煤结构与反应性的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子化学计算方法在煤化学中的应用,已逐步深入到探索煤的结构与反应性之间的关系,逐渐形成了一个新的研究方向。目前量子化学计算方法已经为处理煤结构提供了一种切实可行的研究手段,这种方法的关键在于选择和构建合理的煤结构模型。因此,针对煤的特定属性构建“煤的局部微观结构模型”,可以为煤的结构与反应性研究提供可靠的理论基础。
     本文根据上述思路,构建了7个可以采用量子化学计算方法处理的煤局部微观结构模型:描述煤热化学性质的片断结构模型,描述煤UV-Vis吸收特性的稠环芳香化合物结构模型,描述煤表面电位性质的取代稠环芳烃边缘模型,描述煤的气体吸附的片断结构模型,描述煤中氢键的酚羟基自组合苯酚氢键模型,描述溶剂分子抽提作用的固定结构模型和优化结构模型。针对这些模型用量子化学计算的方法阐述了结构与相关性质的关系。在计算过程中,提出了“多点计算,整体平均”的思路,有效地抵消了量子化学计算的起始结构偶然性带来的误差,比较准确地描述了较大的煤模型分子与较小的气体分子之间的作用,比较准确地描述了溶剂对煤中氢键以多种可能微观结构作用的结果。用量子化学密度泛函理论计算方法对煤模型分子的反应动力学进行了深入研究,建立了通过势能扫描计算高效率搜寻过渡态的方法,准确可靠地确定了煤化学中的几个重要反应的化学动力学机理:N-甲基吡咯烷酮和二硫化碳生成N-甲基吡咯烷-2-硫酮的动力学机理,
The quantum chemistry calculation method has been gradually used to study the correlation between coal structure and reactivity in coal chemistry. The method has gradually formed a new research branch, and provided a feasible scheme for dealing with coal structure. How to choose and build an appropriate coal structure is a key issue for the application of quantum chemistry calculation method. It is a practical method to construct the Local Micro-Structure Model of Coal (LMSMC) for application of quantum chemistry calculation method to coal structure and reactivity.
    This dissertation presents the idea of constructing the different LMSMC for specific properties of coal and studying on correlation between coal structure and reactivity using quantum chemistry calculation method. Seven types of LMSMCs that could be used for quantum chemistry calculation are built: the fractional structure models describing thermal chemical properties of coal, the polycyclic aromatic compound models describing UV-Vis absorption properties of coal, the substituted polycyclic aromatic hydrocarbon edge models describing surface electric potential properties of coal, the fractional structure models describing gas adsorption on coal surface, the phenol hydroxyl self-associated model describing hydrogen bond in coal, the fixed structure models and optimized structure models describing the solvent extraction of coal. These types of models are used for quantum chemistry calculation to illustrate the relationship between the structures and properties.
    The idea of "Multipoint Calculation and Whole Average" was put forward, which effectively reduces the error resulting from the chance of using different initial structures in the process of quantum chemistry calculation. The result more accurately describes the interaction between larger coal model molecule
引文
1 张红星,徐昕.′98诺贝尔化学奖简介.化学进展,1998,10(4):466-468
    2 Pople J.A.,江元生 译.分子轨道近似方法理论.北京:科学出版社,1976,64-74
    3 Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965, 140(4A): A1133-1138
    4 Parr R. G. Density Functional Theory. Ann. Rev. Phys. Chem., 1983, 34: 631-656
    5 徐光宪.21世纪理论化学的挑战和机遇(大会报告).第八届全国量子化学学术会议(长春),2002.(http://info.jlu.edu.cn/~tcclab/nqcac.htm)
    6 徐光宪.21世纪是信息科学、合成化学和生命科学共同繁荣的世纪.2004中国科学院科学发展报告.北京:科学出版社,2004,13-16
    7 陈念陔,高坡,乐征宇.量子化学理论基础.哈尔滨:哈尔滨大学出版社,??2002,201
    8 Levine I. N. Quantum Chemistry, Second Ed. Boston: Allyn and Bacon, Inc., 289-293
    9 《实用化学手册》编写组.实用化学手册.北京:科学出版社,2001,9-10
    10 杨频,高孝恢.性能—结构—化学键.北京:高等教育出版社,1978,10-11
    11 杨频,高飞.生物无机化学原理.北京:科学出版社,2002,466-467
    12 肖鹤鸣,陈兆旭.四唑化学的现代理论.北京:科学出版社,2000,16-17
    13 陈念陔,高坡,乐征宇.量子化学理论基础.哈尔滨:哈尔滨大学出版社,2002,233
    14 Levine I. N. Quantum Chemistry, Second Ed. Boston: Allyn and Bacon, Inc., 246-248
    15 王志中,李向东.半经验分子轨道的理论与实践.北京:科学出版社,1981,4-14
    16 Dewar M.S.J.,戴树珊,刘有德 译.有机化学分子轨道理论.北京:科学出版社,1997,114-124
    17 Heilbronner E.,Bock H.王宗睦,陈荫遗 译.休克尔分子轨道模型及其应用(第一卷).北京:科学出版社,1982,104-110
    18 Dewar M.S.J.,戴树珊,刘有德 译.有机化学分子轨道理论.北京:科学出版社,1997,549-552
    19 潘毓刚,李俊清,祝继康等.Xα方法的理论和应用.北京:科学出版社,1987,36-56
    20 程新,陈亚明.量子化学计算方法在材料科学领域的初步应用.山东建材学院学报,1994,8(2):1-4
    21 徐昕,王南钦,吕鑫,张乾二.量子化学的研究现状、发展趋势与展望.化学进展,1996,8(1):30-42
    22 朱维良,蒋华良,陈凯先 等.分子间相互作用的量子化学研究.化学进展,1999,11(3):247-253
    23 范康年.物理化学(第二版).北京:高等教育出版社,1995,208-209
    24 谢元南.密度泛函理论在模型体系及实际材料中的发展和应用(博士学位论文).北京大学,1999,1-225 Hohenberg P., Kohn W. nhomogeneous Electron Gas. Physical Review, 1964, 136: B864-871
    26 Ziegler T. Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics. Chemical Reviews. 1991, 91(5): 651-667
    27 Kohn W., Sham L. J. Shlf-consistent Equation Including Exchange and Correlation Effects. Physical Review, 1965, 140: A1133-1138
    28 唐敖庆,杨忠志,叶元杰.大分子体系的量子化学.吉林:吉林大学出版社,2000,6-7
    29 谢元南.密度泛函理论在模型体系及实际材料中的发展和应用(博士学位论文).北京大学,1999,75
    30 莫依,黎乐民.密度泛函计算条件对结果精度的影响.高等学校化学学报,2001,22(1):81-85
    31 张瑞勤,黄建华.一种选择从头算基函数的有效方法.中国科学(B辑),2000,30(5):419-427
    32 Young D. C. Computational Chemistry-A Practical Guide for Applying Techniques to Real-Word Problems. New York: John Wiley & Sons, Inc., 2001, 35
    33 Van Heek K. H. Progress of Coal Science in the 20th Century. Fuel, 2000, 79: 1-26
    34 孙庆雷,李文,陈皓侃,李保庆.煤显微组分分子结构模型的量子化学研究.燃料化学学报,2004,32(3):282-286
    35 盛六四,邱文元,杜奇石.量子化学新进展.化学通报,1996,7:18-19
    36 谢克昌.煤的结构与反应性.北京:科学出版社,2002,181-184
    37 谢克昌.煤的结构与反应性.北京:科学出版社,2002,85-86
    38 Frisch A., Frisch M. J. Gaussian 98 User's Reference. Pittsburgh: Gaussian, Inc, 1999, 11-15
    39 胡文祥,陈永健,恽榴红.药物构效关系研究与药物设计中常用计算机软件.军事医学科学院院刊,1995,19(2):136-1437
    40 谢克昌.煤的结构与反应性.北京:科学出版社,2002,85-90
    41 Doughty A., Mackie J. C. Kinetic of Pyrolysis of a Coal Model Compound, 2-Picoline, the Nitrogen Heteroaromatic Analogue of Toluene. 2. The 2-Picolyl??Radical and Kinetic Modeling. J. Phys. Chem., 1992, 96: 10339-10348
    42 黄充,张军营,郑楚光,王春梅.煤中吡啶型氮热解机理的量子化学研究.煤炭转化,2004,27(2):19-22
    43 Friedel R. A. Aromaticity and Color of Coal. Nature, 1957, 179: 1237-1238
    44 陈昌国.量子化学DV-Xα方法研究煤大分子的稠环芳香结构与电子光谱.重庆师专学报,1999,18(2):5-8
    45 Gorbaty M. L., Larsen J. W., Wender I. Coal Science Vol. 1. New York: Academic Press, 1982, 31 Takanohashi T., Nakamura K., Iino M. Computer Simulation of Methanol Swelling of Coal Molecules. Energy & Fuels, 1999, 13: 922-926
    2 Takanohashi T., Kawashima H. Construction of a Model Structure for Upper Freeport Coal Using ~(13)CNMR Chemical Shift Calculations. Energy & Fuels, 2002, 16: 379-3873 Given P. H. The Distribution of Hydrogen in Coals and its Relation to Coal Structure. Fuel, 1960, 39: 147-153
    4 Van Krevelen D. W. Coal (3rd ed). Amsterdam: Elsevier, 1993, 802
    5 Shinn J. H. From Coal to Single-stage and Two-stage Products: a Reactive Model of Coal Structure. Fuel, 1984, 63: 1187-1196
    6 Ades H. F., Subbaswamy K. R. Theoretical Modeling of Coliquefaction Reactions of Coal and Polymers. Fuel Processing Technology, 1996, 49: 207-217
    7 Sato Y., Inaba A., Uemasu I. Molecular Orbital Study of the Effect of Hydrogen Donating Solvent on the Coal Liquefaction. ICCS, 1985, Vol. Ⅰ: 730-733
    8 陈宏刚,李凡,谢克昌.煤结构的计算机辅助分子设计研究.煤炭转化,1996,19(4):1-10
    9 Carlson G. A. Computer Simulation of the Molecular Structure of Bituminous Coal. Energy & Fuels, 1992, 6: 771-778
    10 郭梦熊,霍卫东,安征.不同挥发分煤的浮选理论与实践.煤炭科学技术,1999,27(1):46-48
    11 邵续新,任守政,李军.细粒煤的浮选脱硫研究.煤炭学报,1997,22(2):182-186
    12 Hou X. J., Yang J. L., Gu Y. D. Theoretical Study on the Reactivity of Coal Structure. ICCS, 1999, Vol. Ⅰ: 295-298
    13 侯新娟,杨建丽,李永旺.煤大分子的量子化学研究.燃料化学学报,1999,27(增刊):142-148
    14 李凡,张永发,谢克昌.平朔烟煤大分子结构中小分子相的研究.燃料化学学报,1993,21(3):293-297
    15 Li F., Zhang Y. F., Xie K. C. Characterization of the Macro-molecular Structure of Pingshuo Coal Macerals Using ~(13)CNMR, XPS, FTIR and XRD. Fuel Sci. and Tech. Int'l, 1993, 11(8): 1113-1131
    16 Li F., Xie K. C., Zhang Y. F. Structure Studies of Pingshuo Coal Extracts Using 1H and 13CNMR Spectroscopy. Fuel Sci. and Tech. Int'l, 1994, 12(9): 1150-1168
    17 Wang B. J., Wu Z. M., Li F. The Study on the Electronic Structures and Molecular Models of Coal Macerals. ICCS, 1999, Vol. Ⅰ: 271-274
    18 Marzec A. Intermolecular Interactions of Aromatic Hydrocarbons in Carbonaceous Materials. Carbon, 2000, 38(13): 1863-187119 Friedel R. A. Aromaticity and Color of Coal. Nature, 1957, 179: 1237-1238
    20 Van Krevelen D. W. Coal (3rd ed). Amsterdam: Elsevier, 1993, 395
    21 陈昌国.量子化学DV-Xα方法研究煤大分子的稠环芳香结构与电子光谱.重庆师专学报,1999,18(2):5-8
    22 朱培之,高晋生.煤化学.上海:上海科学技术出版社,1984,129
    23 David R. L. CRC Hand Book of Chemistry and Physics (82nd ed. ). Boca Raton: CRC Press, 2001, 5. 5-5. 60
    24 Atkins P., Paul J. D. Physical Chemistry (7th ed. ). Oxford: Oxford University Press, 1076-1084
    25 谢克昌.煤的结构与反应性.北京:科学出版社,2002,27
    26 陈文敏.煤的发热量和计算公式(第二版).北京:煤炭工业出版社,1993,89
    27 吕永康.等离子体热解煤制乙炔及热力学和动力学分析(博士学位论文).太原理工大学,2003,68-73
    28 虞继舜.煤化学.北京:冶金工业出版社,2000,61
    29 谢克昌.煤的结构与反应性.北京:科学出版社,2002,29
    30 陈文敏.煤的发热量和计算公式(第二版).北京:煤炭工业出版社,1993,39
    31 任引哲,王玉湘.物质的颜色与结构.北京:北京师范大学出版社,1991,2-12
    32 陈昌国,鲜学福.煤结构的研究及其发展.煤炭转化,1998,21(2):7-13
    33 Van Krevelen D. W. Coal (3rd ed). Amsterdam: Elsevier, 1993, 394
    34 Friedel R. A. Electronic Absorption and the Energy Gap of Bituminous Vitrain. Fuel, 1959, 39(4): 541-542
    35 黄量,于德泉.紫外光谱在有机化学种的应用(上册).北京:科学出版社,2000,28-29
    36 黄量,于德泉.紫外光谱在有机化学种的应用(上册).北京:科学出版社,2000,163
    37 于世林,李寅蔚.波谱分析法(第二版).重庆:重庆大学出版社,2001,20-22
    38 赵藻藩,周性尧,张悟铭,赵文宽.仪器分析.北京:高等教育出版社,2000,62
    39 周名成,俞汝勤.紫外与可见分光光度分析法.北京:化学工业出版社,1986,8940 陈国珍,黄贤智,刘文远,郑朱梓,王尊本.紫外-可见光分光光度法。北京:原子能出版社,1987,19
    41 黄量,于德泉.紫外光谱在有机化学种的应用(上册).北京:科学出版社,2000,159
    42 Davidson R. M. Molecular Structure of Coal. from Coal Science (V1). edited by Martin L. G., Larsen J. W., Wender I. New York: Academic Press, 1982, 109
    43 Gerstein B. C., Ryan L. M., Murphy P. D. An Estimation of Average Aromatic Ring Size on an Iowa Vitrain and a Virginia Vitrain. from Coal Structure. edited by Martin L. G., Ouchi K. Washington D. C.: American Chemistry Society, 1981, 15-22
    44 Van Krevelen D. W. Coal (3rd ed). Amsterdam: Elsevier, 1993, 804
    45 黄量,于德泉.紫外光谱在有机化学种的应用(上册).北京:科学出版社,2000,123
    46 南京大学化学系有机化学教研室.有机化学(上册)。北京:高等教育出版社,1978,234
    47 赖城明.量子有机化学导论.北京:高等教育出版社,1978,2031 Crawford R. J, Mainwaring D. E. The Influence of Surfactant Adsorption on the Surface Characterization of Australian Coals. Fuel, 2001, 80(3): 313-320
    2 谢克昌.煤的结构与反应性.北京:科学出版社,2002,105-106
    3 陈文敏.中国超纯煤的研制.煤炭科学技术,1996,22(6):40-42
    4 Moreno-Castilla C., Ferro-Garcia M. A., Joly J. P., Bautista-Toledo I., Carrasco-Marin F., Rivera-Utrilla J. Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide and Ammonium Peroxydisulfate Treatments. Langmuir, 1995, 11(11): 4386-4392
    5 傅献彩,沈文霞,姚天扬.物理化学.北京:高等教育出版社,1990,1017-1021
    6 冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究.中国矿业大学学报,2002,31(5):362-366
    7 Savitsky A., Golary M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36(8): 1627-1638
    8 Van Krevelen D. W. Coal. 3rd ed. Amsterdam: Elsevier Science Publishers B. V., 1993, 788-792
    9 Cerius~2 Quantum Chemistry. San Diego: Molecular Simulations Inc. 1999, 175-182
    10 Chen S. G., Yang R. T. The Active Surface Species in Alkali-Catalyzed Carbon Gasification: Phenolate (C—O—M) Groups vs Clusters(Particles). Journal of Catalysis, 1993, 141(1): 102-113
    11 Moreno-Castilla C., Lopez-Ramon M. V., Carrasco-Mari n E Changes in Surface Chemistry of Activated Carbons by Wet Oxidation. Carbon, 2000, 38(11-12):??1995-2001
    12 Moreno-Castilla C., Carrasco-Marin E, Parejo-Perez C., Lopez-Ramon M. V. Dehydration of Methanol to Demethyl Ether Catalyzed by Oxidized Activated Carbons with Varying Surface Acidic Character. Carbon, 2001, 39(6): 869-875
    13 谢克昌.煤的结构与反应性.北京:科学出版社,2002,233-251
    14 顾惕人,朱(王步)瑶,李外郎,马季铭,戴乐蓉,程虎民.表面化学.北京:科学出版社,1999,134-136
    15 朱红,李虎林,欧泽深,王淀佐,吕小丽.不同煤阶煤表面改性的FTIR谱研究.中国矿业大学学报,2001,30(4):66-370
    16 谢克昌.煤的结构与反应性.北京:科学出版社,2002,116-119
    17 Budinova T., Petrov N., Minkova V., Razvigorova M. Influence of Thermooxidative Treatment on the Surface Properties of Anthracite. Fuel, 1998, 77(6): 577-5801 陈鹏.中国煤炭性质、分类和利用.北京:化学工业出版社,2001,252
    2 周公度,段连运.结构化学基础(第三版).北京:北京大学出版社,2002,240-242
    3 傅献彩,沈文霞,姚天扬.物理化学(第四版).北京:高等教育出版社,1990,949-950
    4 马捷,苏秋利,张忠利,王明育.金属氢化物的吸附性能和活性炭贮氢的可行性.华北电力大学学报,2003,30(5):58-61
    5 王曾辉,高晋生.碳素材料.上海:华东化工学院出版社,1991,31
    6 Llanos J. L., Fertitta A. E., Flores E. S., Bottani E. J. SO_2 Physisorption on Exfoliated Graphite. J. Phys. Chem. B, 2003, 107: 8448-8453
    7 Alejandro M., Truong T. N., Sarofim A. F. Spin Contamination in Hartee-Fock and Density Functional Theory Wavefunctions in Modeling of Adsorption on Graphite. J. Phys. Chem. A. 2000, 104: 6108-6110
    8 Betoncini C., Odetti H., Bottani E. J. Computer Simulation of Phenol Physisorption on Graphite. Langmuir, 2000, 16: 7457-7463
    9 Yang S. B., Hu H. Q., Chen G. H. Preparation of Carbon Adsorbents with High Surface Area and a Model for Calculating Surface Area. Carbon, 2002, 40: 277-284
    10 Bennett A. J., Mccarroll B., Messmer R. P. Molecular Orbital Approach to Chemisorptiona: Ⅱ-Atomie H, C, N, O and F on Graphite. Phys. Rev., 1971, B3(3): 397-404
    11 陈昌国,魏锡文,鲜学福.用从头计算研究煤表面与甲烷分子相互作用.重庆大学学报(自然科学版),2000,23(3):77-79
    12 孙培德.煤与甲烷气体相互作用机理的研究.Coal,2000,9(1):18-21
    13 Sun P. D. Study on the Mechanism of Interaction for Coal and Methane Gas. J. Coal. Science & Engineering, 2001, 7(1): 58-63
    14 Stefanik Y. V., Kopilets V. I. Computer Simulation of the Process of Coal and Methane interaction with air. Geol. Geokhim. Goryuch. Kopalin, 2001, (1): 86-9115 傅爱萍,冯大诚,邓从豪.水在石墨(0001)面簇模型桥位上吸附的量子化学研究.高等学校化学学报,1998,19(5):792-795
    16 Lukovits I. Harmonic Force Field Between the (001) Surface of Graphite and Adsorbed Methane. Vib Spectros, 1990, 1: 135-142
    17 Marchon B., Tysoe W. T., Carrazza J., Heinemann H., Somorjai G. A. Reactive and Kinetic Properties of Carbon Monoxide and Carbon Dioxide on a Graphite Surface. J. Phys. Chem., 1988, 92: 5744-5749
    18 Alejandro M., Truong T. N., Sarofim A. F. Application of Density Functional Theory to the Study of the Reaction of NO with Char-Bound Nitrogen during Combustion. J. Phys. Chem., 2000, 104: 8409-8417
    19 Chen S. G., Yang R. T. The Active Surface Species in Alkali-Catalyzed Carbon Gasification: Phenolate(C—O—M) Groups vs Clusters(Particles). Journal of Catalysis, 1993, 141: 102-113
    20 Chen S. G., Yang R. T. Unified Mechanism of Alkali and Alkaline Earth Catalyzed Gasification Reactions of Carbon by CO_2 and H_2O. Enery & Fuels, 1997, 11: 421-427
    21 Montoya A., Truong T. CO Desorption from Carbonyl Surfaces Species in the Gasification of Coal. Prepr. Symp. -Am. Chem. Soc., Div. Fuel Chem., 2001, 46(1): 215-216
    22 Montoya A., Mondragon E CO_2 Adsorption on Carbonaceous Surfaces: A Combined Molecular Modeling and Experimental Study. Prepr. Symp. -Am. Chem. Soc., Div. Fuel Chem., 2001, 46(1): 217-219
    23 徐精彩,薛韩玲,文虎,李莉.煤氧复合热效应的影响因素分析.中国安全科学学报,2001,11(2):31-36
    24 张景来.煤表面与高分子作用机理的量子化学研究.北京科技大学学报,2001,23(1):6-8
    25 Stefanik Y. V., Kopilets V. I. Computer Simulation of the Process of Coal and Methane Interaction with Air. Geol. Geokhim. Goryuch. Kopalin, 2001, (1): 86-91
    26 Brennan J. K., Thomson K. T., Gubbins K. E. Adsorption of Water in Activated Carbons: Effects of pore Blocking and Connectivity. Langmuir, 2002, 18:??5438-5447
    27 谢克昌.煤的结构与反应性.北京:科学出版社,2002,89
    28 严荣林,钱国胤.煤的分子结构与煤氧化自燃的气体产物.煤炭学报(增刊),1995,20(6):58-64
    29 天津大学无机化学教研室.无机化学(第2版).北京:高等教育出版社,1992,10
    30 曹阳,吕春绪,张劲松,蔡春,张耀叔.现代量子化学在染料工业中的应用—量子化学对染料应用的研究以及相关软件的介绍.染料工业,2002,39(5):29-31
    31 Ades H. F., Companion A. L., Subbaswamy K. R. A Comparative Study of Semiempirical Bond Dissociation Energy Calculations. J. Phys. Chem., 1991, 95: 6502-6507
    32 Phillips J. M., Leibsle F. M., Holder A. J., Keith T. A Comparative Study of Chemical sorption by Density Functional Theory, Ab initio, and Semiempirical Methods: Carbon Monoxide, Formate, and Acetate on Cu(110). Surface Science, 2003, 545: 1-7
    33 Cerius~2 Quantum Chemistry. San Diego: Molecular Simulations Inc. 1999, 175-182
    34 Atkins P., Paula J. D. Physical Chemistry(17th). Oxford: Oxford University Press, 2002, 704-706
    35 李兆龙,苏克和,王育彬,文振翼.几个分子和负离子的QCI势能曲线.分子科学学报,1998,14(4):242-247
    36 尹敬执,申泮文.基础无机化学.北京:人民教育出版社,1980,326-327
    37 尹敬执,申泮文.基础无机化学.北京:人民教育出版社,1980,327-328
    38 Lukovits I. Harmonic Force Field between the (001) Surface of Graphite and Adsorbed Methane. Vib. Spectros, 1990, 1: 135
    39 Phillips J. M., Hammerba M. D. Methane Adsorbed on Graphite. Phys. Rev., 1984, B29(10): 5859
    40 周胜国,侯瑞云,郭淑敏.煤对双组分气体的等温吸附实验方法.焦作工学院学报,1996,15(6):83-87
    41 Busch A., Gensterblum Y., Krooss B. M. Methane and CO_2 Sorption and??Desorption Measurements on Dry Argonne Premium Coals: Pure Components and Mixtures. International Journal of Coal Geology, 2003, 55: 205-224
    42 Clarkson C. R., Bustin R. M. The Effect of Pore Structure and Gas Pressure upon the Transport Properties of Coal: a Laboratory and Modeling Study. 2. Adsorption Rate Modeling. Fuel, 1999, 78: 1345-1362
    43 徐龙君,张代钧,鲜学福.煤的吸附特征及其应用.煤炭转化,1997,20(2):26-31
    44 李建武,白公正,雷宝林,李静,赵俊峰.吐哈盆地煤层的吸附性及其影响因素.煤田地质与勘探,2001,29(2):30-321 谢克昌.煤的结构与反应性.北京:科学出版社,2002,156-167
    2 魏贤勇,宗志敏,秦宏.分子煤化学的构想及其发展前景.袁晴棠,金涌主编,化工与材料’99—中国工程院化工、冶金与材料工程学部第二届学术会议论文集.北京:中国工程院,1999,623-628
    3 Cai M. F., Smart R. B. Quantitative Analysis of N-methyl-2-pyrrolidinone in Coal Extracts by TGA-FTIR. Energy & Fuels, 1993, 7(1): 52-56
    4 Gao H., Nomura M., Murata S., Artok L. Statistical Distribution Characteristics of Pyridine Transport in Coal Particles and a Series of New Phenomenological Models for Overshoot and Nonovershoot Solvent Swelling of Coal Particles. Energy & Fuels, 1999, 13(2): 518-528
    5 Zong Z., Peng Y., Qin Z., Liu J., Wu L., Wang X., Liu Z., Zhou S., Wei X. Reaction of N-Methyl-2-pyrrolidinone with Carbon Disulfide. Energy & Fuels, 2000, 14(3): 734-735
    6 陈茺,许学敏,高晋生,颜涌捷,郭新闻.氢键在煤大分子溶胀行为中的作用.燃料化学学报,1997,25(6):521-527
    7 Marzec A. Toward an Understanding of the Coal Structure: a Review. Fuel Processing Technology, 2002, 77: 25-32
    8 van Heek K. H. Progress of Coal Science in the 21st Century. Fuel, 2000, 79: 1-26
    9 王文庆,杨玉桓,高鸿宾.有机化学中的氢键问题.天津:天津大学出版社,1993,1-15
    10 郭明忠.从头计算法研究分子间的氢键相互作用.成都大学学报(自然科学版),1996,15(4):21-24
    11 Miura K., Mae K., Li W., Kusakawa T. Estimation of Hydrogen Bond Distributions in Coal Through the Analysis of OH Stretching Bands in Diffuse Reflectance Infrared Spectrum Measured By In-situ Technique. Energy & Fuels, 2001, 15: 599-610
    12 Miura K., Mae K., Hasagewa I., Chen H., Kumano A., Tmura K. Estimation of Hydrogen Bond Distributions Formed Between Coal and Polar Solvents Using??In-situ IR Technique. Energy & Fuels, 2002, 16: 23-31
    13 曾凡桂,张通,王三跃,谢克昌.煤超分子的概念及其研究途径与方法.煤炭学报,2005,30(2):85-89
    14 高晋生,陈茺,颜勇捷.煤大分子在有机溶剂中的溶解溶胀行为及其交联本性.华东理工大学学报,1998,24(3):318-323
    15 陈茺,许学敏,高晋生,颜勇捷,李伟,郭新闻.煤中氢键类型的研究.燃料化学学报,1998,26(2):140-144
    16 Chen C., Gao J., Yan Y., Observation of the Type of Hydrogen Bonds in Coal by FTIR. Energy & Fuels, 1998, 12: 446-449
    17 Lille U. Effect of Water on the Hydrogen Bond Formation in Estonian Kukersite Kerogen as Revealed by Molecular Modelling. Fuel, 2004, 83(9): 1267-1268
    18 Toshimasa T., Iino M., Nakamura K. Evaluation of Association of Solvent-soluble Molecules of Bituminous Coal by Computer Simulation. Energy & Fuels, 1994, 8: 395-398
    19 Takanohashi T., Iino M., Nakamura K. Simulation of Interaction of Coal Associates with Solvents Using the Molecular Dynamics Calculation. Energy & Fuels, 1998, 12: 1168-1173
    20 王文庆,杨玉桓,高鸿宾.有机化学中的氢键问题.天津:天津大学出版社,1993,5
    21 梁雪,王一波.精确计算氢键键能的Gaussian理论.贵州大学学报(自然科学版),2003,20(1):36-41
    22 实用化学手册编写组.实用化学手册.北京:科学出版社,2001,682-723
    23 张永敏.物理有机化学.上海:上海科学技术出版社,1979,136
    24 Cerius~2 Quantum Chemistry. San Diego: Molecular Simulations Inc. 1999, 58-47
    25 Young D. C. Computational Chemistry-A Practical Guide for Applying Techniques to Real-World Problems. New York: John Wiley & Sons, Inc., 2001, 147-157
    26 肖鹤鸣,陈兆旭.四唑化学的现代理论.北京:科学出版社,2000,195-196
    27 Foresman J. B., Frish A. Exploring Chemistry with Electronic Structure Methods. 2nd ed. Pittsburgh: Gaussian, Inc., 1996, 68-69
    28 Foresman J. B, Frish A. Exploring Chemistry with Electronic Structure Methods.??2nd ed. Pittsburgh: Gaussian, Inc., 1996, 166-168
    29 傅献彩,沈文霞,姚天扬.物理化学,第四版.北京:高等教育出版社,1990,798-812
    30 王惠,杨海峰,翟高红 等.碳源甲基苯热裂解机理的密度泛函动力学研究.化学学报,2001,59(1):17-21
    31 傅献彩,沈文霞,姚天扬.物理化学,第四版.北京:高等教育出版社,1990,752-7531 Leppalahti J., Koljonen T. Nitrogen Evolution from Coal, Peat and Wood During Gasification: Literature Review. Fuel Processing Technology, 1995, 43(1): 1-45
    2 曹欣玉,牛志刚,应凌俏 等.无烟煤燃料氮的热解析出规律.燃料化学学报,2003,3(16):538-542
    3 毛健雄,毛健全,赵树民 等.煤的洁净燃烧.北京:科学出版社,1998,209-210
    4 冯志华,常丽萍,任军.煤热解过程中氮的分配及存在形态的研究进展.煤炭转化,2000,23(3):6212
    5 Marek A., Jan R., Jacob A. The Fate of Nitrogen Functionalities in Coal During Pyrolysis and Combustion. Fuel, 1995, 74: 5072
    6 刘海明,张军营,郑楚光,王春梅.煤中吡啶型氮热解机理的量子化学研究.煤炭转化,2004,27(2):19-22
    7 Hou X. J., Yang J. L., Gu Y. D. Theoretical Study on the Reactivity of Coal Structure, ICCS, 1999, Vol. Ⅰ: 295-298
    8 Barckholtz C., Barckholtz T. A., Hadad C. M. C-H and N-H Bond Dissociation??Energies of Small Aromatic Hydrocarbons. J. Am. Chem. Soc., 1999, 121(3): 491-500
    9 Cody G. D., Saghi-Szabo G. Calculation of the C-13 NMR Chemical Shift of Ether Linkages in Lignin Derived Geopolymers: Constraints on The Preservation of Lignin Primary Structure With Diagenesis. Geochimica Et Cosmochimica Acta, 1999, 63(2): 193-205
    10 邓伟乔,韩可利,黄建华.苯在高温下热解机理的探讨.化学物理学报,1998,11(4):339-347
    11 王惠,翟高红,冉新权.碳材料用碳源化合物热解机理的理论研究.无机化学学报,2000,16(6):880-887
    12 王惠,翟高红,冉新权.碳前驱体热解机理的理论研究.无机材料学报,2001,16(2):230-236
    13 王惠,杨海峰,翟高红.碳源甲基苯热裂解机理的密度泛函动力学研究.化学学报,2001,59(1):17-21
    14 乔占平,王惠,赵立文.甲基苯热裂解机理的理论研究.燃料化学学报,2002,30(1):49-53
    15 王惠,罗瑞盈,杨延清.2,4—二甲基卤代苯热解机理的理论研究.西北大学学报(自然科学版),2001,31(1):33-36
    16 翟高红,王惠,杨海峰.环己烷的热解机理.物理化学学报,2001,17(4):348-355
    17 王惠,翟高红,杨海峰.碳前驱体CH_3ArCH_2NH_2热解反应的热力学和动力学DFT研究.高等学校化学学报,2001,22(5):800-804
    18 Hamalaiene J. P., Aho M. J., Tummavuori J. L. Formation of Nitrogen Oxides from Fuel-N through HCN and NH3: a Model-Compound Study. Fuel, 1994, 73(12): 1894-1898
    19 Yoshihiko N., Dong Z., Yoshizo S., Jugo K. Theoretical Study on the Thermal Decomposition of Pyridine. Fuel, 2000, 79: 449-457
    20 Doughty A., Mackie J. C. Kinetic Of Pyrolysis of the Isomeric Butenenitriles and Kinetic Modeling. J. Phys. Chem., 1992, 96: 272-281
    21 Doughty A., Mackie J. C. Kinetic of Pyrolysis of a Coal Model Compound, 2-Picoline, the Nitrogen Heteroaromatic Analogue of Toluene. 2. The 2-Picolyl??Radical and Kinetic Modeling. J. Phys. Chem., 1992, 96: 10339-10348
    22 黄充,张军营,陈俊,郑楚光.煤中噻吩型有机硫热解机理的量子化学研究.煤炭转化,2005,28(2):233-35
    23 Jones J., Bacskay G. B., Mackie J. C. The Pyrolysis of 3-Picoline: Ab Initio Quantum Chemical and Experimental (Shock Tube) Kinetic Studies. Israel Journal of Chemistry, 1996, 36(3): 239-245
    24 Terentis A., Doughty A., Mackle J. C. Kinetics of Pyrolysis of a Coal Model Compound, 2-Picoline, the Nitrogen Heteroaromatic Analogue of Toluene. 1. Product Distributions. Journal of Physical Chemistry, 1992, 96: 10334-10339
    25 Vierheilig A., Chen T., Waltner P., Kiefer W., Materny A., Zewail A. H. Femtosecond Dynamics of Ground-state Vibrational Motion and Energy Flow: Polymers of Giacetylene. Chemical Physics Letters, 1999, 312(5-6): 349-356
    26 魏运洋,李建.化学反应机理导论.北京:科学出版社,2004,23-27
    27 David R. L. CRC Hand Book of Chemistry and Physics (82nd ed. ). Boca Raton: CRC Press, 2001, 9. 40
    28 Kinugasa S., Tanabe K., Tamura T. Spectral Database for Organic Compounds. http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi
    29 David R. L. CRC Hand Book of Chemistry and Physics (82nd ed. ). Boca Raton: CRC Press, 2001, 9. 40
    30 Young D. C. Computational Chemistry-A Practical Guide for Applying Techniques to Real-World Problems. New York: John Wiley & Sons, Inc., 2001, 147-157
    31 肖鹤鸣,陈兆旭.四唑化学的现代理论.北京:科学出版社,2000,195-196
    32 傅献彩,沈文霞,姚天扬.物理化学,第四版.北京:高等教育出版社,1990,222-223
    33 Atkins P., Paula J. D. Physical Chemistry(7th ed.). Oxford: Oxford University Press, 2002, 650-651
    34 Foresman J. B., Frish A. Exploring Chemistry with Electronic Structure Methods. 2nd ed. Pittsburgh: Gaussian, Inc., 1996, 166-168
    35 傅献彩,沈文霞,姚天扬.物理化学,第四版.北京:高等教育出版社,1990,14136 魏运洋,李建.化学反应机理导论.北京:科学出版社,2004,23.27
    37 傅献彩,沈文霞,姚天扬.物理化学,第四版.北京:高等教育出版社,1990,798-812
    38 赵松年,于允贤.突变理论及其在生物医学中的应用.北京:科学出版社,1987.13-50
    39 Amold V I.,周燕华 译.突变理论.北京:高等教育出版社,1990,8-10
    40 Saunders P.T.,凌复华 译.突变理论入门.上海:上海科学技术文献出版社,1983.80-861 Van Krevelen D. W. Coal (3rd ed). Amsterdam: Elsevier, 1993, 782-788
    2 Lai H. J., Lin M. C. C., Yang M. H., Li A. K. Synthesis of Carbon Nanotubes Using Polycyclic Aromatic Hydrocarbons as Carbon Sources in an Arc Discharge. Materials Science and Engineering C, 2001, 16: 23-26
    3 Setlur A. A., Dai J. Y., Lauerhass J. M., Chang P. H. Formation of Filled Carbon Nanotubes and Nanoparticles Using Polycyclic Aromatic Hydrocarbon Molecules. Carbon, 1998, 36(5-6): 721-723
    4 Dai Y., Lauerhaas J. M., Setlur A. A., Chang R. P. H. Synthesis of Carbon-encapsulated Nanowires Using Policyclic Aromatic Hydrocarbon??Precursors. Chem. Phys. Lett., 1996, 258: 547-553
    5 Danna A., Violi A., Dalessio A. Modeling the Rich Combustion of Aliphatic Hydrocarbons. Combustion and Flame, 2000, 121: 418-429
    6 Wang H., Frenklach M. A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames. Combustion and Flame, 1997, 110: 173-221
    7 Appel J., Bockhorn H., Frenklach M. Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons. Combustion and Flame, 2000, 121: 122-136
    8 Charles W. Bauschlicher Jr., Alessandra Ricca. Mechanisms for Polycyclic Aromatic Hydrocarbon (PAH) Growth. Chem. Phys. Lett., 2000, 326: 283-287
    9 Richter H., Howard J. B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways. Progress in Energy and Combustion Science, 2000, 26: 565-608
    10 Marinov N. M., Pitz W. J., Westbrook C. K., Vincitore A. M., Castaldi M. J., Senkan S. M., Melius C. F. Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame. Combustion and Flame, 1998, 114: 192-213
    11 管诗骈,高翔,谭永杰,骆仲泱,倪明江,岑可法.燃烧过程中碳黑颗粒生成机理的研究进展.能源工程,2003,03:31-34
    12 Liu L., Fan S. S. Isotope Labeling of Carbon Nanotubes and Formation of ~(12)C-~(13)C Nanotube Junctions. J. Am. Chem. Soc., 2001, 123: 11502-11503
    13 Sinnott S. B., Andrews R., Qian D., Rao A. M., Mao Z., Dickey E. C., Derbyshire F. Model of Carbon Nanotube Growth Through Chemical Vapor Deposition. Chem. Phys. Lett., 1999, 315: 25-30
    14 Yacaman, M. J.; Yoshida M. M.; Rendon, L. Catalytic Growth of Carbon Microtubules with Fullerene Structure. Appl. Phys. Lett., 1993, 62(22): 202
    15 Valiente A. M., Lopez P. N., Ramos I. R., Ruiz A. G., Li C., Xin Q. In Situ Study of Carbon Nanotube Formation by C_2H_2 Decomposition on an Iron-based Catalyst. Carbon, 2000, 38: 2003-2006
    16 Wilson M. A., Moy A., Rose H., Kannangara G. S. K., Young B. R., McCulloch D. G., Cockayne D. J. H. Fullerene Blacks and Cathode Deposits Derived from??Plasma Arcing of Graphite with Naphthalene. Fuel, 2002, 79: 47-56
    17 Tian Y. J., Hu Z., Yang Y., Wang X. Z., Chen X., Wu Q., Ji W. J., Chen Y. In situ TA-MS Study of the Six-Membered-Ring-Based Growth of Carbon Nanotubes with Benzene Precursor. J. Am. Chem. Soc., 2004, 126: 1180-1183
    18 Tian Y. J., Hu Z., Yang Y., Chen X., Ji W. J., Chen Y. Thermal Analysis-mass Spectroscopy Coupling as a Powerful Technique to Study the Growth of Carbon Nanotubes from Benzene. Chem. Phys. Lett., 2004, 388: 259-262
    19 Kumar M., Ando Y. A Simple Method of Producing Aligned Carbon Nanotubes from an Unconventional Precursor-Camphor. Chem. Phys. Lett., 2003, 374: 521-526
    20 Yang Y., Hu Z., Tian Y. J., Lu Y. N., Wang X. Z., Chen Y. High-yield Production of Quasi-aligned Carbon Nanotubes by Catalytic Decomposition of Benzene. Nanotechnology, 2003, 14: 733-737
    21 张鸿斌,周振华,董鑫,陈铜,廖远琰.碳纳米管及其H_2吸附体系的Raman光谱.光散射学报,2002,13(4):210-215
    22 成会明.碳纳米管制备、结构、物性及应用.北京:化学工业出版社,2002,410-413
    23 Zuttel A., Nutzenadel Ch., Sudan R, Mauron Ph., Emmenegger Ch., Rentsch S., Schlapbach L., Weidenkaff A., Kiyobayashi T. Hydrogen Sorption by Carbon Nanotubes and Other Carbon Nanostructures. Journal of Alloys and Compounds, 2002, 330-332: 676-682
    24 Simonyan V. V., Johnson J. K. Hydrogen Storage in Carbon Nanotubes and Graphitic Nanofibers. Journal of Alloys and Compounds, 2002, 330-332: 659-665
    25 Cheng H., Yang Q., Liu C. Hydrogen Storage in Carbon Nanotubes. Carbon, 2001, 39: 1447-1454
    26 Collins P. G., Bradley K, Ishigami M, Zettl A. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science, 2000, 287(10): 1801-1804
    27 Gu C., Gao G., Yu Y., Mao Z. Simulation Study of Hydrogen Storage in Single-walled Carbon Nanotubes. International Journal of Hydrogen Energy, 2001, 26: 691-696
    28 张明昕,章永凡,李奕,李俊钱.有限长椅型(5,5)碳纳米管吸附氟和氢的理论?? 研究.结构化学,2003,22(4):447-453
    29 Jing K., Franklin N. R., Zhou C., Chapline M. G., Peng S., Kyeongjae C., Dai H. Nanotube Molecular Wires as Chemical Sensors. Science, 2000, 287(28): 622-625
    30 Yang F. H., Yang R. T. Ab initio Molecular Orbital Study of Adsorption of Atomic Hydrogen on Graphite: Insight into Hydrogen Storage in Carbon Nanotubes. Carbon, 2002, 40: 437-444
    31 魏贤勇,宗志敏,秦志宏,陈茺.煤液化化学.北京:科学出版社,2002,48-51
    32 姜月顺,杨文胜.化学中的电子过程.北京:科学出版社,2004,128-135
    33 王惠,翟高红,冉新权,史启祯,文振翼,罗瑞盈,杨延清.碳前驱体热解机理的理论研究—反应能量、自由基的轨道能级及相对稳定性.无机材料学报,2001,16(2):230-236
    34 谢有畅,邵美成.结构化学.北京:人民教育出版社,1979,141
    35 杨海峰.快速液相沉积致密化工艺碳前驱体环己烷的热裂解机理(硕士论文).西北大学,2001,19-20
    36 傅献彩,沈文霞,姚天扬.物理化学(第四版).北京:高等教育出版社,1990,792-753
    37 Teri W. O., Huang J. L., Philip K., Chariles M. L. Structure and Electronic Properties of Carbon Nanotubes. J. Phys. Chem. B, 2000, 104: 2794-2809
    38 Burstein Elias. A Major Mile Stone in Nanoscale Material Science: the 2002 Benjamin Franklin Medal in Physics Presented to Sumio Iijima. Journal of the Franklin Institute, 2003, 340: 221-242
    39 Garau C., Frontera A., Quinonero D., Costa A., Ballester R, Deya R M. Lithium Diffusion in Single-walled Carbon Nanotubes: a Theoretical Study. Chem. Phys. Lett., 2003, 374: 548-555
    40 Dai H. Carbon Nanotubes: Opportunities and Challenges. Surface Science, 2002, 500: 218-241
    41 Saito R., Dresselhaus R., Dresselhaus M. S. Physical Properties of Carbon Nanotubes. London: Imperial College Press, 2003, 38
    42 章永凡,李俊篯,张明昕,周立新.椅型碳纳米管电子结构与长度效应.化学学报,2002,60(2):272-280
    43 Lide D. R., CRC Handbook of Chemistry and Physics, 82nd Ed. Boca Raton:??CRC Press,2001,9-21
    44 吴红丽,邱介山,郝策,唐祯安.三种碳纳米管储氢性能的动力学模拟研究.大连理工大学学报(待发表)
    45 Darkrim F. L., Malbrunot E, Tartaglia G. R Review of Hydrogen Storage by Adsorption in Carbon Nanotubes. International Journal of Hydrogen Energy, 2002, 27: 193-202
    46 Volpe M., Cleri E Role of Surface Chemistry in Hydrogen Adsorption in Single-wall Carbon Nanotubes. Chem. Phys. Lett., 2003, 371: 476-4821 Iino M., Takanohashi T., Ohsuga H. Extraxtion of Coals with CS_2-N-methyl -2-pyrrolidinone Mixed Solvent at Room Temperature. Fuels, 1988, 67: 1639-1647
    2 Kamo T., Bi J. C., Yamaguchi H. Theoretical and Experimental Study of Influence of Non-Covalent Bond in Thermal Decomposition of Coal Model Compounds. ICCS, 1999, Vol. Ⅰ: 279-282
    3 Ades H. E Theoretical Modeling of Coliquefaction Reactions of Coal and Polymers. Preper. Pap. Am. Chem. Soc., Div. Fuel Chem., 1996, 41(3): 1027-1031
    4 Franz J. A., Ferris K. E, Camaioni D. M. Are Strong Bonds Cleaved during Coal Liquefaction via Radical Hydrogen Transfer? An ab initio Theoretical Study of Yhermoneutral Radical Hydrogen Transfer. Energy & Fuels, 1994, 8: 1016-1019
    5 Sato Y., Inaba A., Uemasu I. Molecular Orbital Study of the Effect of Hydrogen Donating Solvent on the Coal Liquefaction. ICCS, 1985, Vol. Ⅰ: 730-733
    6 Sato Y., Inaba A. Fundamental Study of the Effect of Hydrogen Donor Solvent on Coal Liquefaction. Fuel Processing Technology, 1986, 14: 67-78
    7 Kidena K., Murata S., Nomura M. Study on the Chemical Structural Change during Carbonization Process. Energy & Fuels, 1996, 10: 672-678
    8 Ades H. F., Companio n A. L. Molecular Orbital Calculations for Iron Catalysts. Energy & Fuels, 1994, 8: 71-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700