C_(60)分子器件电子输运性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电子器件的不断小型化激起了人们对分子器件的研究兴趣。目前已经设计出了各种单分子电子器件如分子导线、分子开关、分子二极管、分子场效应管、分子传感器等等,一些新颖的物理现象包括分子开关、分子整流、负微分电阻效应、分子记忆效应等已经被报道了,分子器件将在开关、整流、光电子、记忆器件、逻辑电路等领域有着重要的应用前景。本文基于非平衡格林函数理论与密度泛函理论相结合的第一性原理方法系统地研究了C60分子器件的电子输运性质。
     研究了由一个C60分子和(5,5)碳纳米管电极组成分子器件的电子输运行为,重点考虑了吸附气体小分子对分子器件电子输运性质的影响。结果表明,吸附H2O分子和CO分子对分子器件的电流-电压特性影响很大,而吸附NO2分子则几乎没有影响。当吸附H2O分子时,我们在特定的偏压区域还发现了明显的负微分电阻现象,本工作也详细分析了负微分电阻效应的形成机理。
     研究了基于双C60分子与(5,5)碳纳米管电极组成双分子器件的电子输运性质,研究结果表明,通过改变两个C60分子之间的相对距离可以调制分子器件的电学性质。在这样的器件中,我们能实现分子器件的两种开关,即机械调控开关和电控开关,同时我们也观察到了多重负微分电阻效应。这些结果将在分子开关器件方向具有重要的应用前景。
In recent years, there have been increasing interest and development efforts in minia-turizing electronic devices. A number of single molecular electronic devices such as molecular wires, molecular switches, molecular diode, molecular field effect transistor (FET), molecular sensor etc. have been designed. Simultaneously, some novel behaviors including switching, coulomb blockade, Kondo resonance, rectification, negative differ-ential resistance (NDR), and memory elements have been reported. Molecular devices will play an important role in switches, rectifiers, photovoltaic, memories, logic circuit in the future. In this thesis, we have systematically investigated the electron transport prop-erties of C60 molecular devices based on first-principles combined with nonequilibrium Green's function (NEGF) and density-function theory (DFT).
     The transport behaviors of C60 molecular device constructed by a C60 molecule sandwiched between two (5,5) carbon nanotubes (CNTs) electrodes have been studied, and we have considered the effects of gas adsorption on the electronic transport properties. The results show that the current-bias curves are affected obviously by adsorbed H2O and CO molecule, but hardly effected by NO2 molecule. We also find an obvious NDR behavior at the certain bias while C60 molecular device adsorbed by H2O molecule. A mechanism is proposed for NDR behavior.
     We investigate the electronic transport properties of a molecular switch device based on double C60 molecules sandwiched between two (5,5) CNTs electrodes. The results show that the electronic transport properties can be tuned by change the relative distance between the two C60 molecules. In this molecular device, we can actualize two sorts of molecular device tuned by mechanism and voltage. These results are promising for application in molecular switch devices.
引文
[1]Moore G E. Cramming More Components onto Integrated Circuits. Electronics Magazine,1965,38(8):114-117
    [2]冯端,金国钧.凝聚态物理学(上卷).北京:高等教育出版社,2006年,287页
    [3]Bumm L A, Arnold J J, Cygan M T, etal. Are Single Molecular Wires Con-ducting. Science,1996,271(5256):1705-1707
    [4]Richard McCreery, Jon Dieringer, Ali Osman Solak, etal. Molecular Rectifica-tion and Conductance Switching in Carbon-Based Molecular Junctions by Struc-tural Rearrangement Accompanying Electron Injection. J. Am. Chem. Soc,2003, 125(3):10748-10758
    [5]Gunuk Wang, Tae-Wook Kim, Gunho Jo, etal. Enhancement of Field Emission Transport by Molecular Tilt Configuration in Metal-Molecule-Metal Junctions. J. Am. Chem. Soc,2009,131(5):5980-5985
    [6]Bingqian Xu, Xiaoyin Xiao, Xiaomei Yang, etal. Large Gate Modulation in the Current of a Room Temperature Single Molecule Transistor. J. Am. Chem. Soc, 2005,127(3):2386-2387
    [7]杜磊,庄奕琪编著.纳米电子学.北京:电子工艺出版社,2004年,1-20页
    [8]Feynman R P. There is plenty of room at the bottom. Engineering and Science, 1960,23(5):22-36
    [9]韩钕珊编著.分子纳电子学科导论.北京:科学出版社,2009年,6-156页
    [10]Aviram A, Ratner M A. Molecular Rectifiers. Chem Phys Lett,1974,29(2):277-283
    [11]Kerguelis C, Bourgoin J P, Palacin S, et al. Electron transport through a metal-molecule-metal junction. Phys Rev B,1999,59(19):12505-12513
    [12]Reed M A, Zhou C, Muller C J, et al. Conductance of a Molecular Junction. Science,1997,278(5336):252-254
    [13]Ignacio Giner, Ignacio Gascn, Jorge Vergara, etal. Molecular Arrangement in Langmuir and Langmuir?Blodgett Films of a Mesogenic Bent-Core Carboxylic Acid. Langmuir,2009,25(20):12332-12339
    [14]Pieczonka N P W, Moula G, Aroca R F. SERRS for Single-Molecule Detection of Dye-Labeled Phospholipids in Langmuir Blodgett Monolayers. Langmuir,2009, 25(19):11261-11264
    [15]Tour J M. Molecular Electronics. Synthesis and Testing of Components. Acc Chem Res,2000,33(11):791-804
    [16]Nitum A, Batner M A. Electron Transport in Molecular Wire Junctions. Science, 2003,300(5624):1384-1389
    [17]Nebesny K W, Collins G E, Lee P A, etal. Organic inorganic-molecular beam epitaxy:formation of an ordered phthalocyanine tin(IV) sulfide heterojunc-tion. Chem. Mater,1991,3(5):829-838
    [18]Gimzewski J K, Stoll E P, Schlittler R R. Scanning tunnelling microscopy on individal molecules of copper phthalocyanine adsorbed. Surf Sci,1987,181(2):267-277
    [19]Joachim C, Gimzewski J K, Schlitttler R R, et al. Electronic Transparence of a Single C60 Molecule. Phys Rev Lett,1996,74(11):2102-2105
    [20]Yongqiang Xue, Supriyo Datta, Seunghun Hong. Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Phys. Rev. B,1999, 59:7852-7855
    [21]Meng-Qiu Long, Ke-Qiu Chen, Lingling Wang, etal. Negative differential resis-tance behaviors in porphyrin molecular junctions modulated with side groups. Appl. Phys. Lett,2008,92(243303):1-3
    [22]Chen J, Reed M A, Rawlett A M, etal. Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science,1999,286:1550-1551
    [23]Chen J, Reed M A, Rawlett A M, etal. Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett.,2000,77:1224-1226
    124]游效曾编著.分子材料—光电功能化合物.上海:上海科学技术出版社,2001年,83-119页
    [25]白春礼主编.分子科学前沿.北京:科学出版社,2007年,281-417页
    [26]Jin Zhao, Changgan Zeng, Xin Cheng, etal. Single C59N Molecule as a Molec-ular Rectifier. Phys. ReV. Lett,2005,95(045502):1-4
    [27]李群祥,任浩,杨金龙等.单分子物理和化学的新进展.物理学进展,2007年,27(2):201
    [28]Park J, Pasupathy A N, Goldsmith J I, etal. Coulomb blockade and the Kondo effect in single-atom transistors. Nature,2002,417:722-725
    [29]林梦海编著.量子化学计算方法与应用.北京:科学出版社,2004年,116-128页
    [30]王志中编著.现代量子化学计算方法.北京:科学出版社,2004年,116-128页
    [31]Fock V. Naherungsmethode zur losung des quanten-mechanischen Mehrkorperprob-leme. Z Phys,1930,61:126-148
    [32]Hatree D R. The wave mechanics of an atom with a non-Coulomb central field. Proc Camb Phil Soc,1928,24:111-132
    [33]Hohenberg P, Kohn W. Inhomogeneous eletron gas. Phys. Rev.,1964, 136(3B):864-871
    [34]Kohn W, Sham L.J. elf-Consistent equations including exchange and correlation erects. Phys Rev,1965,140(4A):A1133-A1138
    [35]王怀玉.凝聚态物理的格林函数理论.北京:科学出版社,2008年,1-28页
    [36]Massimiliano Di ventra. Electrical transport in nanoscale systems. Landon:Cam-bridge,2008,209-248
    [37]Eun-Cheol Lee, Y.-S. Kim, Y.-G. Jin, etal. First-principles study of hydrogen adsorption on carbon nanotube surfaces. Phys. Rev. B,2002,66(073415):1-4
    [38]Collins P G, Bradley K, Ishigami M, etal. Extreme Oxygen Sensitivity of Elec-tronic Properties of Carbon Nanotubes. Science,2000,287:1801
    [39]Kong J, Frankin N, Zhou C, etal. Nanotube Molecular Wires as Chemical Sen-sors. Science,2000,287:622-624
    [40]Goldoni A, Larciprete R, Petaccia L, etal. Single-Wall Carbon Nanotube Inter-action with Gases:Sample Contaminants and Environmental Monitoring. J. Am. Chem. Soc,2003,125:11329-11333
    [41]Arab M, Picaud F, Ramseyer C, etal. Characterization of single wall carbon nan-otubes by means of rare gas adsorption. J. Chem. Phys.,2007,126(054709):1-10
    [42]Charles See Yeung, Lei Vincent Liu, Yan Alexander Wang. Adsorption of Small Gas Molecules onto Pt-Doped Single-Walled Carbon Nanotubes. J. Phys. Chem. C, 2008,112:7401-7411
    [43]Shu Peng, Kyeongjae Cho. Ab Initio Study of Doped Carbon Nanotube Sensors. Nano Lett.,2003,3(4):513-517
    [44]Ruoxi Wang, Dongju Zhang, Wenqi Sun, etal. A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. THEOCHEM,2007,806:93-97
    [45]Sunglyul Maeng, Seungeon Moon, Sanghyeob Kim, etal. Highly sensitive NO2 sensor array based on undecorated single-walled carbon nanotube monolayer junc-tions. Appl. Phys. Lett.,2008,93(113111):1-3
    [46]Zhang N, Ke Yu, Li Q, etal. Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance. J. Appl. Phys,2008,103(104305):1-6
    [47]Guohua Gao, Hong Seok Kang. First Principles Study of NO and NNO Chemisorp-tion on Silicon Carbide Nanotubes and Other Nanotubes. J. Chem. Theory Comput., 2008,4:1690-1697
    [48]Wu R Q, Yang M, Lu Y H, etal. Silicon Carbide Nanotubes As Potential Gas Sensors for CO and HCN Detection. J. Phys. Chem. C,2008,112:15985-15988
    [49]Leenaerts O, Partoens B, Peeters F M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene:A first-principles study. Phys. Rev. B,2008,77(125416):1-6
    [50]Shih-Jye Sun. Gas adsorption on a nanographite ribbon:Hybridization model and simulations. Phys. Rev. B,2008,75(165408):1-6
    [51]Koki Urita, Shinya Seki, Shigenori Utsumi, etal. Effects of Gas Adsorption on the Electrical Conductivity of Single-Wall Carbon Nanohorns. Nano Lett.,2006, 6(7):1325-1328
    [52]Tienan. Zhao, Jinqing. Liu, Yuliang. Li, etal.C60 photoluminescence spectra re-lated to gas adsorption. Appl. Phys. Lett.,1992,61(9):1028-1030
    [53]Zhi-Qiang Fan, Ke-Qiu Chen, Qing. Wan, etal. Theoretical investigation of the negative differential resistance in squashed C6o molecular device. Appl. Phys. Lett., 2008,92(263304):1-3
    [54]Xiao-Jiao Zhang, Meng-Qiu Long, Ke-Qiu Chen, etal. Electronic transport properties in doped C60 molecular devices. Appl Phys Lett,2009,94(073503):1-3
    [55][日]近藤精一,石川达雄,安部郁夫著,李国希译.吸附科学.北京:化学工业出版社,2006年,6-30页
    [56]Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B,2001,63(245407):1-13
    [57]Brandbyge M. Density-functional method for nonequilibrium electron transport. Phys. Rev. B,2002,65(165401):1-17
    [58]Ceperley D M, Alder B J. Groud state of the electron gas by a stochastic method. Phys. ReV. Lett,1980,45(7):566-569
    [59]Soler J M, Artacho E, Gale J D, etal. The SIESTA method for ab initio order-N materials simulation. J.phys.:Condens.Matter,2002,14:2745-2779
    [60]Buttiker M, Imry Y, Landauer R, etal. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B,1985,31(10):6207-6215
    [61]Alekandar Staykov, Daijiro Nozaki, Kazunari Yoshizawa. Theoretical Study of Donor-Bridge-Acceptor Unimolecular Electric Rectifier. J. Phys. Chem. C,2007, 111:11699-11705
    [62]Diana Duli, Molen S J, Kudernac T, etal. One-Way Optoelectronic Switching of Photochromic Molecules on Gold. Phys. ReV. Lett,2003,91(20):207402
    [63]Usama Al-Atar, Rylan Fernandes, Bob Johnsen, etal. A Photocontrolled Molec- ular Switch Regulates Paralysis in a Living Organism. J Am Chem Soc,2009, 131:15966-15967
    [64]Aleksandar Staykov, Kazunari Yoshizawa. Photochemical Reversibility of Ring-Closing and Ring-Opening Reactions in Diarylperfluorocyclopentenes. J. Phys. Chem. C,2009,113(9):3826-3834
    [65]Jing Huang, Qunxiang Li, Haibin Su, etal. Transport properties through di-arylethene derivatives between carbon nanotube electrodes:A theoretical study. Chem Phys Lett,2009,479:120-124
    [66]Zhang C, Du M H, Cheng H P, etal. Coherent Electron Transport through an Azobenzene Molecule:A Light-Driven Molecular Switch. Phys. ReV. Lett,2004, 92(15):158301
    [67]Chun Zhang, Yao He, Hai-Ping Cheng, etal. Current-voltage characteristics through a single light-sensitive molecule. Phys Rev B,2006,73(125445):1-5
    [68]Jeffrey M Mativetsky, Giuseppina Pac, Mark Elbing, etal. Azobenzenes as Light-Controlled Molecular Electronic Switches in Nanoscale Metal-Molecule-Metal Junctions. J Am Chem Soc,2008,130:9192-9193
    [69]Liang Y Y, Jiang F, Zhou Y X, etal. Ab initio study of single-molecule rotation switch based on nonequilibrium Green's function theory. J. Chem. Phys,2007, 127(084107):1-6
    [70]Jason M. Spruell, Walter F. Paxton, John-Carl Olsen, etal. A Push-Button Molecular Switch. J Am Chem Soc,2009,131:11571-11580
    [71]Ramakrishna S, Tamar Seideman. Torsional Control by Intense Pulses. Phys. ReV. Lett,2007,99(103001):1-4
    [72]Irina Petreska, Ljup Pejov, Ljup Kocarev. Controlling the torsional stochastic switching in phenylene ethynylene oligomer molecules by external electrostatic fields. Phys. Rev. B,2008,78(045209):1-5
    [73]Matthew G. Reuter, Maxim Sukharev, Tamar Seideman. Laser field alignment of organic molecules on semiconductor surfaces:toward Ultrafast molecular switches. Phys. ReV. Lett,2008,101(208303):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700