TiN表面电子结构及TaN各相稳定性的第一性原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡族金属氮化物由于具有高强度、高硬度、耐高温,耐磨损以及良好的导电性、导热性等一系列优点,并可通过化学气相沉积(CVD),物理气相沉积(PVD)原子层沉积(ALD)等方法制备,与硅器件工艺兼容,可以被广泛的应用于微电子工艺中等,从而引起了广泛的关注。TiN,TaN便是其中重要的两种材料。
     TiN由于其功函数大约在4.5电子伏特左右,与硅的功函数接近,从而是一种很好的金属栅极候选材料而被广泛研究,但对TiN不同表面的功函数、表面能等性质进行全面的计算分析还较少见到。作为可能出现的情况本文使用基于第一原理的密度泛函理论计算了TiN材料各个表面(100面、110面、111-N面、111-Ti面)的功函数,态密度,分波态密度,表面能,并与体相材料的相应数据作了比较。分析了在钨表面生长TiN择优取向为(111)面的原因,并得到了在SiO2和HfO2基底上生长的TiN薄膜可能是(111)面Ti端面的结论。由于在TiN的制备过程中, (111)方向为择优生长方向,因此着重分析了(111)晶面的表面电子结构。计算得到的晶格常数与试验值吻合的很好。计算结果表明在各个表面中111-Ti面的功函数与试验值最接近,而其他表面的功函数与试验值都有较大的差距。各个表面的表面能从小到大顺序为:100<110<111-N<111-Ti,各个表面都是导体,其中111-Ti面的导电性最强。
     本文第二部分又采用第一原理于的密度泛函理论计算了扩散阻挡层材料的TaN材料各个相的晶体结构和电子结构,分析比较了不同相的稳定性。计算表明六角密堆结构由于在费米能级附近有赝隙的存在,要比立方结构更稳定。CoSn结构是所有结构中的基态。WC结构有最大的弹性模量。所有的结构都是导电的,其中NaCl结构的导电性最强。
The transition metal nitrides represent a technologically important series of materials and owns a wide interest because it can be deposed by Chemical Vapor Deposition (CVD),Physical Vapor Deposition(PVD) and Atom Layer Depostion (ALD) and others which are also used in IC process .TiN and TaN are two kind of important transitions nitrides.
     The work function of TiN is about 4.5eV, near that of Silicon, which allows it to be used as a potential metal gate material. Although it has been widely studied, the analysis about the work function ,surface energy and electronic structure of different surfaces are not reported to the best of our knowledge. The present work calculated the work function ,surface energy and electronic structure of different surfaces employing density functional theory (DFT) with in the local density approximation (LDA). The study show that the preferred orientation is (111) on W substrate. And we find that the TiN film deposed on SiO2 and HfO2 should be the (111) surface terminated by Ti. Considering (111) surface is the preferred orientation, we analysed the electronic structure of (111) surface. The calculated lattice constant agrees with the experimental value. The result show that the work function of (111-Ti) surface agree well with the experimental value, while the other surfaces with a considerable different. The calculated surface energy from low to high is: 100<110<111-N<111-Ti. All the calculated surface has a metallic nature, and the (111-Ti) surface has the highest conductivity.
     In the second part of this thesis, Using the plane wave pseudopotential method within the generalized gradient approximation, we have studied the structural and electronic structures for several TaN phases. Our results show CoSn is the calculated ground-state structure of TaN among the five crystallographic structures that have been studied. The order of energetics stability of phase structures of TaN from low to high is: CsCl< ZnS-B3< NaCl< WC< CoSn. The higher stability of TaN in the CoSn and WC structures is due to the formation of pseudogap around the Fermi level and the stronger hybridization between N-2p states and Ta-5d states. TaN in all structures studied has metallic nature,while the NaCl structure has the highest conductivity. The calculated bulk modulus indicates that TaN in the WC structure may be a less compressibility material.
引文
[1] Seongun Park, Luigi Colombo, Yoshio Nishi and Kyeongjae Cho Ab initio study of metal gate electrode work function. Appl. Phys. Lett., 2005, 86: 073118-1 073118-3
    [2] S. Lopatin, G. Duscher, T. Liang, W. Windl, G. Lucovski, R.Buczko, S. J. Pennycook, S. T. Pantelides, L. R. C. Fonseca, B.White, C. Fulton, and R. Nemanich, Phys. Status Solidi B (to be published)
    [3] D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 1980 45: 566-569
    [4] R. T. Tung, Formation of an electric dipole at metal-semiconductor interfaces, Phys. Rev. B 2001 64: 205310-205324
    [5] H. Hasegawa, Y. Koyama, and T. Hashizume Jpn. J. Appl. Phys. Part 1 1999 38: 1098
    [6] H. J. Hubbard and D. G. Schlom J. Mater. Res. 1996 11: 2757
    [7] S. B. Samavedam, L. B. La, P. J. Tobin, B. E. White, C. C. Hobbs,L. R. C. Fonseca, A. A. Demkov, J. Schaeffer, E. Luckowski, A.Martinez, M. Raymond, D. H. Triyoso, D. Roan, V. Dhandapani, R. Garcia, S. G. H. Anderson, K. Moore, H.-H. Tseng, and C. Capasso, Electron Devices Meeting 2003, IEDM’03 Technical Digest Piscataway IEEE International, 2003
    [8] L. R. C. Fonseca, A. A. Knizhnik, First-principles calculation of the TiN effective work function on SiO2 and on HfO2, Phys. Rev. B 2006 74: 195304-1-195304-13
    [9] M. Houssa High-k Gate Dielectrics, Berkshire, Institute of Physics Publishing, University of Reading, 2004
    [10] J. A.Motes de Oca Valero, YlLe Petitcorps, J.P.Manaud, G.Cholion, F.J.Carrillo Romo and A.López M.. Low temperature, fast deposition of metallic titanium nitride films using plasma activated reactive evaporation J.Vac.Technol.A 2005 23: 394-400
    [11] G. S. Lujan, T. Schram, L. Pantisano, J. C. Hooker, S. Kubicek, E. Rohr, J. Schuhmacher, O. Kilpel?, H. Sprey, S. D. Gendt, and K. D. Meyer, Firenze, Italy, Proceedings of the ESSDERC, 2002, ISBN 88-900847-8-2
    [12] F. Fillot, T. Morel, S. Minoret, I. Matko, S. MaItrejean, B.Guillaumot, B.Chenevier and T. Billon, Investigation of titanium nitride as metal gate material elaborated by metal organic atomic layer deposition using TDMAT and NH3 , Microelectronic Engineering 2005 82: 248-253
    [13] Kazuaki Kobayashi, First-principle study of the electronic properties of transition metal nitride surfaces, Surface Science 2001 493: 665-670
    [14] Cong J .Changes and Opportunities for Desigh Innovations in Nanometer Technologies[C]. SSRC Design Science Concept Paper, 1997. 1-15
    [15] Llod J R, Clemens J,Snede R.[J].Mater Sci Eng, 1997,R19:87—151.
    [16] Murarka S P. [J]. Mater Sci Eng, 1997, R19:87-151
    [17] Chen Xiuhua, Wu Xinghui, et al . [J]. J mater Sci Technol, 2006, 22 :342
    [18] Plouchart J O, Zamdmer N, Kim J, et al. [J]. IBM JresDev, 2003,47:611-617
    [19]陈秀华,王莉红,项金钟,吴兴惠,周桢来超大规模集成电路铜布线扩散阻挡层TaN薄膜的制备研究功能材料2007 05期38卷750-752
    [20]王阳元,黄如,刘晓彦.面向产业需求的21世纪微电子技术的发展[J].物理,2004,33(6):407
    [21]陈海波,周继承,李幼真集成电路Cu互连扩散阻挡层的研究进展材料导报,2006 20: 8-15
    [22] C. S. Shin, D. Gall, P. Desjardins, A. Vailionis, H. Kim, I. Petrov, J. E. Greene, and M. Od′en, Growth and physical properties of epitaxial metastable cubic TaN(001), Appl. Phys. Lett. 1999 75: 3808
    [23] T. Oku, E. Kawakami, and M. Uekubo, Appl. Surf. Sci. 1999 116, 265
    [24] H. Wang, A. Tiwari, X. Zhang, A. Kvit, and J. Narayan, 2002 Phys. Stat. Sol. (b) 81, 1453
    [25] X. F. Yu, C. X. Zhu, M. F. Li, A. Chin, M. B. Yu, A.Y. Du, and D. L. Kwong, IEEE Electron Device Lett. 2005 25, 501
    [26] Y. Suqimoto, M. Kajiwara, K. Yamamoto, Y. Suehiro, D. Wang, and H. Nakashima, Effective work function modulation of TaN metal gate on HfO2 after postmetallization annealing, Appl. Phys. Lett. 2007 91: 112105.
    [27] C. H. Lee, K. C. Park, and K. Kim, Charge-trapping memory cell of SiO2/SiN/high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect, Appl. Phys. Lett. 2005 87: 073510
    [28] A. N. Christensen and B. Lebech, a reinvestigation of the structure ofε-tantalum nitride Acta Cryst. B 1978 34: 261-263
    [29] T. Mashimo, S. Tashiro, T. Toya, M. Nishida, H. Yamazaki, S. Yamaya, K. Oh-ishi, and Y. Syono, J. Mater. Sci. 1993 28: 3443.
    [30] T. Mashimo, S. Tashiro, M. Nishida, K. Miyahara, andE. Eto, B1-type and WC-type phase bulk bodies of tantalum nitride prepared by shock and static compressions, Physica B 1997 239:13-15.
    [31] D. Gerstenberg and C. J. Calbrick, Effects of Nitrogen, Methane, and Oxygen on Structure and Electrical Properties of Thin Tantalum Films, J. Appl. Phys. 1964 35: 402
    [32] S. Tashiro, T. Mashimo, H. Sato, and E. lto, Trans. Mater.Res. Soc. Japan A 1994 14:693
    [33] N. Terao, Structure of Tantalum Nitrides Jpn. J. Appl. Phys. 1971 10: 248-259.
    [34] H. Wang, A. Tiwari, A. Kvit, X. Zhang, and J. Narayan, Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer, Appl. Phys. Lett. 2002 80: 2323
    [35]徐光宪,黎乐民量子化学:基本原理和从头算法科学出版社,北京1980
    [36] R.O.Jones,.Gunnarsson The density functional formalism, its applications and prospects Review of Modern Physics 1989 Vol. 61:689-746,
    [37]林孟海量子化学计算方法与应用科学出版社,北京2004
    [38] http://chemwiki.net/
    [39] R.M.Dreizler and E.K.U.Gross Density Functional Theory Springer-Verlag Berlin Heidelberg 1990
    [40]谢希德,陆栋《〈固体能带理论》复旦大学出版社1998
    [41]A. Nagy Density functional theory and applications to atome and molecules Physics Reports 1998, 198:1-79
    [42] M.Franci Direct orbital-free calculation using DFT and one-electron Green’s functions: applications to atoms. Chemical Physics Letters, 1996,263(13): 506
    [43] M. Bron and K.Huang Dynamical Theory of Crystal Lattices Oxford: Oxford University Press,1954
    [44] M Levy, Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole, Phys.Rev. A 1991 43: 4637-4646
    [45] J.P.Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy Phys.Rev.B 1992 45: 13244-13249
    [46]丁迅雷金团簇上小分子吸附的第一性原理研究2004博士学位论文
    [47] W. Kohn and L. J. Sham Self-Consistent Equations Including Exchange and Correlation EffectsPhys. Rev. 1965 140: A1133-A1138
    [48] S. Baroni, A. D. Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo,G. Chiarotti, P. Focher, A. Pasquarello, et al., http://www.pwscf.org/.
    [49] J. P. Perdew, K. Burke, and M. Ernzerhof Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996 77: 3865-3568
    [50] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Phys. Rev. B 1996 41: 7892-7895
    [51] H. J. Monkhorst and J. D. Pack Special points for Brillouin-zone integrations Phys. Rev. B 1976 13: 5188.-5192
    [52] F. D. Murnaghan 1944 Proc. Natl. Acad. Sci. USA 30, 244
    [53] I.M. Iskandarova, A.A. Knizhnik, B.V. Potapkin, A.A. Safonov, A.A. Bagatur’syants and L.R.C. Fonseca , First-principles investigation of the electronic properties of niobium and molybdenum mononitride surfaces, Surface Science 2005, 583: 69-79
    [54] Zhang Ming, He Jia Wen 2001 The Chinese Journal of Nonferrous Metals 11(2),198-201 (in Chinese) [张铭,何家文2001中国有色金属学报11(2),198-201]
    [55]D R Mckenzie, Y Yin, W D Mcfall,etc. The orientation dependence of elastic strain energy in cubic crystals and its application to the preferred orientation in titanium nitride thin films, J Phys:Condens Matter .1996 8(32):5883—5890
    [56]U C Oh, J H Je. Effects of strain energy on the preferred orientation of TiN thin films, J Appl Phys,74: 1692—1696
    [57]J Pelleg,L Z Zevin,,S. Lungon and N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates Thin Solid Films, 1991, 197(1—2):117—128
    [58] www.webelements.com
    [59] Zhang Yu Juan, Wu Zhi Guo, Zhang Wei Wei, Li Xin, Yan Peng Xun, Liu Wei Min, Xue Qun Ji ,The Chinese Journal of Nonferrous Metals,2004 14: 8 (in Chinese)
    [60]C J Fall, N Binggeli and A Baldereschi, Deriving accurate work functions from thin-slab calculations, J. Phys: Condens. Matter 1999 11:2689-2696
    [61] G. Lehmann and M. Taut, On the Numerical Calculation of the Density of States and Related Properties, Phys. Stat. Sol. (b) 1972 54: 469-477
    [62] D. Sanchez-Portal, E. Artacho, and J. M. Soler, Projection of plane-wave calculations into atomic orbitals, Solid State Commun 1995 95: 685-690
    [63] P. Kroll, T. Schr¨oter, and M. Peters, Angew. Chem. Int. Ed 2005. 44: 4249
    [64] S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem. 1999 75: 889
    [65] F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional Phys. Rev. B 2007 75: 115131-115144
    [66] P. Villars and L. D. Calvet, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985)
    [67] C. Stampfl, W. Mannstadt, R. Asahi, and A. J. Freeman, Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations Phys. Rev. B 2001 63:155106-155116
    [68] D. A. Papaconstantopoulos,W. E. Pickett, B. M. Klein, and L. L. Boyer, Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN Phys. Rev. B 1985 31: 752-761
    [69] E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson, A. I. Lichtenstein, and B. Johansson, Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study J. Appl. Phys. 2007 101: 123519
    [70] M. Sahnoun, C. Daul, M. Driz, J. C. Parlebas, and C. Demangeat, FP-LAPW investigation of electronic structure of TaN and TaC compounds, Comp. Mat. Sci. 2005 33: 175-183
    [71] E. Z. Kurmaev, A. Moewes, Z.V. Pchelkina, I. A.Nekrasov, A. A. Rempel, and D. L. Ederer, X-ray transitions for studying the electronic structure of 5d metals, Phys. Rev. B 2001 64: 073108-073109
    [72] C. Stampfl and A. J. Freeman, Metallic to insulating nature of TaNx: Role of Ta and N vacancies Phys. Rev. B 2003 67: 064108-064114
    [73] A.V. Tsvyashchenko, S.V. Popova, and E. S. Alekseev, Band Structure of Hexagonal Tantalum Nitride, Phys. Status Solidi B 1980 100: 99-102.
    [74] E. S. Alekseev, R. G. Arkhipov, and S.V. Popova, Band structure of the metastable F. G. C. tantalum nitride Phys. Status Solidi B 1978 90: K133-K136
    [75] P. Weinberger, C. P. Mallett, R. Podloucky, and A. Neckel, The electronic structure of HfN, TaN and UN, J. Phys. C 1980 13: 173-187
    [76] L. Yu, C. S. D. Marshall, T. Eshrich, V. Narayanan, J. M. Rowell, N. Newman, and A. J. Freeman, Mechanism and control of the metal-to-insulator transition in rocksalt tantalum nitride Phys. Rev. B 2002 65: 245110-245114
    [77] M. B. Kanoun and S. Goumri-said, Electronic properties of the binary noble metal nitride PtN: First-principles calculations Phys. Rev. B 2005 72: 113103-113106
    [78] O.Y. Khyzhun and Y.V. Zaulychny, Electronic Structure of Substoichiometric Tantalum Nitrides Studied by the XES Method, Phys. Stat. Sol. (b) 1998 207: 191-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700