镍磷纳米碳管化学复合镀层的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技是20世纪80年代末刚刚产生并正在崛起的新技术,纳米材料是纳米科技发展的物质基础。纳米材料中纳米碳管因具有独特的结构和优异的性能,而成为世界性的纳米材料领域研究的前沿和热点之一。论文一方面进行纳米碳管的制备和镍磷-纳米碳管复合镀,研究纳米碳管对镀层组织、结构和力学性能的影响;另一方面从理论上用量子化学方法研究纳米碳管与镍磷基体间的界面结构,用有限元方法分析复合镀层在单向拉伸时的细观力学行为,以探讨该复合镀层的有关理论和应用前景,所得结果具有重要的理论意义和应用参考价值。研究表明:
     用氨气作还原气体,以硝酸镍为原料,制备镍催化剂的最佳温度范围为700℃-800℃;而用氢气作为还原气体制备催化剂的最佳温度为600℃-700℃。氨气兼有载气和还原气体的双重作用。以氨气、乙炔为气源可以采用一步法制备纳米碳管,简化工艺和设备。
     和非晶态的Ni-P镀层相比,纳米碳管的加入使镀层发生了由非晶向纳米晶的转化。这是因为镀液中有纳米碳管时,对磷有捕获作用,使镀层中的磷向纳米碳管偏聚。纳米碳管的加入,使镀层表面呈颗粒状,纳米碳管的含量越高,粒状物越小,密度越大。
     对Ni-P-CNTs复合镀试样的拉伸实验研究表明,Ni-P合金镀层断口为平整光滑的与拉伸方向垂直的脆性断口。随着镀层中纳米碳管含量的增加,镀层的韧性增加,断口上出现韧窝。实验中发现了Ni-P-CNTs复合镀层靠近断口的侧面有波纹状的裂纹群,并用有限元法从理论上作出了合理的解释。
     随CNTs含量的增加,Ni-P-CNTs复合镀试样的硬度、最大延伸率和断面收缩率增加,因此,可以用加入纳米碳管的方法改善复合材料的韧性;而抗拉强度、断裂强度和弹性模量等参数随着纳米碳管含量的增加而降低。实验数据表明,复合镀层的弹性模量E_c,Ni-P镀层的弹性模量Em与纳米碳管的质量分数m_n满足以下关系
     E_c=E_m(1-Km_n)式中K为与界面结合强度有关的常数,本实验中其值等于3.3781;
     针对目前复合材料的强度表达式只考虑基体和增强体的现状,在实验的基础上,本文认为应考虑界面对强度的影响,提出了界面强度因子的概念,此时,对于纤维三维随机分布的复合材料的强度公式为
     σ_c=1/4Kσ_f(1-L_C/(2L))V_f+σ_m~*V_m
     L_C≤L
     σ_c=K_1τL/4dV_f+σ_mV_m L_c>L式中K和K_1为界面强度因子,它可取正值也可为负值。取正值时,增强纤维起到了增强作用;取负值时,表明增强纤维削弱了基体的强度。
     用有限元法分析了在单向拉伸条件下,界面为机械结合或物理、化学结合时复合镀层中的应力、应变分布规律。结果表明,最大应力出现在纳米碳管的端部,而最大应变出现在纳米碳管端部相接触的基体中。纳米碳管位向,长度,直径以及纳米碳管和基体的结合强度,都影响应力、应变分布。纳米碳管排成阵列时,在单向拉伸状态下,在靠外侧纳米碳管端部以及和其接触的基体中所对应的应力最大,在靠外侧纳米碳管端部的界面/基体中应变最大;外力作用对靠外侧纳米碳管的影响较大,对内侧纳米碳管的影响较小。
     对Ni-P-CNTs复合镀层的界面进行的量子化学研究表明,在化学镀过程中,镍、磷和纳米碳管都可以成键,磷原子更容易在纳米碳管周围富集,使磷在纳米碳管周围偏聚。磷、碳键为共价键,镍、碳键部分为共价键,部分为范德华键。镍、磷在纳米碳管缺陷处结合时,键能最大,是Ni-P合金基体与纳米碳管的强结合点,而纳米碳管结构完整的部位,与镍、磷的结合较弱。Ni-P合金基体与纳米碳管之间的界面,为结合比较弱的双原子界面,一侧为碳原子,另一侧为磷或镍原子。
Since their first observation by Iijima in 1991, carbon nanotubes (CNTs) have been the focus of considerable research. Numerous investigators have reported remarkable physical, mechanical and electrochemical properties for them, such as unique electronic properties, high aspect ratio, outstanding thermal conductivity and strength et al. In the nature of things, CNTs are the perfect reinforce to composite materials, which offering tremendous opportunities for the development of mechanical and electronic industry. For the sake of making full use of their favorable properties, much work has been done and study on carbon nanotubes' preparation and application has being become the front-line of carbon nanotubes' research fields. This paper, basing on studying CNTs' preparation technology, researched the composition, morphology, structure and performance of Ni-P-CNTs composite electroless plating. The results show that,The optimum temperature range is from 700℃to 800℃, during the process of the preparations for nickel catalyst, by the reducing gas of ammonia and the raw material of nickel nitrate. While the optimum temperature range is from 600℃to 700℃, during the process of the preparations for nickel catalyst, by the reducing gas of hydrogen and the raw material of nickel nitrate, which is about 100℃lower than that of using the reducing gas of ammonia. The ammonia has double functions of carrier gas and reducing gas. CNTs can be synthesized with one-step method by using of ammonia and acetylene as source gas, which can simplify technology and equipment.The surface of Ni-P-carbon nanotubes (Ni-P-CNTs) electroless composite plating based on copper sheet consists of compact particles. With the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases, while the density of grains and the hardness for composite deposit increases. The presence of carbon nanotubes make phosphorous segregation in platings and improves the degree of crystallization for composite deposit helping the plating transform from amorphous state to nanocrystal state.The tensile test of Ni-P-CNTs composite electroless plating on the basis of copper sheet shows that, the maximum extensibility, the reduction of area and the crack density of the fracture side of Ni-P-CNTs composite electroless plating samples increase with the increment of CNTs content, while the tensile strength, the fracture strength and Young's modulus decrease. Adding carbon nanotubes to Ni-P alloys benefits the toughness of Ni-P-CNTs composite electroless to improve, while decreases the combining power between composite plating and copper sheet. The data show that the Young's modulus of Ni-P-CNTs composite electroless platings (E_c), the Young's modulus of Ni-P alloys (Em) and the content of CNTs (m_n) fit the formula of
     E_c=E_m(1-Km_n) K is a constant correlated with interface conditions in it. It's 3.3781 in this paper.
     It's thinked that interface conditions should be considered in the strength formula of composite materials. What's more, interface strength factor is put forward at the first time and the strength formula for composite materials consisting of three dimensional random distribution fibre and matrix is modified, as
     σ_c=1/4Kσ_f(1-L_c/2L)V_f+σ_m~*V_m L_c≤L
     σ_c=K_1τL/4dV_f+σ_mV_m L_c>L K and K_1 are interface strength factors. If K or K_1 is greater than zero, fibre can act as reinforcing materials. If K or K_1 is less than zero, fibre cannot act as reinforcing materials and weaken the matrix strength.
     The stress and strain distribution under the condition of simple tension were analysed by finite element method. The results show that whenever the interface is under the condition of mechanical bonding or physical or chemical bonding, the biggest stress is at the end of CNTs and the biggest strain is in the martrix who connect with the end of CNTs among the cells. The placement azimuth, the length and the diameter of CNTs combining with the interface strength influence the stress and strain distribution. If the array CNTs is under the condition of simple tension, the ends of the outer CNTs and the matrix who connects with the CNTs ends have the biggest stress among the cells, while the biggest strain is in the interface or matrix, which connects with the CNTs ends. The external force influences the outer CNTs of array CNTs much more than the inner ones.
     The study of quantum chemistry method to the interface of Ni-P-CNTs electroless composite plating shows that, during the process of electroless plating, nickel and phosphorus can combine with carbon nanotubes, which makes the energy of whole system decrease, or to say there's some bonding power between nickel and carbon as well as phosphorus and carbon, and the energy decrease of nickel and carbon combining is bigger than that of phosphorus and carbon. It's easier for Phosphorus to enrich around carbon nanotubes than for nickel, resulting in Phosphorus segregation about carbon nanotubes. The bond energy of phosphorus and carbon is greater than that of nickel and carbon.
     In all models of particles and carbon nanotube what have been studied, the system energy decreases most while nickel and phosphorus combines with carbon nanotubes at the collapse indication, which is the strong bonding point at the interface of Ni-P alloy, and the corresponding bond energy is largest. The combination between the perfect parts of carbon nanotubes and nickel is weak, while that between the perfect ones and phosphorus is strong. It's obviously that the interface formed by Ni-P and carbon nanotubes is biatomic, one side of it are carbon atoms and the other side are nickel atoms or phosphorus atoms. The property of phosphorus carbon bonds is covalent bond, while some of the nickel carbon bonds represent van der waals bond property partly.
引文
[1] ⅡJIMA S. Helical microtubes of graphitic carbon[J].Nature, 1991, 354: 56-58.
    [2] Sun L F, Xie S S, Liu W, et al. Materials: creating the narrowest carbon nanotubes. Nature, 2000 403(6768): 384.
    [3] N. Wang, Z. K. Tang, G.D.Li, J.S.Chen,"Single-walled 4-(?) Carbon Nanotube Arrays", Nature 2000, 408: 50-51.
    [4] Baughman R H, Zakhidov A A, Deheer W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297(8): 781-792.
    [5] Nardelli M B, Fattebert J L, Orlikowsk D I, et al. Mechanical properties, defects and electronic behavior of carbon nanotubes[J]. Carbon, 2000, 38(9): 1703-1711.
    [6] Wang Z L, Gao R P, Poncharal P, et al. Mechanical and electrostatic properties of carbon nanotubes and nanowires[J]. Materials Science and Engineering C, 2001, 16(20): 3-10.
    [7] A Oberlin, M. Endo, T Koyama. Filamentous growth of carbon through benzene decomposition. J Crystal Growth, 1976(32): 335-349.
    [8] KRATSCHMER W, LAMB LD, Fostiropoulos K, et al. Solid C_(60): a new form of carbon[J]. Nature, 1990, (347): 354.
    [9] EBBESEN T W, AJAYAN P M. Large-scale synthesis of carbon nanotubes. Nature, 1992(358): 220.
    [10] ⅡJIMA S. Singel-shell carbon nanutubes of 1-nm diameter[J]. Nature, 1993, 363: 603.
    [11] BETHUNE D S, KIANG C H, De Vires M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic layer walls[J]. Nature, 1993, 363: 605.
    [12] Ajayan P M, Stephan O, Colliex C et al. Aligned carbon nanotube arrays formed by cutting a polymer resin nanotube composite. Science, 1994, 265: 1212-1214.
    [13] W. Z. Li, S. S. Xie, L. X. Qian, et al. Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, 1996, 274: 1701
    [14] THESS A, Lee R, Nikolaev P, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal[J]. Chem Phys Lett. 1997, 278: 102.
    [15] CHENG H M, Carbon Nanotubes Synthesis, Microstructure, Properties and Application[M], Beijing: Chemistry industry press, 2002, 58-70.
    [16] YACAMAN M J, YOSHICLA M M, RANDO L. Catalytic growth of carbon microtubules with fullerene structure[J]. Appl Phy Lett, 1993, 62: 202~204.
    [17] LAI HJ, LIN MCC; YANG MH; LI AK. Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge[l]. Materials Science and Engineering: C, 2001, 16(1-2): 23-26.
    [18] JOURNT C, MASTER W K, BERNIER P et al. Large -scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature, 1997, 388: 756.
    [19] Shi Z J, Lian Y F, Zhou X H, et al. Production of single-wall carbon nanotubes at high pressure [J]. Phys Chem B, 1999. 103: 8698.
    [20] EBBESEN T W. Wetting, filling and decorating carbonnanotubes[J]. Phys Chem Solid, 1996, 57:951-955.
    [21] 刘畅,成会明.电弧放电法制备纳米碳管[J].新型碳材料,2001,16(3):67-72.
    [22] ANDO Y, ZHAO XL, HIRAHARA K, et al. Mass production of single-wall carbon nanotubes by the arc plasma jet method[J]. Chem. Phys. Lett., 2000, 323: 580.
    [23] TAKIZAWA M,BANDOW S,YUDASAKA M et al. Change of tube diameter distribution of single-wall carbon nanotubes induced by changing the bimetallic ratio of Ni and Y catalysts[J]. Chem. Phys. Lett.., 2000, 326: 351~357.
    [24] MUKHOPADHYAYI, KAWASAKI S, OKINO F, GOVINDARAJ A,RAO CNR.,TOUHARA H.Electrochemical Li insertion into single-walled carbon nanombes prepared by graphite arc-discharge method[J]. Physics B, 2002, 323(1-4): 130-132.
    [25] PARK Y S, KIM K S, JEONG H J, KIM W S, MOON J M. Low pressure synthesis of single-walled carbon nanotubes by arc discharge[J].Synthetic Metals, 2002. 126(2-3): 245-251.
    [26] 胡平安,王贤保,刘云圻,朱道本.碳纳米管的最新制备技木及生长机理[J].化学通报,2002.12:794-798.
    [27] THESS A., LEE R, NIKOLAVE P, DAI H et al..Crystaline ropes of metallic carbon nanotubes[J]. Science, 1996, 273: 483~487.
    [28] QIN L, ⅡJIMA S. Structure and formation of rafe-like bundles of single-walled helical carbon nanotubes produced by laser evaporation[J]. Chem. Phys. Lett., 1997, 269: 65~71.
    [29] ZHANG Y, ⅡJIMA S, Microscopic Structure of as-grown single-wall carbon nanotubes by laser ablation[J]. Philo Mag Lett.,1998,78(2):139-144.
    [30] YUDASAKA M, KOMATSU T, ICHIHASHI T, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal[J]. Chem. Phys. Lett., 1997, 278(1-3): 102-106.
    [31] YUDASAKA M., ZHANG M F., ⅡJIMA S. Porous target enchances productor of singer-wall carbon nanotubes by laser ablation[J].Chem. Phys. Lett., 2000, 323: 549~553.
    [32] GUO T, NIKO P, THESS A et al Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chem Phys Lett, 1995, 243: 49~54.
    [33] ZHANG HY, DING Y, WU CY, et al. The effect of laser power on the formation of carbon nanotubes prepared in CO_2 continuous wave laser ablation at room temperature, [J]. Physics B, 2003, 325: 224-229.
    [34] 张海燕.研究CO2连续激光蒸发制备单壁纳米碳管及其Raman光谱[J].物理学报,2002,51(2):444-447.
    [35] KATAURA H,KUMAZAWA Y, MANIWA Y, et, al. Diameter control of single-wall carbon nanotubes[J].Carbon, 2000, 38: 1691-1697.
    [36] MASTER WK, MUNOZ E,BENITO AM, et al. Production of high-density single-wall carbon nanotube material by a simple laser-ablation method[J]. Chem.Phys.Lett., 1998, 292: 587-593.
    [37] 孙晓钢,曾效舒.碳纳米管的制备方法及工艺特点[J].世界有色金属,2002,12:26-30.
    [38] MUIOZ E, MASER WK, BENITO AM, MARTINEZ MT, de la Fuente GF, MANIETTE Y, et al. Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation[J]. Carbon, 2000, 38, (10): 1445-1451.
    [39] 孟秀霞,高芒来.碳纳米管的研究进展及应用[J].滨州师专学报,2002.18(4):69-72.
    [40] YACAMAN M J,YOSHICLA M M,RANDO L. Catalytic growth of carbon microtubules with fullerene structure[J]. Appl Phy Lett, 1993, 62: 202~204.
    [41] KONG J,CASSELL AM,DAI H J. Chemical vapor deposition of methane for single-walled carbon nanotubes[J]. Chem.Phys. Lett. 1998, 292: 567.
    [42] CHENG H M,LI F, SUN X,et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons[J]. Chem. Phys. Lett., 1998, 289: 602.
    [43] 李峰.-有机物催化热解法制备单壁纳米碳管及其物理性能[D].北京:中国科学院金属研究所,2001.
    [44] SU M,ZHENG B,LIU J, et al. The KRb(2)~1 electronic state[J]. Chem. Phys. Lett.. 2000, 323: 21.
    [45] NIKOLAVE P, BROMIKOWSKI M J, BRADLEY P K, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide[J]. Chem. Phys. Lett., 1999, 313: 91.
    [46] Hu P, Wang XB, Liu YQ, Wang B, Zhu DB. Synthesis of single-walled carbon nanotubes using MgO as a catalyst support[J]. Synthetic Metals, 2003, (135-136): 833-834.
    [47] MAYRUYAMA S, KOJIMA R, MIYAUCHI Y, CHIASHI S,KOHNO M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol[J]. Chem.Phys.Lett., 2002, 360(3-4): 229-234.
    [48] Tang S, Zhong Z, Xiong Z, Sun L, Liu L, Lin J, Shen ZX, Tan KL. Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH_4 over Mo/Co/MgO catalysts[J]. Chem.Phys.Lett., 2001, 350(1-2): 19-26.
    [49] CHI H,ERES G,HOWE JY,PURETKZY A,VARELA M,GEOHEGAN DB,LOWNDES D H. Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition[J]. Chem. Phys. Lett. 2003, 374(3-4): 222-228.
    [50] WU B. Immobilizing oxidatively shortened single carbon nanotubes on silver surface using self-assembling technique[J]. Journal of Chinese Electron Microscopy Society, 2000, 20(5), 561~564.
    [51] 李峰.气相沉积生长单壁纳米碳管[J].材料研究学报,2001,15(5):520~524.
    [52] 王升高.微波等离子体化学气相沉积法低温合成纳米碳管[J].化学学报,2002,60(5):957~960.
    [53] WILLEMS I,KONYA Z,COLOMER J F, et al. Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons[J]. Chem. Phys. Lett., 2000, 317(1-2): 71.
    [54] WAGNER R.S, ELLIS W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl Phy. Lett., 1904, 4(5): 89~90.
    [55] Duesberg GS, Blau W, Byrne HJ,et al. Chromatography of carbon nanotubes [J]Synth Metal. 1999, 103: 2484-2485.
    [56] Bonard, Jean-Marc; Stora, Thierry; Salvetat, Jean-Paul; Maier, Frederic; Stockli, Thomas; Duschl, Claus; Form, Laszlo; de Heer, Walt A.; Chatelain, Andre, Purification and size-selection of carbon nanotubes, advanced materials, 1997, 9: 827-831.
    [57] Ebbesen TW, Ajayan PM,Hiura H,et al.Purification of nanotubes.[J]Nature. 1994,367:519.
    [58] Park Young Soo, Choi, Young Chul, Kim, Keun Soo, Chung, Dong-Chul, Bae, Dong Jae, An, Kay Hyeok, et. al. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing[J], Carbon, 2001, 39(5): 62-661.
    [59] Andrews R, Jacques D, Qian D, Dickey E C. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures [J]. Carbon, 2001, 39(11): 1681-1687.
    [60] Chen X.H, Chen C S, Chen Q, Cheng F Q, Zhang G, Chen Z Z, Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD,[J]. Materials Letters, 2002, 57(3): 734-738.
    [61] Colomer J F, Piedigrosso P, Fonseca A, and Nagy J B.Different purification methods of carbon nanotubes produced by catalytic synthesis[J]. Synthetic Metals, 1999, 103: 2482-2483.
    [62] Hernadi K, Siska A,Kiricsi I, et al.Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes [J],Solid State Ionics. 2001, (141-142): 203-209.
    [63] Jeong Tak, Kim Wan-Young, Hahn Yoon-Bong, A new purification method of single-wall carbon nanotubes using H_2S and O_2 mixture gas [J] Chemical Physics Letters, 2001, 344(1-2): 18-22.
    [64] 姜召阳,李家俊,赵乃勤,刘保华,碳纳米管纯化技术研究新进展,化学通报2003:Vol 66(18):1-6.
    [65] Bougrine A, Naji A, Ghanbaja J, Billaud D. Purification and structural characterization of single-walled carbon nanotubes [J]. Synthetic Metals, 1999, 103(1-3): 2480-2481.
    [66] Yang Cheol-Min, Kaneko, Katsumi, Yudasaka, Masako, Iijima, Sumio,Surface chemistry and pore structure of purified HiPco single-walled carbon nanotube aggregates, Physica B, 2002, 323(1-4): 140-142.
    [67] Gajewski S, Maneck H.-E, Knoll U, Neubert D, D(?)ffel I, Mach, R, Strauβ B, et. al. Purification of single walled carbon nanotubes by thermal gas phase oxidation,[J]. Diamond and Related Materials, 2003, 12(3-7): 816-820.
    [68] Li F, Cheng H M,Xing Y T, Tan P H, Su G,Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons [J]. Carbon, 2000, 38(14): 2041-2045.
    [69] Smith Jr, Milton R, Hedges, Sheila W, LaCount, Robert, Kern, Douglas, Shah, Naresh, Huffman Gerald P, et. al. Selective oxidation of single-walled carbon nanotubes using carbon dioxide, Carbon, 41, Issue: 6, 2003, 41(6): 1221-1230.
    [70] Hou P. X, Bai S, Yang Q H, Liu C, Cheng H M, Multi-step purification of carbon nanotubes[J]. Carbon, 2002, 40(1): 81-85.
    [71] Yumura M, Ohshima S, Uchida K, Tasaka Y,et al.Synthesis and purification of multi-walled carbon nanotubes for field emitter applications[J]. Diamond and Related Materials, 1999, 8(2-5): 785-791.
    [72] Treaty M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996; 381: 678-682.
    [73] Wong W E, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997; 277: 1971-1975.
    [74] Ruoff R S, Lorents D C. Mechanical and thermal properties of carbon nanotubes. Carbon, 1995; 33: 925-930.
    [75] Salvetat J P, Kulik A J, Bonard J M et al. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater., 1999; 11(2): 161-165.
    [76] M M J Treacy, T W Obbesen, J M Gibson. Exceptionality high Young's modulus observed for individual carbon nanotubes. Nature, 1996(381): 678-680.
    [77] N Hamada, SI Sawada, A Oshiyama, New one-dimensional conductors: graphite microtubules, Phys. Rev. Lett., 1992, 68: 1579-1581.
    [78] JW Mintmire, BI Dunlap, CT White, Are fullerene tubules metallic?, Phys. Rev. Lett., 1992, 68: 631-634.
    [79] TW Odom, JL Huang, P Kim, CM Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391: 62-64.
    [80] A. Krishman, E Dujadin, TW Ebbesen, DN Yanilos, MMJ Treacy, Young's modulus of single-walled nanotubes Phys. Rev. B, 1998, 58: 14013-14019.
    [81] Zourie, H D Wagner. Transmission electron microscopy observation of fracture of single-wall carbon nanotubes under axial tension. Appl. Phys. Lett., 1998(24): 3527-3529.
    [82] HONGJIE DAI, ERIC W WONG, CHARLES M. Lieber. Probing Electrical Transport in Nanomaterials: Concluctivity of Individual Carbon Nanotubes [J]. Science, 1996,272: 523-526.
    [83] De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field emission electron source [J], Science, 1995, 270: 1179.
    [84] 张力德,牟季美.纳米材料和纳米结构.北京:科学出版社,2000.
    [85] H D Wanger, O Louire, Y Feldman, R Tenne. The chemical bonding between polymers and carbon nanotubes. Appl. Phys. Lett., 1998(72): 188-191.
    [86] A Krishnase, M J Casavant, D E Waiters. Heological behavior of multiwalled carbon nanotube/poly carbonate composites. Phys. Rev. Lett., 1998(58): 14013-14019.
    [87] J M Benoit, B Corraze, S Lefrant, W J Blau, P Bernier and O Chauvet. Transport properties of PMMA-carbon nanotubes composites. Synthetic Metals, 2001(121): 1215-1217.
    [88] Ma R Z, Wu J, WeiB Q et al. Processing and properties of carbon nanotubes-nano-SiC ceramic. J. Mater. Sci., 1998; 33: 5 243-5 246.
    [89] Peigney A, Laurent C, Rousset A. Synthesis and characterization of alumina matrix nanocomposites containing carbon nanotubes. Key Engineering Materials, 1997; 132-136: 743-746
    [90] 凤仪,袁海龙,张敏,碳纳米管-银复合材料的制备工艺和电导率,中国有色金属学报 2004,14(09):1451-1455.
    [91] 马仁志,朱艳秋,魏秉庆等.铁.巴基管复合材料的研究,复合材料学报,1997,14(2):92-96.
    [92] Li Y B, Xu C L, Wei B Q, Ma R Z et al. Physical properties of Fe_(80)P_(20) glass-carbon nanotubes composites. J. Mater. Sci., 1999, 34(21): 5281-5284.
    [93] 董树荣,张孝彬,纳米碳管增强铜基复合材料的滑动磨损特性研究.摩擦学学报,1999,19(1):1-6.
    [94] 王浪云,涂江平,杨友志,张孝彬,陈卫祥,卢焕明.多壁纳米碳管//Cu基复合材料的摩 擦磨损特性.中国有色金属学报,2001,(11):367-372.
    [95] Xu C L, Wei B Q, Ma R Z et al. Fabrication of aluminum-carbon nanotube composites and their electrical properties. Carbon, 1999, 37(5): 855-861.
    [96] J P Salvetat, J M Bonard, N H Thomson, A J Kulik, L Forro, W Benoit, L, Zuppilori. Mechanical properties of carbon nanotubes. Appl. Phys. A, 1999(69): 255-260.
    [97] W X Chen, J P Tu, L Y Wang, H Y Gan, Z D Xu, X B Zhang. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon, 2003, (45): 215-219.
    [98] 李四年,宋守志,余天庆,陈慧敏,郑重,复合铸造法制备纳米碳管增强镁基复合材料的研究,中国机械工程,2005,16(3):260-264.
    [99] 李宁.化学镀实用技术[M].北京:化学工业出版社,2004.176-200.
    [100] W D Costa, B Gleeson, D J Young. Codeposited chromium-aluminide coatings. J Electrochemical Society, 1994, (141): 2690-2693.
    [101] Li F Y, Zhang L, Metzger R M. On the growth of highly ordered pores in anodized aluminum oxide [J]. Chem Mater, 1998, 10(9): 2470-2480.
    [102] 曲寿江,耿林,曹国剑,等.挤压铸造法制备可变形SiCp/Al复合材料的组织与性能[J].复合材料学报.2003,20(3):69-73.
    [103] 赵东林,卢振明,沈曾民,等.镀Ni-P和Ni-N合金碳纳米管的磁性能及其复合材料的微波吸收性能.复合材料学报[J].2004,21(3):54-58.
    [104] 张凯锋,王国峰,王振杰,等.Al_2O_3/3Y-TZP层状复合材料的制备及其超塑性能[J].复合材料学报.2005,22(3):64-69.
    [105] 陈卫祥,甘海洋,涂江平,陈文录,夏军保,汪久根,徐铸德,周国祯等,Ni-P-纳米碳管化学复合镀层的摩擦磨损特性,摩擦学学报,2002,22(4):0241-0244.
    [106] 韩贵,陈卫祥,夏军宝,何新波,徐铸德,汪久根,涂江平,化学镀耐磨自润滑Ni-P复合镀层的摩擦磨损性能,摩擦学学报,2004,124(3):0216-0219.
    [107] 张刚,李绍禄,陈小华,王健雄,陈传盛,易国军,孙心缓,碳纳米管/镍基复合镀层的腐蚀行为,中国有色金属学报,2003,13(4):0996-1000.
    [108] 陈小华,张刚,陈传盛,易国君,蒋文忠,镍磷化学复合镀碳纳米管的摩擦磨损性能研究,无机材料学报 2003,18(6):1320-1324.
    [109] 林文松,周细应,王思瑁,李轶,碳纳米管复合镀层在NaCl和H_2SO_4溶液中的腐蚀特性,材料科学与工程学报,2005,23(2):0218-0220.
    [110] Wang L Y, Chen W X, Wang Y C, et al. Friction and wear behavior of electroless Ni-based CNT composite coatings [J]. Wear. 2003, 254: 1289-1293.
    [111] Chen W X, Tu J P, Wang L Y, et al. Tribological application of carbon nanotubes in a metal-based cmposite coating and composite [J]. Carbon. 2003, 41: 215-222.
    [112] 王佛松,王夔,陈新滋,彭旭明.展望21世纪的化学.北京:化学工业出版社,2000.5
    [113] 工宝俊,赵清艳,吴红丽,李晋平,谢克昌,氢气分子与碳纳米管缺陷相互作用的量子化学计算,化工学报.2005,56(7):1332-1336.
    [114] 高鹭远,碳纳米豆荚的电子状态与电子特性-有关碳纳米管内嵌富勒烯的一些量子化学计算结果,沈阳教育学院学报,2005,7(2):0111-0114.
    [115] Gu Chong, Gao Guanghua, Yu Yangxin, Mao Zongqiang. Simulation study of hydrogen storage in single walled carbon nanolubes, international, Journal of Hydrongen Energy, 2001, 26: 691-696.
    [116] Zhang Vlingsin, Zhang Yongfan, Li Yi, Li Junqian. Theoretical studies of fluorine and hydrogen adsorbed on the ann chair (5, 5) carbon nanolubes with finite length. Chinese J. Struct Chem, 2003, 22(4): 447-453.
    [117] Kong Jing, Franklin N R, Zhang Chongwu, Chapline M G, Peng Shu, Kyeongjae Cho, Dai Hongjie. Nanotube molecular wires as chemical sensors. Science, 2000, 287(28):622-625.
    [118] Yang F H, Yang R T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes. Carbon, 2002, 40: 437-444.
    [119] Endo E. Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis Fuel and Energy Abstrcts. 2003.43(4): 253.
    [120] Chambers A, Rodriguez N M, Baker R T K. Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposoition of ethyelene. J Mater Res, 1996, 11: 430.
    [121] Ivanov V, Fonseca A,Nagy J B, et al. Catalytic production and purification of nanotubles having fullerene-scale diameters. Carbon, 1995, 33:1727.
    [122] Kuvshinov G G, Moglinykh Y I, Kuvshinov D G, et al. Mechanism of porous filamentous filamentous carbon granule formation on catalytic hydrocarbon decomposition. Carbon, 1999, 37:1239.
    [123] Tibbetts G G, Doll G L, Grorkiewiez D W, et al. Physical properties of vapor-grown carbon fibers. Carbon,1993, 31:10397.
    [124] Endo M, Takeuchik K, Hiraoka T, et al. Stacking nature of graphite layers in carbon nanotubers. J Phys Chem Solids, 1997.58(11): 1701.
    [125] 范月英,成会明,等.新型炭材料,1999,14(2):14.
    [126] Stonier R A. Stealth aircraft & echnology from word war Ⅱ to the gulf. SAMPE Tournal, 1991, 27(5): 910.
    [127] 候鹏翔,白朔,等.气体流动状态对纳米碳纤维制备的影响.新型炭材料,2000,15(4):17
    [128] Ci Lijie, Wei Jinquan, et al. Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst.Carbon, 2001,39(3):329.
    [129] K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, D.J. Kim, Effects of ammonia on the alignment of carbon nanotubes in metal-assisted thermal chemical vapor deposition, Journal of the European Ceramic Society, 2001(21):2095-2098.
    [130] Z.Y. Juang, I.P. Chien, J.F. Lai, T.S. Lai, C.H. Tsai,The effects of ammonia on the growth of large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method, Diamond and Related Materials, 2004(13): 1203-1209.
    [131] 陈仁悟,林建生编著,化学热处理原理,[M].机械工业出版社,1988,22-23.
    [132] E.F.Kakovitsky, S.G.Lvov and N.A.Sainov et al., Correlation between metal catalyst particles size and carbon nanotube growth, Chem.Phys.Lett., 2002, 355: 497.
    [133] C.Bower, O.Zbou, W.Zhu et al.,Nucleation and growth of carbon nanotube by microwave plasma chemical vapor deposition,Appl.Phys.Lett., 2000, 77: 2767.
    [134] 尹元根主编,多相催化剂的研究方法[M],化学工业出版社,1988,395-396.
    [135] 阎子峰编著,纳米催化技术[M],化学工业出版社,2003,28-60.
    [136] 陈秀,胡浩全,郭树才,气相生长炭纤维[J].新型炭材料,1997,12(1):15-18.
    [137] 朱宏伟,慈力杰,梁吉,等.浮游催化法半连续制取碳纳米管的研究[J].新型炭材料,2000,15(1):48~52.
    [138] Yacaman M J, Yoshida M M, Rendon L. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett, 1993, 62: 202.
    [139] Dai H, Wong W, Lu Y. et al. Synthesis and characterization of carbide nanorods. Nature, 1995, 375: 769.
    [140] Endo M, Takeuchi K, Kroto H. et al. The production and structure of pyrolytic carbon nanotubes(PCNT) J. Phys. Chem.Solid, 1993, 54: 1841.
    [141] Endo M, Takeuchi K, Kroto H. et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 1995, 33(7): 873.
    [142] Baughman R H, Zakhidov A A, Deheer W A. Carbon nanotubes-the route toward applications [J]. Science, 2002, 297 (8): 781-792.
    [143] Nardelli M B, Fattebert J L, Orlikowsk D I, et al. Mechanical properties, defects and electronic behavior of carbon nanotubes [J]. Carbon, 2000, 38(9): 1703-1711.
    [144] Wang Z L, Gao R P, Poncharal P, et al. Mechanical and electrostatic properties of carbon nanotubes and nanowires[J]. Materials Science and Engineering C, 2001, 16 (20): 3-10.
    [145] 曲寿江,耿林,曹国剑,等.挤压铸造法制备可变形SiCp/Al复合材料的组织与性能[J].复合材料学报.2003,20(3):69-73.
    [146] 赵东林,卢振明,沈曾民,等.镀Ni-P和Ni-N合金碳纳米管的磁性能及其复合材料的微 波吸收性能.复合材料学报[J].2004,21(3):54-58.
    [147] 罗永明,潘伟,陈健,郑仕远.SiC/W层状复合材料力学性能与显微结构的研究[J].材料导报.2000,11(5):49-51.
    [148] 姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000.6
    [149] Lu J P. Elastic properties of carbon nanotubes and nanoropes [J]. Physical Review Letters, 1997, 79(7): 1297-1300.
    [150] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381(6584): 678-680.
    [151] 高建明,程晓敏,余新泉.材料力学性能[M],武汉:武汉理工大学出版社,2004.4-20.
    [152] 刘孝敏.工程材料的微细观结构和力学性能[M].合肥:中国科学技术大学出版社,2003.225-270.
    [153] S. W. Tsai et al. Introduction of composite mechanics, 1980
    [154] 李亚智,赵美英,万小明编著,有限元法基础与程序设计,北京:科学出版社,2004:20-60
    [155] 候新录,结构分析法中的有限元法与程序设计,北京:中国建材工业出版社,2004.
    [156] 王冒成,邵敏,有限单元法基本原理和数值方法,清华大学出版社,1997.
    [157] 廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京.北京大学出版社.1984.
    [158] 唐敖庆,黎乐民,王德民.量子化学基本原理和从头计算法.北京.科学出版社.1985.
    [159] 徐光宪,黎乐民,王德民等.量子化学-基本原理和从头计算法,北京:科学出版社,1980.
    [160] 谢稀德,陆栋.固体能带理论.上海.复旦大学出版社.1998.
    [161] Parr R G, Yang W. Density Functional Theory of Atoms and Molecules.Oxford University Press, New York, 1989.
    [162] Cohen R E, Pickett W E, Krakauer H. First-Principles Phonon Calculations for La_2CuO_4. Phys Rev Lett, 1989(62): 831-834.
    [163] 陈宏善,牛建中,刘新建.氧化锰团簇中锰与氧配位的DFT计算.化学物理学报,1999,12(2):176-179.
    [164] 李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M].2002.1.3.
    [165] H.Hukuda and K. Kawada, on young's modulus of short fiber composite,Fibre Sci.Tech., 1974,Vol.7, 207~222.
    [166] Yun Lu, M.Hirohashi and Jin Pan:13th Inter Con. Comp. Mater. (ICCM-13), Jun, 25~29th, 2001, Paper No. 1220.
    [167] Lim.T., Kim Y.H.,Lee C.S.,Fabrication and mechanical properties of aluminium matrix composite materials,Journal of compoite materials, 1992,26(7): 1062~1084.
    [168] Yu M F, Lourie O.,Dyer M J.,et al.Science,2000,287:637.
    [169] Yu M F, Dyer M J.Skidmore G D,et al.Nanotechology,1999,10:244.
    [170] Chang J, Bell J P, Joseph R. Effects of a controlled, modulus interlayer on the properties of graphite/eposxy compoite. SAMPE Quarterly, 1987, 18(4):39-47.
    [171] Rhee H W, Bell J P. Effects of reactive and non-reactive fiber coatings on performance of graphite/eposxy composites. Polymer Composites, 1991, 12(3): 213-225.
    [172] Drzal L T. Adhesion of graphite fibers to eposxy matrices: Ⅱ The effect of fiber finish. Journal of Adhession, 1983, 16(1):133-152.
    [173] Termonia Y. Fiber coating as a means to compensate for poor adhesion in fiber-reinforced materials. J Mater Ssi, 1990,25(6): 103-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700