319: 296.
    [145] Venkateswaran U. D., Brandsen E. A., Schlecht U., Rao A. M., Richter E., Loa I., Syassen K., and Eklund P. C., High pressure studies of the Raman-active phonons in carbon nanotubes, Phys. Stat. Sol. (b) 2001, 223: 225.
    [146] Venkateswaran U. D., Masica D. L., Sumanasekera G. U., Furtado C. A., Kim U. J., and Eklund P. C., Diameter dependent wall deformations during the compression of a carbon nanotube bundle, Phys. Rev. B 2003, 68: 241406.
    [147] Amer M. S., El-Ashry M. M., and Maguire J. F., Study of the hydrostatic pressure dependence of the Raman spectrum of single-walled carbon nanotubes and nanospheres, J. Chem. Phys. 2004, 121: 2752.
    [148] Yang W., Wang R. Z., Song X. M., Wang B., and Yan H., Pressure-induced Raman-active radial breathing mode transition in single-wall carbon nanotubes, Phys. Rev. B 2007, 75: 045425.
    [149] Tangney P., Capaz R. B., Spataru C. D., Cohen M. L., and Louie S. G., Structural transformations of carbon nanotubes under hydrostatic pressure, Nano Lett. 2005, 5: 2268.
    [150] Wu G, Yang XP, Dong JM, Radial breathinglike mode of the collapsed single-walled carbon nanotube bundle under hydrostatic pressure, Appl Phys Lett 2006, 88: 223114.
    [151] Chesnokov S. A., Nalimova V. A., Rinzler A. G., Smalley R. E., and Fischer J. E., Mechanical energy storage in carbon nanotube springs, Phys. Rev. Lett. 1999, 82: 343.
    [152] Lebedkin S, Arnold K, Kiowski O, Hennrich F, Kappes MM. Raman study of individually dispersed single-walled carbon nanotubes under pressure, Phys Rev B 2006, 73: 094109.
    [153] Kahn D. and Lu J. P., Vibrational modes of carbon nanotubes and nanoropes, Phys. Rev. B 1999, 60: 6535.
    [154] Obraztsova ED, Lotz HT, Schouten JA, Kooi ME, Osadchy AV, Kuznetsov VL, Zaikovskii VI. In Electronic Properties of Novel Materials—Science and Technology of Molecular Nanostructures. AIP Conference Proceedings, vol. 486, Kuzmany H(ed.). American Institute of Physics: Melville, 1999; 333–337.
    [155] Thomsen C, Reich S, Goni AR, Jantoljak H, Rafailov PM, Loa I, Syassen K, Journet C, Bernier P, Intramolecular interaction in carbon nanotube ropes, Phys. Stat. Sol. (b)1999, 215: 435.
    [156] Merlen A., Toulemonde P., Bendiab N., Aouizerat A., Sauvajol J. L., Montagnac G., Cardon H., Petit P., San Miguel A., Raman spectroscopy of open-ended single wall carbon nanotubes under pressure: effect of the pressure transmitting medium, Phys. Stat. Sol. (b) 2006, 243: 690–699.
    [157] Proctor JE, Halsall MP, Ghandour A, Dunstan DJ. High pressure Raman spectroscopy of single-walled carbon nanotubes: Effect ofchemical environment on individual nanotubes and the nanotube bundle, J Phys Chem Sol 2006, 67 (12): 2468-2472.
    [158] Capaz R. B., Spataru C. D., Tangney P., Cohen M. L., and Louie S. G., Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes, Phys. Stat. Sol. (b) 2004, 241: 3352.
    [159] Sun D. Y., Shu D. J., Ji M., Liu F, Wang M., and Gong X. G., Pressure induced hard-to-soft transition of a single carbon nanotube, Phys. Rev. B 2004, 70: 165417.
    [160] Reich S., Thomsen C., and Ordejon P., Elastic properties of carbon nanotubes under hydrostatic pressure, Phys. Rev. B 2002, 65: 153407.
    [161] Okada S., Oshiyama A., and Saito S., Pressure and orientation effects on the electronic structure of carbon nanotube bundles, J. Phys. Soc. Jpn. 2001, 70: 2345.
    [162] Kazaoui S., Minami N., Yamawaki H., Aoki K., Kataura H., and Achiba Y., Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films, Phys. Rev. B 2000, 62: 1643.
    [163] Wu J., Walukiewicz W., Shan W., Bourret-Courchesne E., Ager J. W., Yu III, K. M., Haller E. E., Kissell K., Bachilo S., Weisman R. B., and Smalley R. E., Structure-dependent hydrostatic deformation potentials of individual single-walled carbon nanotubes, Phys. Rev. Lett. 2004, 93: 017404.
    [164] Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH. Purification and characterization of single-wall carbon nanotubes, J Phys Chem B 2001, 105: 1157–61.
    [165] Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.;Dresselhaus, G.; Dresselhaus, M. S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science 1997, 275: 187.
    [166] Jishi R. A., Venkataraman L., Dresselhaus M. S., Dresselhaus G., Phonon modes in carbon nanotubes, Chem. Phys. Lett., 1993, 209:77
    [167] Duesberg G. S., Loa I., Burghard M., Syassen K., Roth S., Polarized Raman Spectroscopy on Isolated Single-Wall Carbon Nanotubes, Phys. Rev. Lett, 2000, 85: 5436.
    [168] Kataura H., Kumazawa Y., Maniwa Y., Ohtsuka Y., Sen R., Suzuki S., Achiba Y., Diameter control of single-walled carbon nanotubes, Carbon 2000, 38: 16912-1697.
    [169] Rao A. M., Chen J., Richter E., Schlecht U., Eklund P. C., Haddon R. C., Venkateswaran U. D., Kwon Y.-K., Tománek D., Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes, Phys. Rev. Lett. 2001, 86: 3895.
    [170] Pimenta M A, M arucci A, Empedocles S A, Bawendi M G, Hanlon E B. Rao A M. Eklund P C. Smalley R E. Dresselhaus G, Dresselhaus M S. Raman modes of metallic carbon nanotubes, Phys Rev B, 1998, 58: 16016.
    [171] Liu, X.; Pichler, T.; Knupfer, M.; Golden, M. S.; Fink, J.; Kataura, H.; Achiba Y. Detailed analysis of the mean diameter and diameter distribution of single wall carbon nanotubes from their optical response, Phys. ReV. B 2002, 66, 045411.
    [172] Jost, O.; Gorbunov, A. A.; Pompe, W.; Pichler, T.; Friedlein, R.; Knupfer, M.; Reibold, M.; Bauer, H.-D.; Dunsch, L.; Golden, M. S.; Fink, J. Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy, Appl. Phys. Lett. 1999, 75, 2217.
    [173] R. Bruce Weisman and Sergei M. Bachilo,Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical "Kataura Plot", Nano Lett 2003, 3: 1235-1238.
    [174] Tsui, F., Ryan, P. A. Self-organization of a carbide superlattice during deposition of carbon on Mo, Phys. ReV. Lett. 2002, 89: 15503.
    [175] Moro, L.; Ruoff, R. S.; Becket, C. H.; Lorents, D. C.; Malhotra, R. Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry, J. Phys. Chem. 1993, 97: 6801.
    [176] Saito, Y.; Okuda, M.; Yoshikawa, T. Correlation between volatility of rare-earth metals and encapsulation of their carbides in carbon nanocapsules, J. Phys. Chem. 1994, 98: 6696.
    [177] Iwasaki, K.; Wanita, N.; Hino, S.; Yoshimura, D.; Okazaki, T.; Shinohara, H. Chem. Phys. Lett. 2004, 398, 389.
    [178] Sun, B. Y.; Inoue, T.; Shimada, T.; Okazaki, T.; Sugai, T.; Suenaga, K.; Shinohara, H. Synthesis and characterization of Eu-metallofullerenes from Eu@C74 to Eu@C90 and their nano-peapods, J. Phys. Chem. B 2004, 108, 9011.
    [179] Shinohara, H. Endohedral metallofullerenes, Rep. Prog. Phys. 2000, 63, 843.
    [180] I. Loa, Raman spectroscopy on carbon nanotubes at high pressure, J. Raman Spectrosc, 2003, 34, 611.
    [181] A San-Miguel. Nanomaterials under high-pressure, Chem. Soc. Rev. 2006, 35: 876–889
    [182] Shen A H, BassettW A, Chou IM. American Mineralogist, 1993, 78: 694.
    [183] Chou I M, Blank J G, Foncharov A F et al., In situ observations of a high-pressure phase of H2O, Science 1998, 281: 809.
    [184] Shen A. H.,Bassett W. A.,Chou I. M., Syono Y., ManghnaniM H,eds. Tokyo/Washington : Terra Scientific Publishing Company (TERRA PUB) / American Geophysical Union [Z]. 1992, 61.
    [185] Mao H K, Jephcoat A P, Hemley R J et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5GPa, Science 1988, 239(4844): 1131-1134.
    [186] Forman R A, Piermarini G J ,Barnett J D,Block S., Pressure measurement made by utilization of ruby sharp-line luminescence, Science 1972, 76 (4032) : 284.
    [187] Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL, Smalley RE, Hauge RH. Purification and characterization of single-wall carbon nanotubes obtained from the gas-phase decomposition of CO (HiPco process), J Phys Chem B 2001, 105: 8297.
    [188] Zhang Y. Y., Zhang J., Son H. B., Kong J., Liu Z. F., Substrate-induced Raman frequency variation for single-walled carbon nanotubes, J. Am. Chem. Soc. 2005, 127: 17156.
    [189] Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects, Phys. Rev. 1965, 140, A1133-A1138.
    [190] Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974).
    [191] Hohenberg, P.; Kohn, W. Inhomogeneous electron, Phys. Rev. 1964, 136, B864-B871.
    [192] Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 1980, 58, 1200-1211.
    [193] Frisch, M. J.; Pople, J. A.; Binkley, J. S.; Self-consistent molecular orbital methods, 25. supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265-3269.
    [194] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03;Gaussian, Inc.: Pittsburgh, PA, 2003.
    [195] Wu G., Zhou J., Dong J. M., Raman modes of the deformed single-wall carbon nanotubes, Phys Rev B 2005, 72: 115411.
    [196] Schindler T. L. and Vohra Y. K., A micro-Raman investigation of high-pressure quenched graphite, J. Phys.: Condens. Matter 1995, 7: 637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700