N-乙酰半胱氨酸对运动神经元的保护作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肌萎缩侧索硬化(amyotrophic lateral sclerosis, ALS)是一种少见但致死性的神经系统变性疾病,它选择性侵犯大脑皮层、脊髓和脑干的运动神经元。临床表现为缓慢进展的四肢无力,逐渐丧失运动功能,最终累及呼吸肌,多在首次出现症状后的3~5年内死亡。目前,该病病因不清、发病机制不明、缺乏切实有效的治疗方法。大量证据提示ALS运动神经元的选择性丢失并不是单一因素造成,而是由于多种因素复杂的相互作用所致,包括氧化应激,谷氨酸兴奋毒性,遗传因素,自身免疫异常,细胞骨架异常以及蛋白质异常聚积等。而氧化应激则是其各种不同机制的最后共同通路。
     目前ALS的治疗主要包括兴奋性氨基酸拮抗剂力鲁唑(riluzole)、抗氧化剂、神经营养因子、基因治疗、免疫治疗以及干细胞移植治疗等方面。其中,兴奋性氨基酸拮抗剂力鲁唑是唯一用于临床有效的药物,也是唯一被美国FDA批准用于ALS临床治疗的药物,但它也只能轻微延缓疾病的进展(延长寿命90天),而对运动功能、肌力和运动症状的改善无任何作用,并且价格昂贵,非一般家庭所能承受。因此,对于ALS患者来说,亟需一种价格低廉又切实有效的药物。
     绿茶是一种流行世界的饮料,历来被认为是一种有益健康的饮品。近来研究表明,绿茶发挥有益作用的是绿茶叶中的一类多酚类物质,它们都属于黄酮类,合称绿茶多酚,主要包括四种有效成份:表没食子儿茶素没食子酸酯( epigallocatechin gallate,EGCG)、表儿茶素没食子酸酯(epicatechin gallate,ECG)、表没食子儿茶素(epigallocatechin,EGC)和表茶素(epicatechin,EC)。其中EGCG含量最高,大约占到绿茶提取物干重的10%,具有抗凋亡、抗癌、抗突变、抗炎等作用。近年来被广泛研究,证实其还可在多个靶点发挥神经保护作用,如自由基清除、金属螯合、影响细胞存活和凋亡基因的表达、以及对细胞信号转导通路、线粒体功能和泛素-蛋白酶体系统的调节等。之前,我们应用谷氨酸转运体抑制剂苏-羟天冬氨酸(threohydroxyaspartate,THA)诱导细胞间隙内谷氨酸浓度升高,造成谷氨酸兴奋性毒性脊髓体外器官型培养模型,用EGCG预处理,发现EGCG不仅能够保护运动神经元,减轻细胞损伤程度,减低细胞脂质过氧化水平,还能降低细胞间隙的谷氨酸浓度。这是一个非常令人振奋的结果,因为EGCG兼具了抗氧化和调节谷氨酸的双重作用。但是也正因为EGCG还具有抗氧化作用,严格来说,我们并不能确定其调节谷氨酸的作用是否是抗氧化作用的一个附加结果。N-乙酰半胱氨酸(N-acetyl cysteine,NAC)是一种广为人知的抗氧化剂,它不仅具有直接的抗氧化作用,还能为谷胱甘肽(glutathione,GSH)的合成提供底物,而谷胱甘肽则是活性氧族(reactive oxygen species,ROS)和脂质过氧化产物的清除剂。因此,为了进一步确证EGCG的这个结果,本研究引入了NAC作为参照,观察其在完全相同的体外培养模型中对运动神经元的保护作用及其对细胞间隙谷氨酸浓度的影响。
     方法:实验动物选用7日龄的SD(Sprague-Dawley)乳鼠快速断头,在无菌条件下迅速取出脊髓,用活组织切片机切成350μm厚的薄片,种植在6孔培养板内的插入式培养皿(30mm Millicell-CM, Millipore公司)中,每孔5片,放入二氧化碳培养箱(37.0℃,5% CO2+95%空气),每周更换2次培养液。经过1周的损伤恢复期后,在培养液中加入谷氨酸转运体抑制剂苏-羟天冬氨酸(threohydroxyaspartate,THA),使细胞间隙谷氨酸浓度增加,造成谷氨酸兴奋性毒性脊髓体外器官型培养模型。之后,脊髓片随机分为正常对照组、THA模型组和NAC提前干预组,继续培养3周后收集标本及培养液。用神经元的特异性抗体SMI-32组化染色,对脊髓前角运动神经元进行鉴定、计数,并测定培养液中的乳酸脱氢酶(lactate dehydrogenase,LDH)活力以判断细胞损伤程度,测定培养液中的谷氨酸(glutamate)浓度以判断NAC能否调节谷氨酸,测定脊髓组织中的丙二醛(malondialdehyde,MDA)含量以判断细胞脂质过氧化水平。
     结果:正常对照组脊髓片体外生长良好,面积逐渐增大,两侧前角共有24.13±3.44个运动神经元。THA模型组脊髓片体外生长不良,与对照组相比,前角运动神经元数明显减少,仅6.27±1.62个(P<0.05),且培养液中谷氨酸浓度,LDH活力明显增加(P<0.05),脊髓组织中MDA含量明显增加(P<0.05)。而NAC提前干预组脊髓片生长与正常对照组相近,与模型组相比前角运动神经元数目明显增加,19.29±2.13个(P<0.05),且培养液中LDH活力明显下降(P<0.05),脊髓组织中MDA含量明显减少(P<0.05),但培养液中的谷氨酸浓度无明显变化(P>0.05)。
     结论:抗氧化剂NAC在谷氨酸兴奋性毒性脊髓体外器官型培养模型中能够保护运动神经元,减轻细胞损伤程度,减低细胞脂质过氧化水平,但并不能直接调节细胞间隙的谷氨酸水平,因此,推测EGCG对于细胞间隙谷氨酸浓度的调节作用并不是其抗氧化作用的附加结果,而是EGCG本身即具有调节谷氨酸的作用。
Objective:Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive and lethal neurodegenerative disease, characterized by the degeneration of motor neurons from cerebral cortex, brainstem, and spinal cord. ALS is one of the most common neurodegenerative disorders, occurring both sporadically (sALS) and as a familial disorder (fALS) with inherited cases accounting for about 10% of patients. Using the current standard therapy, the typical survival time for patients after diagnosis is 3 to 5 years, although large deviation has been observed. Present evidence indicates that loss of neurons in ALS could not be due to a single factor,but results from a complex interplay among oxidative stress, glutamate excitotoxicity, dysfunction of autoimmunity, genetic factors,aggregation and/or dysfunction of critical proteins. Recent investigations support that among these mechanisms,oxidative stress is a common final pathway.
     So far,an effective disease-modifying treatment for this disabling and fatal disease is lacking.That is,proven therapeutic options are limited to riluzole,a glutamate release inhibiting drug that only extends the survival in humans by approximately 3 months without showing any therapeutic effect on motor function,muscle strength or motor symptoms.Hence,the development of innovative and more effective neuroprotective strategies for this devastating disease is of utmost importance.
     Green tea is a world wide beverage.It has been used in the oriental countries for a long time and traditionally thought to have diverse effects.Recently,it has been demonstrated that green tea contains many compounds that have many pharmacologic activities..Flavonoids,major polyphenolic compounds found in green tea, including epigallocatechin gallate (EGCG), epicatechin (EC), epigallocatechin (EGC) and epicatechin gallate (ECG) ,protect neuronal cells from oxidative stress.EGCG is one of the most well-known green tea polyphenolics (GTPs) with diverse effects,such as anti-apoptotic, anti-cancer, anti- mutagenic,and anti-inflamentory effects.The exact mechanisms of neuroprotective effect of EGCG have not been clearly understood.Previous studies suggest that EGCG protect neuronal cells via free radical scavenging,metal chelation,the enhancing expression of cell survival gene and inhibition of apoptotic gene,the regulation of cell signal transduction pathway,mitochondrial function,and ubiquitin-protesome system.Previously,in the threohydroxyaspartate (THA) induced glutamate exitotoxicity organotypic spinal cord culture model,we pretreated explants with EGCG, and then discovered that EGCG could not only protect motor neurons,alleviate the extent of cell injury and the level of lipoperoxidation,but also regulate the glutamate concentration in the culture medium.This is an exiciting result,because in the in vivo exitotoxicity model,EGCG have both anti-oxidative and glutamate regulating effects.However,owing to the simultaneous antioxidative effect of EGCG,we do not know whether the regulation of glutamate of EGCG is related to its anti-oxidative effect.N-acetyl cysteine (NAC) is a well-known antioxidative agent.It plays antioxidative role directly or provides substrate to synthesis of glutathione (GSH),which is a potent scanvenging agent of reactive oxygen species (ROS) and lipoperoxidative products.So,in the current study,the protection to motor neurons of NAC and the mechanisms involved in are tested.
     Methods:Organotypic spinal cord cultures were prepared using lumber spinal cord slices from 7-day-old rat pups.Lumber spinal cords were collected under sterile condition and sectioned transversly at 350μm intervals with a McIIwain tissure chopper.Slices were carefully placed on the surface of Millipore Millicell-CM insert (five slices per membrane).Cultures were incubated at 37℃in the 5%CO2 and 95% humidified environment.To establish the glutamate exitotoxicity spinal cord organotypic culture model,the culture medium were continuously added with 100μmol/L THA,an inhibitor of glutamate transporter.After one week of recovery,explants were treated with 100μmol/L NAC for 48 hours,and then the combination of 100μmol/L THA and 100μmol/L NAC for 3 weeks.Then collect the explants and culture medium to be tested.Motor neurons in the ventral horn were identified and evaluated by SMI-32 immunohistochemical staining.The lactate- dehydrogenase (LDH) activity in the culture medium was assayed to evaluate the extent of cell injury.The malondialdehyde (MDA) content in the spinal cord explants were assayed to evaluate the level of lipoperoxidation.The glutamate concentration in the culture medium was assayed to determine whether NAC could regulate glutamate level.
     Results:The spinal cord slices of normal control group had excellent organtypic cellular organization and their size became larger.There are about 24.13±3.44 motor neurons in the ventral horn in control group.The number of motor neurons in the ventral horn in THA group was markedly reduced compared with the control,only 6.27±1.62(P<0.05). Moreover,the glutamate concentration and LDH activity in the culture medium ,the MDA content in the spinal cord explants were significantly increased(P<0.05). Conversely,pretreatment with NAC significantly increased the number of motor neurons in the ventral horn ,19.29±2.13(P<0.05), and decreased the activity of LDH in the culture medium and the MDA content in the explants (P<0.05)compared with those in THA group. However, the glutamate concentration in the culture medium had no significant change(P>0.05).
     Conclusion:In the glutamate exitotoxicity spinal cord organotypic culture model,antioxidative agent NAC can protect motor neurons,and simultaneously alleviate the extent of cell injury and lipoperoxidation.However,NAC had no effect on the glutamate level in the culture medium.That is,the regulation of glutamate concentration in the culture medium of EGCG is not an additional result of antioxidation.In contrast,it is EGCG itself that regulate the glutamate level in the culture medium.
引文
1 Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron, 2006, 52(1): 39-59
    2 Lacomblez L, Bensimon G, Leigh PN, et al.Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet ,1996,347(9013):1425-1431
    3 Weiss MD, Weydt P, Carter GT, et al.Current pharmacological management of amyotrophic [corrected] lateral sclerosis and a role for rational polypharmacy. Expert Opin Pharmacother, 2004,5(4):735-746.
    4 Mandel S, Weinreb O, Amit T, et al.Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem, 2004, 88(6): 1555-1569
    5于继徐。铁在谷氨酸兴奋性毒性中的重要作用及运动神经元保护机制研究。中国博士学位论文全文数据库
    6 Rothstein JD, Tsai G, Kuncl RW, et al.Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol, 1990, 28(1): 18-25
    7 Sheldon AL, Robinson MB. The role of glutamate transporters inneurodegenerative diseases and potential opportunities for intervention. Neurochem Int, 2007, 51(6-7): 333-355
    8 Rothstein JD, Jin L, Dykes-Hoberg M, et al.Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci, 1993, 90: 6591-6595
    9 Silani V, Braga M, Ciammola A, et al.Motor neurones in culture as a model to study ALS. J Neurol, 2000, 247(Suppl 1): I28-36
    10 Li CY, Liu XY, Bu H, et al.Prevention of glutamate excitotoxicity in motor neurons by 5,6-dihydrocyclopenta-1,2-dithiole-3-thione: implication to the development of neuroprotective drugs. Cell Mol Life Sci, 2007, 64: 1861-1869
    11 Yang CS,Wang ZY. Tea and cancer. J Natl Cancer Inst, 1993, 85(13): 1038-1049
    12 Agarwal R, Katiyar SK, Khan SG, et al. Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea. Photochem Photobiol, 1993, 58(5): 695-700
    13 Wang ZY, Huang MT, Lou YR, et al. Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene initiated SKH-1 mice. Cancer Res, 1994, 54(13): 3428-3435
    14 Nie G, Cao Y, Zhao B. Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep, 2002, 7(3): 171-177
    15 Guo S, Yan J, Yang T, et al. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol Psychiatry, 2007, 62(12): 1353-1362
    16 Mandel S, Youdim MB. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med, 2004, 37(3): 304-317
    17 Mandel SA, Avramovich-Tirosh Y, Reznichenko L, et al. Multifunctional activities of green tea catechins in neuroprotection: modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals, 2005, 14(1-2): 46-60
    18 Yang CS, Sang S, Lambert JD, et al. Possible mechanisms of the cancer-preventive activities of green tea. Mol Nutr Food Res, 2006, 50(2): 170-175
    19 Sutherland BA, Rahman RM, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem, 2006, 17(5): 291-306
    20 Mandel SA, Amit T, Weinreb O, et al. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther, 2008, 14(4): 352-365
    21 Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 1995, 15(4): 961-973
    22 Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int, 2007, 51(6-7): 333-355
    23 Pardo AC, Wong V, Benson LM, et al. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Exp Neurol, 2006, 201(1): 120-130
    24 Boston-Howes W, Gibb SL, Williams EO, et al. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem, 2006, 281(20): 14076-14084
    25 Maragakis NJ, Rothstein JD. Glutamate transporters: animal models to neurologic disease. Neurobiol Dis, 2004, 15(3): 461-473
    26 Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci, 2001, 2(11): 806-819
    27 Na HK, Surh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol, 2008, 46(4): 1271-1278
    28 Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin, 2007, 28(9): 1343-1354
    29 Abib RT, Quincozes-Santos A, Nardin P, et al. Epicatechin gallate increases glutamate uptake and S100B secretion in C6 cell lineage. Mol Cell Biochem, 2008, 310(1-2): 153-158
    30 Henderson JT, Javaheri M, Kopko S, et al. Reduction of Lower Motor Neuron Degeneration in wobbler mice by N-Acetyl-L-Cysteine J Neurosci, 1996,16(23):7574-7582
    31 Andreassen OA, Dedeoglu A, Klivenyi P, et al. N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis.Clinical Neurosci,2000,11(11):2494-2493
    32 Rothstein JD, Bristola LA, Hosler B, et al. Chronic inhibition of superoxide dismutase produces apoptotic death of neurons. Neurobiology, 1994, 91:4155-4159
    1 Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron, 2006, 52(1): 39-59
    2 Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet, 2007, 369(9578): 2031-2041
    3 Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, et al. Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem, 2007, 101(5): 1153-1160
    4 Schymick JC, Talbot K, Traynor BJ. Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet, 2007, 16(Spec No. 2): R233-242
    5 Kabashi E, Valdmanis PN, Dion P, et al. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann Neurol, 2007, 62(6): 553-559
    6 Lacomblez L, Bensimon G, Leigh PN, et al. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet ,1996,347(9013):1425-1431
    7 Weiss MD, Weydt P, Carter GT,et al. Current pharmacological management of amyotrophic [corrected] lateral sclerosis and a role for rational polyph- armacy. Expert Opin Pharmacother, 2004,5(4):735-746.
    8 Mandel S, Weinreb O, Amit T, et al. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem, 2004, 88(6): 1555-1569
    9 Oteiza PI, Uchitel OD, Carrasquedo F, et al. Evaluation of antioxidants, protein, and lipid oxidation products in blood from sporadic amyotrophic lateral sclerosis patients. Neurochem Res,1997, 22(4):535-9
    10 Smith RG, Henry YK, Mattson MP, et al. Presence of 4- hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral.Ann Neurol, 1998, 44 (4): 696-9
    11 Tohgi H, Abe T, Yamazaki K, Murata T, et al. Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis.Ann Neurol,1999,46(1):129-31
    12 Bogdanov M, Brown RH, Matson W, et al. Increased oxidative damage to DNA in ALS patients.Free Radic Biol Med,2000 ,29(7):652-658.
    13 Seong-Ho Koh, Hyugsung Kwon, Kyung Suk Kim, et al. Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals. Toxicology ,2004,202:213-225
    14 Seong-HoKoh, SeungH.Kim, HyugsungKwon, et al.Phosphatidylinositol-3 Kinase/Akt and GSK-3 Mediated Cytoprotective Effect of Epigallocatechin Gallate on Oxidative Stress-Injured Neuronal-Differentiated N18D3Cells. NeuroToxicology,2004,25: 793-802
    15 KaoruNagai,MinHaiJiang,JunichiHada,et al. (-)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res,2002,956: 319-322
    16 JiYeonJung, ChangRyoungHan, YeonJinJeong,et al. Epigallocatechin gallate inhibits nitric oxide-induced apoptosis in rat PC12 cells. Neurosci Lett, 2007, 411:222-227
    17 Lee SJ and Lee KW.Protective Effect of (-)-Epigallocatechin Gallate against Advanced Glycation Endproducts-Induced Injury in Neuronal Cells. Biol Pharm Bull,2007,30(8): 1369-1373
    18 He M, Lin Zhao L, Wei MJ, et al. Neuroprotective Effects of (-)-Epigallocatechin-3-gallate on Aging Mice Induced by D-Galactose.Biol Pharm Bull,2009,32(1):55-60
    19 Streit WJ, Walter SA, Pennell NA, et al. Reactive microgliosis. Prog Neurobiol,1999,57:563-581.
    20 Kawamata T, Akiyama H, Yamada T, et al. Immunologic reactions inamyotr- ophic lateral sclerosis brain and spinal cord tissue.Am J Pathol,1992,140: 6 91-707
    21 Henkel JS, Engelhardt JI, Siklos L, et al. Presence of dendritic cells, MCP -1,and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue.Ann Neurol, 55:221-235
    22 Troost D, Claessen N, vanden Oord JJ, et al. Neuronophagia in the motor cortex in amyotrophic lateral sclerosis.Neuropathol Appl Neurobiol,1993, 19:390-397
    23 Turner MR,Cagnin A,Turkheimer FE, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis:an [11C](R)-PK11195 positron emission tomography study.Neurobiol Dis,2004,15:601-609
    24 Almer G, Vukosavic S, Romero N, et al. Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis.J Neurochem, 1999, 72: 2415-2425
    25 Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and strocytic activation to disease onset and progression in a transgenic model of famili- al ALS. Glia,1998, 23:249-256
    26 Li R, Huang YJ, Fang D, et al. (-)-Epigallocatechin Gallate Inhibits Lipopolysaccharide-Induced Microglial Activation and Protects Against Inflammation-Mediated Dopaminergic Neuronal Injury.J Neurosci Res, 2004,78:723-731
    27 Xu ZH, Chen S, Li XP, et al. Neuroprotective Effects of (-)- Epigallocate chin-3-gallateina Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Neurochem Res,2006,31:1263-1269
    28 Eiichi Tokuda, Shin-ichi Ono, Kumiko Ishige, et al. Dysequilibrium between caspases and their inhibitors in a mouse model for amyotrophic lateral sclerosis. Brain Res,2007, 1148:234-242
    29 Seong-HoKoh, SeungH.Kim, Hyugsung Kwon, et al. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress- induced apoptosis through its effect onphosphoinositide 3-kinase/Akt and glycogensynthase kinase-3. Mol Brain Res,2003,118:72-81
    30 Seong-Ho Koh, Sang Mok Lee, Hyun Young Kim , et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett, 2006, 395: 103-107
    31 Melissa R. Kelly, Cissy M.Geigerman, George Loo. Epigallocatechin gallate protects U937 cells against nitric oxide-induced cell cycle arrest and apoptosis.J Cell Biochem,2001,81:647-658
    32 Dykens J.A.Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca 2+and Na+: implications for neurodegeneration.J Neurochem, 1994, 63: 584-591.
    33 Carriedo SG, Sensi SL, Yin HZ, et al. AMPA exposures 0induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro.J.Neurosci.,2000,20:240-250
    34 Urushitani M, Nakamizo T, Inoue R, et al. N-methyl-D-aspartate receptor -mediated mitochondrial Ca2+ overload in acute excitotoxic motor neuron death:a mechanism distinct from chronic neurotoxicity after Ca2+ influx.J Neurosci Res,2001,63:377-387
    35 Lee JH, Song DK, Jung CH, et al. (-)-epigsllocatechin gallate attenuates glutamate-induced cytotoxicity via intracellular Ca2+ modulation in PC12 cells. Clin Exp PharmacolP, 2004,31:530-536
    36 Jae Hoon Bae, Kyo Cheol Mun, Won Kyun Park, et al. EGCG Attenuates AMPA-Induced Intracellular Calcium Increase in Hippocampal Neurons. Biochem Bioph Res Co,2002,290: 1506-1512
    37 Renata T,Abib Andre Quincozes-Santos PatriciaNardin Susana T,Wofchuk Marcos L. Epicatechin gallate increases glutamate uptake and S100B secretion in C6 cell lineage .Mol Cell Biochem,2008,310:153-158
    38 Reznichenko L, Amit T, Youdim MBH, et al. Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth.J Neurochem, 2005, 93: 1157- 1167
    39 Limor Kalfon, Moussa B.H.Youdim , Silvia A. Mandel Green tea polyphenol (-)-epigallocatechin-3-gallate promotes the Rapid protein kinase C- and proteasome-mediated degradation of Bad: implications for neuroprotection. J Neurochem,2007, 100: 992- 1002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700