碳纳米管电离式气体传感器的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有优良的气体吸附性能及电学性能,在气体传感领域具有巨大的应用潜力。目前国内外对碳纳米管气体传感器的研究主要集中在晶体管型、电导型以及电容型,这些传感器主要是利用碳纳米管吸附气体后电学性能的变化来检测气体的,但是其应用受到诸如低吸附性气体检测困难、化学吸附具有不可逆性、受检测环境影响等因素的限制。而电离式气体传感器不受上述因素限制,尤其是利用碳纳米管尖端纳米尺度的曲率半径,在较低的电压下使气体发生电离,可以得到高性能电离式气体传感器。但目前对碳纳米管电离式气体传感器的研究还处于探索阶段,有些基础问题尚需研究。
     本文首先从碳纳米管的制备开始,在理论分析的基础上,研究氦气保护气压、生长促进剂FeS及不同生长位置等因素对电弧放电方法得到的碳纳米管的影响,确定了SWNTs制备的最佳工艺;然后采用水汽氧化法对制备的单壁碳纳米管进行提纯,并用旋涂法制备碳纳米管薄膜,对其导电性能进行研究;利用单壁碳纳米管薄膜为电极,研究了多种气体的气体放电性能,并同阵列式多壁碳纳米管薄膜的气体放电性能进行比较;最后研究制备35μm电极间距的电离式单壁碳纳米管气体传感器的原理性器件,测试其基本性能。主要研究结果如下:
     经过对不同工艺制备的碳纳米管样品进行分析和表征,发现氦气保护气压、生长促进剂FeS和采样位置对电弧放电法制备碳纳米管的纯度和直径有影响。同一大气压下,网状产物中SWNTs含量最高。较高的氦气气压有利于SWNTs的生长,其原因是由于高气压时冷却速率高,有利于碳纳米管生长。FeS高温分解后的气态硫使催化剂颗粒表面的液相区在一个更大的温度范围和空间内存在,有利于碳纳米管的生长,硫作为交联剂也可以提高SWNTs产率;硫能使大尺寸的形核基稳定存在从而生长出直径较大的SWNTs。根据理论分析和试验结果确定了最佳工艺。
     使用水蒸汽在高温800℃下对原始样品处理12小时后酸洗,可以获得纯度达93%的SWNTs,表明水蒸汽氧化处理能选择性地去除原始样品中的杂质,且对单壁碳纳米管的破坏较小。利用旋涂法在电极上制备出无序碳纳米管薄膜;薄膜导电性较好,适合作为气体电离传感器的放电电极;还发现其电流-电压关系为非线性,在同一测量电压下,薄膜的电流与膜厚成直线关系。
     对旋涂法得到的单壁碳纳米管薄膜的气体放电特性及其影响因素进行了研究。在电极间距为150μm时,待测气体能够在较低的电压下(100~307V)电离,不同的气体电离阀值电压各不相同,据此可以对气体进行检测。其机理是部分碳纳米管尖端伸出薄膜表面和负极构成了一种典型的point-to-plane电晕放电电极结构,单壁碳纳米管纳米尺度的曲率半径导致在较低的外加电压下就会在其尖端附近形成高强度非均匀电场,使气体发生电晕放电。气体压力对气体电离的阈值电压影响不大,放电电流与单位体积气体分子摩尔数的对数成正比。气体的电离阈值电压随电极间距的减小而降低。碳纳米管的直径越小,阈值电压越小。与化学气相沉积方法得到的直立式多壁碳纳米管相比较,旋涂法单壁碳纳米管薄膜电极的气体电离阈值电压要低30V左右,等离子处理对改善直立式多壁碳纳米管的气体放电性能有帮助。
     利用硅的微加工技术以及碳纳米管涂布技术制备了电极间距35μm的电离式碳纳米管气体传感器。对器件的在不同气氛中的电离阈值电压进行了测试,结果表明,对于该器件,Ar,N2,CO,H2分别在12.5V, 17.5V, 32.5V和15V左右发生电离。
Carbon nanotubes (CNTs) have enormous potential applications for gas sensing because of their remarkable adsorption capacity and electronic properties. Previously, the research of CNTs gas sensors has been focused on transistor type, conductance type and capacitor type, which operate based on the electrical conductance changes of nanotubes on exposure to gases. But they are limited by several factors, such as the inability to identify gases with low adsorption energies, irreversible changes for chemisorption and sensitivity to environmental conditions. Ionization sensors work by fingerprinting the ionization characteristics of distinct gases. With CNTs as electrodes, gases can be ionized at low voltages because of nano-sized CNT tips. However, the research on the CNTs gas ionization sensors is just at the beginning stage and there are some basic questions need to be studied. For these reasons, we have researched the basic principles and the relevant fabrication technologies of CNTs gas ionization sensors, and finally achieved the prototype device to detect different kinds of gases at low voltages.
     In order to obtain high quality SWNTs to meet the requirement of sensor, we researched the effect of He gas pressure and component of FeS on the synthesis process. Then, the obtained SWNTs were purified by high temperature wet vapour and SWNTs film was fabricated by spin-coating method, I/V characteristics of the film were investigated. Using this kind of CNTs film as anode, we tested and analyzed ionization characteristics of some gases. Finally, a prototype of gas senor with 35μm space between discharge electrodes was fabricated. The main results were generally concluded as the following:
     SWNTs samples obtained through arc discharge method were analyzed and it was found that gas pressure of He, content of FeS affect the yield of SWNTs. The mechanism were investigated: High pressure of He can accelerate heat transfer and S atoms from FeS make the liquid area on the surface of catalyst particles exist in a larger range of temperature and space, which both benefit growth of SWNTs; S atoms also can stabilize the exist of big size nucleus, from which SWNTs of large diameter grow. Based on theoretical analysis and experiment results, the optimum technical parameters are presented.
     SWNTs with the purity of 93% were obtained after being purified in high temperature wet vapour for 12 hours, which showed that high temperature wet vapour can oxidize and clean out impurity in the raw CNT samples and hardly hurt SWNTs because of its weak oxidizing property. Random film of SWNTs was fabricated by spin-coating, and the I/V characteristics of the film were investigated. The I/V relationship of this kind of film was non-linear and the conductivity was proportional with film thickness.
     Gas ionization characteristics of SWNTs film were investigated. With this film as anode, gases such as helium, argon, nitrogen, oxygen, carbon monoxide, hydrogen, methane and air, were ionized at distinct and low voltage (from about 100V to 307V with 150μm inter-electrode distance). The extending tubes served as numerous tiny anodes and formed point-to-plane electrode, which tend to induce gas corona discharge at low voltage. The voltage became lower as the inter-electrode distance was reduced, which is helpful to develop compact and battery-powered device. Threshold voltages varied only slightly with gas concentration. The discharge current varied logarithmically with concentration. Gas identity and concentration can be determined by monitoring the ionization voltage and discharge current of the gas. Gas ionization voltages of SWNTs were lower 30 voltages than MWNTs obtained by CVD, and after plasma treatment, the gas ionization characteristics of MWNTs were improved.
     At last, the fabrication process and characteristics of the SWNTs ionization gas senor with 35μm space between SWNTs film anode and Si cathode were investigated. The results showed that Ar, N2, CO and H2 can be ionized at 12.5V, 17.5V, 32.5V and 15V respectively. The threshold voltages were unstable at the beginning of test and after 1.5h, the ionization properties of our gas sensor became stable.
引文
[1] 王玮.基于气体传感器阵列的混合气体检测系统.西安: 西北工业大学, 2002.
    [2] 刘光辉,亢春梅.MEMS 技术的现状和发展趋势.传感器技术,2001,20(1):52~56.
    [3] 庄庆德,王善慈,陈书旺. 日本微电子机械系统研究现状. 传感器技术,2001,20(11):63~65.
    [4] 亢春梅,曹金名,刘光辉. 国外 MEMS 技术的现状及其在军事领域中的应用. 传感器技术,2002,21(6):4~7.
    [5] 杨震,文爱萍. SOC 的关键技术和设计方法. 微电子技术,2001,29(5):30~34.
    [6] J . J . Ho , Y. K. Fang , et al. High sensitivity ethanol gas sensor integrated with a solidstate heater and thermal isolation improvement structure for legal drinkdrive limit detecting. Sensors and Actuators B,50 (1998) 227~233.
    [7] T. H. Kwon , S. H. Park , et al. . Zinc oxide thin film doped with Al2O3 , TiO2 and V2O5 as sensitive sensor for trimethylamine gas. Sensors and Actuators , B46 (1998) 75~79
    [8] A. Fuchs , M. Bogher , et al. . Room temperature O2 zone sensing with KI layers integrated in HSGFET gas sensors. Sensors and Actuators, B 48 (1998) 296~299.
    [9] M. Gall. The Si planar pellistor : a low power pellistor sensor in Si thinfilm technology. Sensors and Actuators, B 4(1991) 533~538.
    [10] Kouichi ema, et al. . Odour sensing system using a quartz resonator sensor array and neural network pattern recognition. Sensors and Actuators, 18(1989):291~296.
    [11] 徐涛,钟先信等. 一种新颖的微型硅梁谐振器气体传感器.中国电子学会98 敏感技术学术年会论文集,成都,1998 ,9.
    [12] 徐涛. 微机电谐振阵列嗅觉系统的基础理论及实验研究. 重庆大学博士学位论文,1997.
    [13] M. Rapp,R. Slanzel,et al. . Gas detection in the ppb range with a high frequency, high sensitivity SAW devices. Thin Solid Films, 474(1992) 210-211.
    [14] Y. Q. Chen, W. N. Zhang, et al.. SAW gas sensor with copper tetrasulphonated phthalocyamine film. Sensors and Actuators, B20(1994) 247.
    [15] Iijima S. Material Science: The Smallest Carbon Nanotube. Nature ,1991,354:56-58.
    [16] K. Kinneret, S. B. Rotem, , B. Evgeny, U.Sivan, and E. Braun, DNA-templated carbon nanotube field-effect transistor, Science, 302 (2003), 1380-1382
    [17] G. P. Collins, S. M. Arnold, and A. Phaedon, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 292 (2001), 706-709
    [18] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing, Science, 289 (2000), 94-97
    [19] R. Saito, G. Dresselhans, M.S. Dresselhaus, Topological defects in large fullerenes, Chem. Phys. Lett., 1992, 195:537-542.
    [20] J.W. Mintmire, B.I. Dunlap, C.T. White, Are fullerence tubes metallic? Phys. Rev. Lett., 1992, 68:631-634.
    [21] S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, 1998, 393:49-51.
    [22] J.T. Hu, Q.Y. Min, P.D. Yang, et al, Controlled growth and electrical properties of hetero-junction of carbon nanotubes and silicon nanowires, Nature, 1999, 399:48-51.
    [23] W. Henk, Ch. Postma, T. Teepen, et al, Carbon nanotubes single-electron transistors at room temperature, Science, 2001, 293:77-79.
    [24] S.J. Tans, M.H. Devoret, H. Dai, et al, Individual single-wall carbon nanotubes as quantum wires, Nature, 1997, 386:474-477.
    [25] W.G. Jeroen, Wildoer, C. Liesbeth, et al, Electronic structure of atomically resolved carbon nanotubes, Nature, 1998, 391:59-61.
    [26] W.A. de Heer, A. Chatelain, D. Ugarte, A carbon nanotubes field-emission electron source, Science, 1995, 270:1179-1180.
    [27] C. Niu, E.K. Sichel, R. Hoch, et al, High power electrochemical capacitors based on carbon nanotubed electrodes, Appl. Phys. Lett., 1997, 70:1480-1482.
    [28] 姜靖雯, 彭峰,碳纳米管应用研究现状与进展。材料科学与工程学报,21(2003), 464-468
    [29] P. Poncharal, Z. L. Wang, D. Ugarte, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283 (1999), 1513-1515
    [30] 李雪松,朱宏伟,慈立杰等,结构与表面特性对碳纳米管储氢性能的影响,科学通报,48 (2001), 785-787
    [31] C. Dillon, K. M. Jones, T. A. Bekkkedahl, et al., Storage of hydrogen in single-walled carbon nanotubes, Nature, 386 (1997), 377-379
    [32] Y. Ye, C. C. Ahn, C. Witham, et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett, 74 (1999), 2307-2309
    [33] C. Liu, Y. Y.Fan, M. Liu, et al., Hydrogen storage in single-walled carbon nanotubes at room temperature, Science, 286 (1999), 1127-1129
    [34] C. P. hen, X. Wu, J. Lin, et al., High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperature, Science, 285 (1999), 91-93
    [35] J. M. Planeix, C. N.oustel, B. Coq, et al., Application of carbon nano-tubes as supports in heterogeneous catalysis . J Am Chem Soc , 116 (1994), 7935-7936
    [36] 李志杰, 梁奇, 陈栋梁, 碳纳米管和石墨在电化学嵌锂过程中的协同效应, 应用化学, 18 (2001) , 269-271
    [37] L. R.Qiong, Y. R. T.ang. Carbon nanotubes as superior sorbent for dioxin removal, J Am Chem Soc., 123 (2001), 2058-2059
    [38] Y. H. Li, S. G. Wang, Q. Wei, Lead adsorption on carbon nanotubes. Chem Phys Lett., 357 (2002), 263-266
    [39] Kong J. Franklin N.R. Zhou C. et al. Nanotube Molecular Wires as Chemical Sensors. Science ,2000,287:622-625.
    [40] Kong J. Chapline M.G. Dai H.J .Functionlized Carbon Nanotubes For Molecular Hydrogen Sensors.Adc Mater ,2001,13(18):1384.
    [41] Takao Someya, Joshua Small, Philip Kim, Colin Nuckolls, James T. Yardley. Alcohol VaporSensors Based on Single-Walled Carbon Nanotube Field Effect Transistors. Nano Lett., 3, (7), 2003: 877-881
    [42] J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, R. A. McGill. Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett., 83(19), 2003: 4026-4028
    [43] Jing Li, Yijiang Lu, Qi Ye, Martin Cinke, Jie Han,M. Meyyappan. Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano Lett., 3(7), 2003: 929-933
    [44] Junya Suehiro, Guangbin Zhou, Masanori Hara, Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy, J. Phys. D: Appl. Phys. 36 (2003):L109–L114
    [45] S.G. Wang, Qing Zhang, D.J. Yang, P.J. Sellin, G.F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH3 detection, Diamond and Related Materials 13(2004):1327–1332.
    [46] C. Cantalini,L. Valentini,I. Armentano,J.M. Kenny,L. Lozzi,S. Santucci,Carbon nanotubes as new materials for gas sensing applications. Journal of the European Ceramic Society, 24(2004):1405–1408
    [47] L. Valentini, L. Lozzi, C. Cantalini, I. Armentano, J.M. Kenny, L. Ottaviano, S. Santucci. Effects of oxygen annealing on gas sensing properties of carbon nanotube thin films,Thin Solid Films 436 (2003): 95–100
    [48] L. Valentini,C. Cantalini,L. Lozzi,S. Picozzi,I. Armentano. Effects of oxygen on cross sensitivity of carbon nanotubes thin films for gas sensing applications. Sen. and Act. B 100 (2004) 33–40
    [49] L. Valentini,C. Cantalini,I. Armentano,J.M. Kenny,L. Lozzi,S. Santucci,Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection,Diamond and Related Materials 13 (2004) 1301–1305
    [50] C. Cantalini,L. Valentini,L. Lozzi,I. Armentano,J.M. Kenny,S. Santucci,NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition,Sensors andActuators B. 93(2003) 333–337
    [51] L. Valentini,C. Cantalini,L. Lozzi,I. Armentano,J.M. Kenny,S. Santucci,Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications, Materials Science and Engineering C. 23 (2003):523–529
    [52] C. Cantalini,L. Valentini,I. Armentano,L. Lozzi,J.M. Kenny,S. Santucci,Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD. Sensors and Actuators B 95(2003):195–202
    [53] L. Valentini,V. Bavastrello,E. Stura, I. Armentano,C. Nicolini,J.M. Kenny,Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material,Chemical Physics Letters.383(2004):617–622
    [54] L. Valentini,I. Armentano,J. M. Kenny,Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films, Appl. Phys. Lett.82(10) 2003,961-963
    [55] Varghese O.K. kichambre P.D. Gong D. et al.Gas Sensing Characteristics Of Multi-Wall Carbon Nanotubes. Sensors and Actuators B, 2001,81:32-41.
    [56] K.G.Ong, C.A.Grimes, A Carbon Nanotube-Based Sensor For CO2 Monitoring Sensors 2001,1:193-205.
    [57] Keat Ghee Ong, Kefeng Zeng, and Craig A. Grimes, A Wireless , Passive Carbon Nanotube-BasedGas Sensor,IEEE SENSORS JOURNAL, 2(2), 2002:82-88
    [58] A. Modi, N. Koratkar, E. Lass, B. Wei, et al .Miniaturized Gas Ionization Sensors Using Carbon Nanotubes,Nature 2003 ,424:171-174.
    [59] Y.Cui, Q.Q.Wei, H.Park, et al. Nanowire Nanosensors For Highly Sensitive And Selective Detection Of Biological And Chemical Species, Science 2001,293(8):1289-1292.
    [1] V. Ivanon, J.B. Nagy, P. Lambin, et al. Chem. Phys. Lett., 1994, 233:308-313.
    [2] T.W. Ebbesen, P.M. Ajayan. Large-scale synthesis of carbon nanotubes, Science, 1992, 358:220-222.
    [3] J.M. Lauerhaos, J.Y. Dai, A.A. Setlur, et al, The effect of arc parameters on the growth of carbon nanotabues, J. Mater. Res., 1997, 12:1536-1544.
    [4] E.G. Gamely, T.W. Ebbesen, Mechanism of carbon nanotubes formation in the arc discharge. Phys. Rev. B, 1995,52:2083-2089.
    [5] Y.P. Raizer, Gas discharge Physics. Berlin, Springer-Verlag, 1991.
    [6] T.W. Ebbesen, H. Hiura, J. Fujita, et al. Chem. Phys. Lett., 1993, 209:83-90.
    [7] Y. Saito, T. Yoshikawa,M. Inagaki, et al .Chem. Phys. lett., 1993,204:277-280.
    [8] P.J.F. Harris, S.C. Tsang, J.B. Claridge, et al, High resolution electron microscopy studies of a microporous carbon produced by arc evaporation. J. Chem. Soc. Faraday Trans, 1994, 90:2799-2802.
    [9] C. Journet, W.K. Master, P. Bernier, et al. Large scale production of single-walled carbon nanotubes by the electric arc technique. Nature, 1997, 388: 756-758.
    [10] A. Kasuya, Y. Sasaki, Y. Saito, et al. Evidence for size dependent discrete dispersions in single-walled nanotubes. Phys. Rev. Lett., 1997, 78: 4434-4437.
    [11] G.S. Duesberg, I. Loa, M. Burghard, et al. Polarized raman spectroscopy on isolated single-walled carbon nanotubes. Phys. Rev. Lett., 2000, 85:5436-5439.
    [12] J. Chen, M.A. Hamon, H. Hu, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282:95-98.
    [13] S.P. Young, S.K. Keun, J.J. Hee, et al. Low pressure synthesis of single-walled carbon nanotubes by arc discharge. Synthetic Metals, 2002, 126: 245-251.
    [14] H.Y. Zhang, X.M. Xue, D.Y. Wang, et al, The effect of different kinds of inert gases and their pressures on the preparation of carbon nanotubes by carbon arc method. Materials Chemistry and Physics, 1999, 58:1-5.
    [15] S. Farhat, C.D. Scott, S. Lefrant, et al, Diameter control of single-walled carbon nanotubes using argon-helium mixture gases. J. Chem. Phys., 2001, 115:6752-6759.
    [16] I. Hinkov, S. Farhat, C.D. Scott, et al, Influence of the gas pressure on single-wall carbon nanotube formation. Carbon, 2005, 43:2453-2462.
    [17] H.Y. Zhang, D.Y. Wang, X.M. xue, et al, The effect of helium gas pressure on the formation and yield of nanotubes in arc discharge, J. Phys. D: Appl. Phys, 1997, 30:1-4.
    [18] 李峰, 成会明, 魏永良, 等. 材料研究学报, 1999, 13: 401-404.
    [19] 张曙光, 王风云, 雷武, 等. 碳氢化合物气相催化热分解制备碳纳米管的研究. 炭素, 2003, 113: 17-22.
    [20] A. Gorbunov, O. Jost, W. Pompe, et al. Solid-liquid-solid growth mechanism of single-wall carbon nanotubes. Carbon, 2002, 40:113-118.
    [21] 成会明, 碳纳米管制备、结构、物性及应用. 北京, 化学工业出版社, 2002,102-105.
    [22] A. Loiseau, F. Willaime. Filled and mixed nanotubes: from TEM studies to the growth mechanism within a phase-diagram approach. Applied surface science, 2000, 164:227-240.
    [23] K. Hiroaki, M. Koji, E. Makoto, et al, Formation of carbon fibers from naphthalene on some sulfur-containing substrates. Carbon, 1981, 19: 148-150
    [24] C.H. Kiang, A. William, Goddard Ⅲ. Polyyne ring nucleus growth model for single-layer carbon nanotubes. Phys. Rev. Lett., 1996, 76:2515-2518.
    [25] S. Akita, H. Ashihara, Y. Nakayama, Optical emission Spectroscopy of Arc flame plasma for generation of carbon nanotubes. Jpn. J. Appl. Phys. 2000, 39:4939-4944.
    [26] M. Cadek, R. Murphy, B. Mccarthy, et al. Optimization of the arc discharge production of multi-walled carbon nanotubes. Carbon, 2002, 40:923-928.
    [27] 王琪琨, 碳纳米管的制备及其应用研究, [学位论文], 西安, 西安交通大学, 2003.
    [28] W.Z. Li, S.S. Xie, L.X. Qian. Large-scale synthesis of aligned carbon nanotubes, Science, 1996, 274:1701-1703.
    [29] P.M. Ajayan, T.W. Ebbesen. Nanometre-size tubes of carbon. Rep. Prog. Phys. 1997, 60:1025-1062.
    [30] M. Yudasaka, Y. Kasuya, F. Kokai, et al. Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes. Appl. Phys. A, 2002, 74:377-385.
    [31] H. KATAURA, Y. KUMAZAWA, Y. MANIWA, ET AL. DIAMETER CONTROL OF SINGLE-WALLED CARBON NANOTUBES. CARBON, 2000, 38:1691-1697.
    [1] 唐文华, 邹洪涛, 张艾飞等, 碳纳米管提纯技术评价与研究进展, 碳素, 2005, 123:30-35.
    [2] G.S. Duesberg, W. Blau, H.J. Byrne, et al, Chromatography of carbon nanotubes, Synth. Met., 1999, 103:2484-2485.
    [3] K. Yamamoto, S. Akita, Y. Nakayama,Orientation of carbon nanotubes using electrophoresis, Jpn. J. Appl. Phys. 1996, 35:917-918.
    [4] J.M. Bonard, T. Stora, J.P. Salvetat, et al, Purification and size-selection of carbon nanotubes,Adv. Mater., 1997, 9:827-831.
    [5] K.B. Shelimov, R.O. Esenaliev, A.G. Rinzier, et al, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration, Chem. Phys. Lett., 1998, 282:429-434.
    [6] C. Sekar, C.Subramanian, Purification and characterization of buckminsterfullerene, nanotubes and their by-products, Vacuum, 1997, 47:1289-1292.
    [7] S. Bandow, S. Asaka, X. Zhao, et al, Purification and magnetic properties of carbon nanotubes, Appl. Phys. A, 1998, 67:23-27.
    [8] 常保和, 张昊, 周维亚, 等, 对电弧放电制备的离散纳米碳管进行高温氧化的研究, 物理学报, 1998, 47:340-345.
    [9] S.C. Tsang, P.J.F. Harris, M.L.H Green, Thinning and opening of carbon nanotubes by oxidation using carbon-dioxide, Nature, 1993, 362:520-522.
    [10] T. Jeong, W.Y. Kim, Y.B. Hahn, A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas, Chem. Phys. Lett., 2001, 344:18-22.
    [11] E. Mizogutl, F. Nihey, M. Yudasaka, et al, Purification of single-wall carbon nanotubes by using ultrafine gold particles, Chem. Phys. Lett., 2000, 321:297-301.
    [12] 林敬东, 杨乐夫, 蔡云, 等, 多壁碳纳米管的提纯, 厦门大学学报(自然科学版), 2001, 40:889-892.
    [13] R. Andrews, D. Jacques, D. Qian, et al, Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures, Carbon, 2001, 39:1681-1687.
    [14] 李伟, 成荣明, 徐学诚, 等, 红外光谱研究 Fenton 试剂对多壁碳纳米管表面的影响, 化学物理学报, 2005, 18:416-420.
    [15] L.P. Biro, N.Q. Khanh, Z. Vertesy, et al, Mat. Sci. Eng. C, 2002, 19:913.
    [16] 王健雄, 陈小华, 彭景萃, 等, 碳纳米管的非破坏性提纯研究, 新型碳材料, 2001, 16:37-41.
    [17] F. Li, H.M. Cheng, Y.T. Xing, et al, Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons, Carbon, 2000, 38:2041-2045.
    [18] P.X. Hou, S. Bai, Q.H. Yang, et al, Multi-step purification of carbon nanotubes., Carbon, 2002,40:81-85.
    [19] A. Bougrine, A. Naji, J. Ghanbaja, et al, Purification and structural characterization of single-walled carbon nanotubes, Synth. Met., 1999, 103:2480-2483.
    [20] K.L. Strong, D.P. Anderson, K. Lafdi, et al, Purification process for single-wall carbon nanotubes, Carbon, 2003, 41:1477-1488.
    [21] H.J. Li, L. Feng, L. Guan, et al, Synthesis and purification of single-walled carbon nanotubes in the cottonlike soot, Solid State Commun., 2004, 132:219-224.
    [22] G.S. Duesberg, J. Muster, V.Kristic, et al, Chromatographic size separation of single-wall carbon nanotubes, Appl. Phys. A, 1998, 67:117-119.
    [23] Z. Shi, Y. Lian, F. Liao, et al, Purification of single-wall carbon nanotubes, Solid State Commun., 1999, 112:35-37.
    [24] H. kataura, Y. Maniwa, T. Kodama, et al, Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes, Chem. Phys. Lett., 2004, 386:239.
    [25] K. Hata, D.N. Futaba, K. Mizuno, et al, Water-assited highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 2004, 306:1362-1364.
    [26] S. Maruyama, R. Kojima, Y. Miyauchi, et al, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett., 2002, 360:229-234.
    [27] 杨占红,李新海,李晶,王红强,方惠会,陈志国. 碳纳米管纯化技术研究. 中南工业大学学报,1999, Vol.30 (4): 389-391
    [28] 屈松生 谢昌礼编著. 化学热力学基础. 武汉大学出版社,1985, 336-342
    [29] 王敏炜,彭年才,李凤仪. 硝酸氧化法对碳纳米管进行纯化及开管研究. 江西科学. 2002, Vol.20(4): 203-206
    [30] J. T. Li, W. Wei et al., Field emission characteristic of screen-printed carbon naoutubes cathode, Applied surface science, 220(2003), 96-104
    [31] A.B. Kaiser. Thermoelectric power and conductivity of heterogeneous conducting polymers. Physical Review B. 1989, Vol.40(5): 2806-2813
    [32] A.B. Kaiser. Heterogeneous model for conduction in carbon nanotubes. Physical Review B. 1998, Vol.57(3): 1418-1421
    [33] Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, R. E. Smalley. Nanotube nanodevice. Science. 1997, Vol.278: 100-103
    [34] Siegmar Roth, Marko Burghard, Vojislav Krstic, Kun Liu, Joerg Muster, et al. quantum transport in molecular nanowires transistors. Current Applied Physics. 2001, Vol.1: 56-60
    [35] Teri Wang Odom, Jin-Lin Huang, Philip Kim, Charies M. Lieber. Atomic structure and electronic properties of single-walled carbon naanotubes. Nature. 1998, Vol.391: 62-64
    [36] M. Pollak, I. Riess. J. Physics C. 1976, 9: 2339
    [37] Sabrina M. Grannan, Andrew E. Lange. Non-ohmic hopping conduction in doped germanium at T<1K. Physical Review B. 1992, Vol.45(8): 4516-4519
    [38] G.T. Kim, S.H. Jhang, J.G. Park, Y.W. Park, S. Roth. Non-ohmic current-voltage characteristics in single-wall carbon nanotube network. Synthetic Metals. 2001, Vol.117: 123-126
    [39] I. Balberg, N. Binenbaum, C. H. Anderson. Critical behavior of the two-dimensional system. Physical Review Letters, Vol.51, 1983(18):1605-1608
    [1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56.
    [2] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000) 622–625.
    [3] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287 (2000) 1801–1804.
    [4] M. Bioenfait, B. Asmussen, M. Jonson, P. Zeppenfeld, Methane mobility in carbon nanotubes, Surf. Sci. 460 (2000) 243–248.
    [5] O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, C.A. Grimes, Gas sensing characteristics of multi-wall carbon nanotubes, Sens. Actuators B 81 (2001) 32–34.
    [6] M. Kudeara, H.A.O. Hill, P.J. Dobson, P.A. Leign, W.S. McIntire, Electrochemical characterization and application of multi microelectrode array devices to biological electrochemistry, Sensors 1 (2001) 18–28.
    [7] K.G. Ong, K. Zong, C.A. Grimes, A carbon nanotube-based sensor for CO2 monitor, Sensors 1 (2001) 193–205.
    [8] R. Pati, Y.M. Zhang, S.K. Nayak, Effect of H2O adsorption on electron transport in carbon nanotube, Appl. Phys. Lett. 81 (2002) 2638–2640.
    [9] K.G. Ong, K. Zong, C.A. Grimes, A wireless passive carbon nanotube-based gas sensor, IEEE Sens. J. 2 (2002) 82–88.
    [10] L. Valentini, L. Lozzi, C. Canatalini, I. Armentano, J.M. Kenny, L. Ottaviano, S. Santucci, Effects of oxygen annealing on gas sensing properties of carbon nanotube thin films, Thin Solid Films 436 (2003) 95–100.
    [11] A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes, Nature 424 (2003) 171–173.
    [12] 江剑平,翁甲辉,杨泮棠,阴极电子学与气体放电原理,国防工业出版社,1980.12
    [13] 承欢, 江剑平, “阴极电子学”, 西安, 西北电讯工程学院出版社, 1986 年,
    [14] 杨津基,气体放电,科学出版社,1983
    [15] 陈宗柱,高树香,气体导电,南京工学院出版社,1988
    [16] Yuri P. Raizer. Gas Discharge Physics. Springer-Verlag, Berlin, (1991) 345-352.
    [17] M. Goldman, A. Goldman. “Corona Discharge”, in Gaseous Electronics I, Electrical Discharge,ed. by Merle N. Hirsh and H. J. Oskam. Academic Press, New York(1978)219-290.
    [18] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388 (1997) 756 – 758.
    [19] X. K. Wang, X. W. Lin, V. P. Dravid, J. B. Ketterson, and R. P. H. Chang, Growth and characterization of buckybundles. Appl. Phys. Lett. 62 (1993) 1881-1883.
    [20] R. Benocci, A. Galassi, L. Mauri, M. Piselli and M. Sciascia. Experimental pressure dependence of positive corona discharge in N2, Euro. Phys. J. D. 25, (2003) 157-160.
    [21] W. D. Zhang, J. T. L. Thong, W. C. Tjiu, et al, Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters, Diamond and Related Materials, 11(2002), 1638-1642
    [22] Z. F. Ren, Z. P. Huang, J. W. Xu et al., Synthesis of well-aligned carbon nanotubes on glass, Science, 282(1998),1105-1107
    [23] W. Z. Li, S. S. Xie, L. X. Qian et al., Large-Scale synthesis of aligned carbon nanotubes. Science , 274 (1996), 1701-1703
    [24] R. Andrews, D. Jacques, A. M. Rao et al., Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chem. Phys. Lett., 303(1999),369-373
    [25] R. Frank, K. L. Falk Lena, E. B. Cambell Eleanor et al., A simple method for the production of large arrays of aligned carbon nanotubes,Chem. Phys. Lett., 328(2000),467-474
    [26] L. Qin, S. Iijima, Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation, Chemical Physics Letters, 269(1997), 65-71
    [27] 胡平安,王贤保,刘云圻,朱道本,碳纳米管的最新制备技术及生长机理,化学通报 12(2002),794-799
    [28] J. Kong, A. M. Cassell, H. X. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes,Chem. Phys. Lett., 292(1998) , 567-574
    [29] H. X. Dai, A. G. Rinzler, P. Nikolacv et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett., 260(1996), 471~475
    [30] Yuming Liu, Liang Liu, Peng Liu, Leimei Sheng, Shoushan Fan,Plasma etching carbon nanotube arrays and the field emission properties,Diamond & Related Materials,13 (2004) 1609– 1613
    [31] O. Gr?ning, O. M. Küttel, Ch. Emmenegger, P. Gr?ning, and L. Schlapbach, Field emission properties of carbon nanotubes, J. Vac. Sci. Technol. B 18 (2000), 665-678.
    [32] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. -M. Bonard, and K. Kern, Scanning field emission from patterned carbon nanotube films, Appl. Phys. Lett. 76 (2000), 2071-2073.
    [33] M. Chhowalla, C. Ducati, N. L. Rupesinghe, K. B. K. Teo, and G. A. J. Amaratunga, Field emission from short and stubby vertically aligned carbon nanotubes, Appl. Phys. Lett. 79 (2001), 2079-2081.
    [34] K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, and D. G. Hasko, Field emission from dense, sparse, and patterned arrays of carbon nanofibers, Appl. Phys. Lett. 80 (2002), 2011-2013.
    [35] S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang and Z. F. Ren, Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties, Appl. Phys. Lett., 82 (2003),. 3520-3522.
    [36] D.-H. Kim, C. -D. Kim, H. R. Lee, Effects of the ion irradiation of screen-printed carbon nanotubes for use in field emission display applications, Carbon 42 (2004), 1807–1812.
    [37] 白春礼. 中国纳米科技研究的现状及思考.物理,2002,31(2):65-70
    [38] 刘光辉,亢春梅.MEMS 技术的现状和发展趋势.传感器技术,2001,20(1):52-56.
    [39] 庄庆德,王善慈,陈书旺. 日本微电子机械系统研究现状. 传感器技术,2001,20(11):63-65.
    [40] 亢春梅,曹金名,刘光辉. 国外 MEMS 技术的现状及其在军事领域中的应用. 传感器技术,2002,21(6):4-7.
    [41] 杨震,文爱萍. SOC 的关键技术和设计方法. 微电子技术,2001,29(5):30-34.
    [42] J . J . Ho , Y. K. Fang , et al. High sensitivity ethanol gas sensor integrated with a solidstate heater and thermal isolation improvement structure for legal drinkdrive limit detecting. Sensors and Actuators B,50 (1998) 227-233.
    [43] T. H. Kwon , S. H. Park , et al. . Zinc oxide thin film doped with Al2O3 , TiO2 and V2O5 as sensitive sensor for trimethylamine gas. Sensors and Actuators , B46 (1998) 75-79
    [44] A. Fuchs , M. Bogher , et al. . Room temperature O2 zone sensing with KI layers integrated in HSGFET gas sensors. Sensors and Actuators, B 48 (1998) 296-299.
    [45] 徐涛,钟先信等. 一种新颖的微型硅梁谐振器气体传感器.中国电子学会 98 敏感技术学术年会论文集,成都,1998 ,9.
    [46] M. Gall. The Si planar pellistor : a low power pellistor sensor in Si thinfilm technology.Sensors and Actuators, B 4(1991) 533-538.
    [47] Iijima S. Material Science: The Smallest Carbon Nanotube. Nature ,1991,354:56-58.
    [48] Kong J. Franklin N.R. Zhou C. et al. Nanotube Molecular Wires as Chemical Sensors. Science ,2000,287:622-625.
    [49] Collin P.G. Bradley K. Ishigaml M. Zettle A. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science 2000, 287:1801-1804.
    [50] Kong J. Chapline M.G. Dai H.J .Functionlized Carbon Nanotubes For Molecular Hydrogen Sensors.Adc Mater ,2001,13(18):1384.
    [51] Takao Someya, Joshua Small, Philip Kim, Colin Nuckolls, James T. Yardley. Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors. Nano Lett., 3, (7), 2003: 877-881
    [52] J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, R. A. McGill. Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett., 83(19), 2003: 4026-4028
    [53] Pengfei Qi, Ophir Vermesh, Mihai Grecu, Ali Javey, Qian Wang, and Hongjie Dai. Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. Nano Lett., 3(3), 2003: 347-351
    [54] Jing Li, Yijiang Lu, Qi Ye, Martin Cinke, Jie Han,M. Meyyappan. Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano Lett., 3(7), 2003: 929-933
    [55] S.G. Wang, Qing Zhang, D.J. Yang, P.J. Sellin, G.F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH3 detection, Diamond and Related Materials 13(2004):1327–1332.
    [56] Shu Peng and Kyeongjae Cho,Ab Initio Study of Doped Carbon Nanotube Sensors,Nano Lett.,3(4),2003:513-517
    [57] Kay Hyeok An, seung Yol Jeong, Enhanced sensitivity of gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites, Ad. Mater ,2004,16(12):1015-1019.
    [58] L. Valentini,C. Cantalini,I. Armentano,J.M. Kenny,L. Lozzi,S. Santucci,Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection,Diamond and Related Materials 13 (2004) 1301–1305
    [59] Varghese O.K. kichambre P.D. Gong D. et al.Gas Sensing Characteristics Of Multi-Wall Carbon Nanotubes. Sensors and Actuators B, 2001,81:32-41
    [60] K.G.Ong, C.A.Grimes, A Carbon Nanotube-Based Sensor For CO2 Monitoring Sensors 2001,1:193-205.
    [61] A. Modi, N. Koratkar, E. Lass, B. Wei, et al .Miniaturized Gas Ionization Sensors UsingCarbon Nanotubes,Nature 2003 ,424:171-174.
    [62] Zhang Yong, Liu Junhua Li Xinb, Tang Xiaojun Zhu Changchun, Study of improving identification accuracy of carbon nanotube film cathode gas sensor, Sensors and Actuators A, 125 (2005) 15–24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700