NKG2D介导的同种异体NK细胞对人脑胶质瘤细胞杀伤效应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑胶质瘤,亦称为神经胶质细胞瘤,发生于神经外胚层,是颅内最常见的原发性肿瘤,约占全部颅内原发肿瘤的36.26%~60.96%。脑胶质瘤尤其是高级别胶质瘤具有异常增生、浸润性生长、易复发、血管异常增生及免疫耐受等生物学特性,这使得胶质瘤虽经不断改进的显微外科手术切除、放射治疗、化学治疗等措施的综合处理,仍易复发,预后不尽人意。如胶质母细胞瘤(Glioblastoma, GBM)患者虽经过综合治疗后,其中位生存时间仍少于15个月。为此临床需要寻找治疗胶质瘤的新方法。
     最近的研究证实,同种异体NK细胞能有效地杀伤原代的鼻咽癌、胃癌、肾癌、肠癌和卵巢癌等肿瘤细胞。NK细胞对靶细胞的杀伤活性与NK细胞表面的受体和靶细胞表面的配体之间的相互作用密切相关。NK细胞表面的杀伤抑制受体与靶细胞表面的HLA-I类分子的结合,抑制NK细胞对靶细胞的杀伤,而当靶细胞缺乏HLA-I类分子时可激发NK细胞对靶细胞的杀伤作用。NKG2D(natural killer group 2D)是NK细胞表面的主要杀伤活化受体,其配体为MHC-Ⅰ类链相关分子(MHC classⅠchain-related molecule, MIC) A和B及人巨细胞病毒UL16蛋白的结合蛋白(UL16 binding proteins, ULBP)1、2和3等。
     本研究关注的是同种异体的NK细胞是否具有杀伤胶质瘤细胞的效应。在体外条件下分离、培养人脑胶质瘤细胞(human glioma cell, HGC),观察其生物学特性,检测其HLA-Ⅰ类分子和NKG2D配体的表达,并在体内、外条件下观察同种异体NK细胞杀伤胶质瘤细胞的可行性及其分子基础,为进一步认识同种异体NK细胞对胶质瘤细胞的杀伤作用提供实验和理论基础。从而为胶质瘤的治疗探索新的方法。
     第一部分原代培养HGC的生物学特性研究
     目的:原代分离、培养、鉴定HGC,并观察其生物学特性,为探讨同种异体NK细胞对HGC的杀伤效应提供必备的基础。
     方法:术中获取胶质瘤患者肿瘤组织标本(术后病理诊断为胶质瘤Ⅳ级),分离、培养得到HGC,并经GFAP免疫组织化学鉴定为HGC。镜下观察胶质瘤细胞生长特点,并将一定剂量的HGC注入BALB/c裸鼠体内,观察移植HGC成瘤特征。
     结果:
     1.显微镜下观察肿瘤组织HE染色切片见:核浓染,异形性明显,可见巨核,核分裂等。判定培养细胞来源的组织为胶质瘤Ⅳ级。
     2.体外培养的HGC生长良好,群体倍增时间为23.48hr。传代后的细胞生长旺盛,状态良好,性状稳定,有明显的对数生长期。
     3.培养的HGC经HE染色显示:细胞呈梭形、星形或不规则形,突起较小,核大小不一。免疫细胞化学结果显示:绝大多数细胞GFAP呈阳性反应。
     4.将0.1ml (1×106个) HGC的悬液移植入BALB/c裸鼠体内,肿瘤出现时间为(9.17±1.68)d,成瘤率为100%,瘤组织为胶质瘤Ⅳ级。
     结论:
     1.HGC可以在体外进行培养,细胞倍增时间为23.48hr。
     2.胶质瘤细胞可成瘤,肿瘤出现时间约为(9.17±1.68)d。
     第二部分HGC HLA-I类分子和NKG2D配体表达的检测
     目的:检测原代培养的HGC HLA-I类分子和NKG2D配体表达情况,为进一步认识同种异体NK细胞对胶质瘤细胞的杀伤作用提供实验和理论基础。
     方法:采用RT-PCR的方法检测HGC MICA、MICB、ULBP1、ULBP2及ULBP3在mRNA水平的表达;采用流式细胞技术检测MICA、MICB、ULBP1、ULBP2、ULBP3分子及HLA-I类分子的表达;采用Western Blot技术检测MICA.ULBP2及ULBP3蛋白的表达。
     结果:
     1. RT-PCR检测结果显示HGC在mRNA水平表达NKG2D的配体MICA、MICB、ULBP1、ULBP2和ULBP3。
     2.流式细胞仪检测结果证实HGC表面表达HLA-I类分子及NKG2D的配体MICA、ULBP2和ULBP3,不表达NKG2D的配体MICB及ULBP1。
     3. MICA、ULBP2、ULBP3和HLA-I类分子在HGC的表达的阳性百分数分别为63.26±6.71%、61.234±5.97%、51.47±2.43%和89.67±7.28%。
     4. Western blot检测结果证实胶质瘤细胞表而表达NKG2D的配体MICA、ULBP2和ULBP3分子。
     结论:
     1.HGC在mRNA水平表达NKG2D的配体ULBP1、ULBP2、ULBP3、MICA和MICB。
     2.HGC表面表达MICA、ULBP2及ULBP3分子,不表达MICB和ULBP1分子。
     3.HGC表面高表达HLA-I类分子。
     第三部分同种异体NK细胞对HGC体外杀伤效应的实验研究
     目的:检测同种异体NK细胞对HGC的杀伤效应。
     方法:采用密度梯度离心法分离外周血单个核细胞,并通过MACS纯化NK细胞;采用MTT方法检测同种异体NK细胞对HGC杀伤效应,及不同效靶比时NK细胞对HGC的杀伤活性。
     结果:
     1.分离、纯化的阳性部分中,CD3-CD16+CD56+细胞的纯度达91.7%。
     2.同种异体NK细胞对HGC具有杀伤活性,且杀伤效应随着效靶比的升高而增强;效靶比为10∶1、20∶1、50∶1和100∶1时,杀伤活性分别为:23.64±1.73%、37.28±3.67%、49.63±4.28%和74.16±6.43%。
     结论:
     1同种异体NK细胞对HGC具有杀伤活性。
     2 HLA-I类分子及MICA、ULBP2及ULBP3分子在NK细胞对HGC的杀伤效应中起重要作用。
     第四部分同种异体NK细胞对HGC裸鼠皮下移植瘤的抑制作用
     目的:观察同种异体NK细胞在BALB/c裸鼠体内对HGC的杀伤效果,为脑胶质瘤免疫治疗提供实验和理论基础。
     方法:BALB/c裸鼠32只,随机分为4组:A组:无细胞移植组;B组:HGC移植组;C组:HGC+NK细胞移植治疗组;D组:单纯NK细胞移植组,每组8只。观察各组裸鼠成瘤时间、肿瘤体积变化,绘制肿瘤生长曲线、计算成瘤率。成瘤3周后,处死裸鼠,取瘤块称重,计算肿瘤生长抑制率,肿瘤组织常规病理检查。
     结果:
     1.A组和D组无肿瘤生长,B组和C组肿瘤出现时间分别为(9.23±1.64)d和(15.26±1.53)d。
     2.生长曲线显示同种异体NK细胞能明显减缓移植入BALB/c裸鼠体内的HGC的生长速度。B组和C组裸鼠的瘤体重量分别为(1.74±0.13)g和(1.26±0.08)g,C组瘤体较B组瘤体明显减小,肿瘤生长抑制率为27.59%。
     3.成瘤组织经HE染色鉴定为胶质瘤Ⅳ级,C组瘤体HE染色切片可见较多的坏死肿瘤细胞和NK细胞浸润。
     结论:同种异体NK细胞能有效抑制移植到裸鼠体内的HGC的生长。
Glioma, also known as neurogliocytoma, is originated from neural ectoderm. It is the most common primary intracranial tumor, accounting for about 36.26%~60.96% of all primary intracranial tumors. Glioma, especially high-grade glioma, is characterized by abnormal proliferation, infiltrative growth, tendency to relapse, abnormally vascular hyperplasia and immune tolerance. Therefore, even treated with comprehensive measures including constantly improved microsurgical resection, radiotherapy and chemotherapy, glioma is still easy to relapse with undesirable prognosis. For example, though treated with comprehensive therapy, the median survival time of glioblastoma (GBM) is still less than 15 months. So new methods for the treatment of glioma should be explored in clinical practice.
     Recent research has proved that allogeneic NK cells can effectively kill cells of nasopharyngeal carcinoma, gastric carcinoma, renal carcinoma, intestinal cancer and ovarian cancer. The cytotoxicity of NK cells against target cells is closely related to receptors on the surface of NK cells and ligands on the surface of target cells. Killer receptors on the surface of NK cells bind to HLA class I molecules on the surface of target cells, inhibiting the cytotoxicity of NK cells against target cells. When target cells lack HLA classⅠmolecules, NK cells are activated to kill target cells. NKG2D (natural killer group 2D) is the main killer activatory receptor on the surface of NK cells. Its ligands are MHC classⅠchain-related molecules (MIC) A and B and human cytomegalovirus UL16 binding proteins (ULBP) 1,2 and 3.
     What this study focuses on is whether allogeneic NK cells have cytotoxic effect on glioma cells or not. In this study, we isolated and cultured human glioma cells in vitro, observed their biological characteristics, detected the expression of HLA class I molecules and NKG2D ligands on human glioma cells, and observed the cytotoxicity of allogeneic NK cells against glioma cells and its molecular basis in vivo and in vitro, providing experimental and theoretical basis to further understand the feasibility and mechanism of cytotoxicity of allogeneic NK cells against glioma cells. Thus we explored a new method for the treatment of glioma.
     PartⅠ. Biological characteristics of primary cultured human glioma cells
     Objective:To provide the necessary basis to explore cytotoxicity of allogeneic NK cells against human glioma cells by primary culture and identification human glioma cells and observe their biological property.
     Methods:Human glioma cells were isolated from tissue samples obtained during the surgery of patients who were clinically and pathologically diagnosed with glioma gradeⅣ, and the cells were primarily cultured and identified as human glioma cells by immunohistochemistry assay of glial fibrillary acidic portein (GFAP).The growth characteristics of glioma cells was observed under microscope. The growth curve was analyzed by MTT method. Human glioma cells of a certain amount were transplanted into BALB/c nude mice. Time of tumor formation, tumor formation rate and tumor growth curve were observed.
     Results:
     1. It was observed under tumor tissue HE stained slices that the nuclei were heavily stained with significant heteromorphism and that macronuclei and nuclear division were visible. The source tissue of cell culture was identified as glioma gradeⅣ.
     2. Human glioma cells cultured in vitro grew well, with a population density doubling time of 23.48 hr. Subcultured cells grew vigorously in a good status. The property was stable with an obvious exponential phase of growth.
     3. HE staining of cultured human glioma cells showed that the cells were in fusiform, starlike or irregular shapes with small prominences and with nucleus of variable sizes. Results of immunocytochemistry showed that most cells were positive for GFAP staining. There were yellow or golden brown positive substances of various concentrations in cytoplasm.
     4. The time of tumor formation was (9.17±1.68)d days after transplanting 0.1ml (1×106) suspension of glioma cells into BALB/c nude mice. Tumor formation rate was 100%. Tumor tissue was pathologically diagnosed as glioma gradeⅣ.
     Conclusions:
     1. Glioma cells can be cultured in vitro, and cell doubling time was 23.48 hr.
     2. Glioma cells can grow to form tumor. The time of tumor formation was about (9.17±1.68) days. Tumor grew rapidly with obvious pathological morphology.
     PartⅡ. Detection of the expression of HLA ClassⅠmolecules and NKG2D ligands in human glioma cells
     Objective:To detect the expression of HLA classⅠmolecules and NKG2D ligands in primary culture human glioma cells, providing experimental and theoretical basis to further understand cytotoxicity of allogeneic NK cells against glioma cells.
     Methods:Reverse transcription PCR method was used to detect the expression of MICA, MICB, ULBP1, ULBP2 and ULBP3 in human glioma cells at mRNA level. Flow cytometry was used to detect the expression of MICA, MICB, ULBP1, ULBP2, ULBP3 and HLA classⅠmolecules. Western Blot technique was used to detect the expression of MICA, ULBP2 and ULBP3 proteins.
     Results:
     1. Results of RT-PCR showed that MICA, MICB, ULBP1, ULBP2 and ULBP3 were all expressed in human glioma cells at mRNA level.
     2. Results of flow cytometry confirmed NKG2D ligands MICA, ULBP2 and ULBP3 were expressed on the surface of human glioma cells while NKG2D ligands MICB and ULBP1 were not expressed on the surface of human glioma cells.
     3. The expression percentage of MICA, ULBP2, ULBP3 and HLA classⅠmolecules in human glioma cells were 63.26±6.71%,61.23±5.97%,51.47±2.43% and 89.67±7.28% respectively; Results of Western Blot confirmed that NKG2D ligands MICA, ULBP2 and ULBP3 proteins were expressed in glioma cells.
     Conclusions:
     1. NKG2D ligands ULBP1, ULBP2, ULBP3, MICA and MICB were expressed in human glioma cells at mRNA level.
     2. MICA, ULBP2 and ULBP3 are expressed on the surface of human glioma cells while MICB and ULBP1 are not expressed on the surface of human glioma cells.
     3. HLA classⅠmolecules are highly expressed on the surface of human glioma cells.
     PartⅢ. Study of cytotoxicity of allogeneic NK cells against human glioma cells in vitro
     Objective:To detect cytotoxicity of allogeneic NK cells against human glioma cells.
     Methods:Density gradient centrifugation was used to isolate mononuclear cells from peripheral blood and NK cells were purified through MACS; MTT method was used to detect cytotoxicity of NK cells against human glioma cells and cytotoxic activity of different effector-target ratios.
     Results:
     1. Among the isolated and purified positive cells, the proportion of CD3-CD 16+ CD56+ cells was 91.7%.
     2. Allogeneic NK cells showed cytotoxic activity against human glioma cells, which increased with the rise of effector-target ratio; when effector-target ratio was 5:1,20:1,50:1 and 100:1, the toxic activity was 23.64±1.73%,37.28±3.67%, 49.63±4.28% and 74.16±6.43% respectively.
     Conclusions:
     1. Human allogeneic NK cells have cytotoxic activity against glioma cells.
     2. HLA class I molecules, MICA, ULBP2 and ULBP3 play important roles in the cytotoxic effect of NK cells on glioma cells.
     PartⅣ. Inhibitory effect of allogeneic NK cells on human glioma cells in nude mice
     Objective:To provide experimental and theoretical basis for immunotherapy of glioma by observing cytotoxicity of allogeneic NK cells against human glioma cells in BLAB/c nude mice,
     Methods:32 BALB/c nude mice were randomly divided into 4 groups:group A: without cell transplantation; group B:Human glioma cells transplantation; group C: Human glioma cells+NK cells treatment; group D:NK cells transplantation, eight mice in each group. The time of tumor formation, tumor formation rate and changes of tumor size were observed for nude mice in each group, and tumor growth curves were drawn. Three weeks after tumor formation, mice were euthanized. Tumors were removed and weighted. Tumor inhibition rates were calculated and routine pathological examination was performed for tumor tissues.
     Results:
     1. There was no tumor in A and D group. In group B and group C, the times of tumor formation was (9.23±1.64) days and (15.26±1.53) days respectively.
     2. Growth curve showed NK cells could significantly slow down the growth of transplanted tumor from glioma cells in BALB/c nude mice. In group B and group C, the tumor masses were (1.74±0.13) g and (1.26±0.08) g respectively. Tumor size in group C was significantly smaller than that in group B. Tumor inhibition rate of group C was 27.59%.
     3. Through HE stainin, the specimen of tumors from nude mice were identified as glioma gradeⅣ. Under microscope, there were many necrotic tumor cells and NK cell infiltration on HE stained slices of tumor in group C.
     Conclusion:The human allogeneic NK cells can effectively inhibit the growth of human glioma cells which were transplanted in BALB/c nude mice.
引文
[1]Collins VP. Brain tumors:classification and genes[J].J Neurol Neurosurg Psychiatry.2004, 75 Suppl 2:2-11.
    [2]张纪.深入开展胶质瘤综合治疗及其基础研究[J].中华神经外科杂志,2003,19(1):1-2.
    [3]Platten M, Wick W, Weller M. Malignant glioma biology:role for TGF-beta in growth, motility, angiogenesis, and immune escape [J].Microsc Res Tech.2001,52(4):401-410.
    [4]Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N England Med.2005,352(10):987-996.
    [5]Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radio-therapy and nitrosoureas for the treatment of malignant glioma after surgery [J]. N Engl J Med.1980, 303(23):1323-1329.
    [6]Parney. Human brain tumor cell culture characterization after immuno-stimulatory gene transfer[J]. Neurosurgery,2002,50(5):1094-1102.
    [7]司徒镇强,吴军正.细胞培养.世界图书出版社,1999,198-200.
    [8]Wang RF, Wang HY. Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells[J]. NatBiotechnol,2002,20(2):149-154.
    [9]Vanhaesebroeck B, Mareel M, Van Roy F, et al. Expression of the tumor necrosis factor gene in tumor cells correlates with reduced tumorigenicity and reduced invasiveness in vivo [J].Cancer Res,1991,51(8):2229-2238.
    [10]姜政,江玉泉,李新钢,等.HGC原代培养实验模型的构建[J].中华肿瘤防治杂志,2006,13(10):744-747.
    [11]王存祖,赵鹏,尤永平,等.胶质瘤中脑肿瘤干细胞的分离、培养和鉴定[J].江苏医药,2009,35(1):8-11.
    [12]Gerlach B, Harder AH, Hulsebos TJ, et al. Radiosensitivity and TP53, EGFR amplification and LOH10 analysis of primary glioma cell cultures [J]. Strahlenther Onkol,2002, 178(9):491-496.
    [13]Harland J, Papanastassiou V, And Brown S M. HSV1716 persistence in primary human glioma cells in vitro [J].Gene Ther,2002,9(17):1194-1198.
    [14]姜政,江玉泉,李新钢,等.HGC原代培养实验模型的构建[J].临床研究.2006,13(10):744-747.
    [15]汤楚华,施生根,牛忠英,等.酶消化组织块法原代培养人牙周膜成纤维细胞的初步研究[J].中华医学杂志,2004,84(8):656-658.
    [1]Chaves P, Torres MJ, Aranda A, et al. Natural killer-dendritic cell interaction in lymphocyte responses in hypersensitivity reactions to betalactams [J]. Allergy.2010,17, 285:727-729.
    [2]Shibuya K,Shirakawa J,Kameyama T,et al.CD226(DNAM-1)is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation[J].J Exp Med JT-The Journal of experimental medicine,2003,198:1829-1839.
    [3]Takahashi K, Nakanishi H, Miyahara M, et al.Nectin/PRR:an immunoglo-bulin-like cell adhesion molecule recruited to cadherin-based adheres junctions through interaction with Afadin, a PDZ domain-containing protein [J].J Cell Biol JT-The Journal of cell biology, 1999,145:539-549.
    [4]Williams AF,Barclay AN.The immunoglobulin superfamily-domains for cell surface recognition [J].Annu Rev Immunol JT-Annual review of immunology,1988,6:381-405.
    [5]Bauer S,Groh V,Wu J,et al.Activation of NK cells and T cells by NKG2D,a receptor for stress-inducible MICA[J].Science JT-Science (New York, N.Y.),1999,285:727-729.
    [6]田志刚.NK细胞新理论对重大疾病的新解释[J].中国免疫学杂志,2002,18:75-78.
    [7]Lanier LL.Natural killer cells:roundup[J].Immunol Rev,2006,214:5-8.
    [8]Vilches C, Parham P. KIR:diverse, rapidly evolving receptors of innate and adaptive immunity [J]. Annu Rev Immunol,2002,20 (1):217-251.
    [9]Pende D, Cantoni C,Rivera P,et al.Role of NKG2D in tumor cell lysis mediated by human NK cells:cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepit helial origin [J]. Eur J Immunol,2001,31(4):1076-1086.
    [10]Schrama D, Terheyden P, Otto K, Expression of the NKG2D ligand UL16 binding protein-1 (ULBP-1) on dendritic cells[J]. Eur J Immunol.2006;36(1):65-72.
    [11]Lanier LL.NK cell recognition [J].Annu Rev Immunol JT-Annual review of immunology, 2005,23:225-274.
    [12]Bottino C,Castriconi R,Pende D,et al.Identification of PVR (CD 155) and Nectin-2 (CD112)as cell surface ligands for the human DNAM-1 (CD226) activating molecule[J].J Exp Med JT-The Journal of experimental medicine,2003,198:557-567.
    [13]Guerra N,Tan YX,Joncker NT,Choy A, et al. Raulet DH.NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy [J]. Immunity, 2008;28:571-580.
    [14]Diefenbach A,Tomasello E,Lucas M,et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D[J].Nat Immunol,2002,3: 1142-1149.
    [15]Coudert JD, Held W.The role of the NKG2D receptor for tumor immunity [J]. Semin Cancer Biol 2006,16:333-343.
    [16]Jamieson AM, Diefenbach A, McMahon CW, et al.The role of the NKG2D immuno-receptor in immune cell activation and natural killing [J]. Immunity,2002,17(1):19-29.
    [17]Kakunaga S,Ikeda W,Shingai T,et al. Enhancement of serum- and platelet-derived growth factor-induced cell proliferation by Necl-5/Tage4/poliovirus receptor/CD 155 through the Ras-Raf-MEK-ERK signaling[J].J Biol Chem JT-The Journal of biological chemistry, 2004,279:36419-36425.
    [18]Masson D,Jarry A,Baury B,et al. Overexpression of the CD155 gene in human colorectal carcinoma[J]. Gut JT-Gut,2001,49:236-240.
    [19]Fuchs A,Cella M,Giurisato E,et al. Cutting edge:CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD 155) [J]. J Immunol. 2004;172(7):3994-3998
    [20]Alter G, Malenfant JM, Altfeld M. CD 107a as a functional marker for the identification of natural killer cell activity [J].J Immunol Methods JT-Journal of immunological methods, 2004,294:15-22.
    [21]Williams AF, Barclay AN. The immunoglobulin superfamily--domains for cell surface recognition [J].Annu Rev Immunol JT-Annual review of immunology,1988,6:381-405.
    [22]Pende D, Rivera P, Mareenaro S, et al. Major histocompatibility complex class I-related chain A and UL16-binding Protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent Natural killer cell cytotoxicity[J]. Cancer Res,2002,62(11):6178-6186.
    [23]Smyth ML, Godfrey DL, Trapani JA, et al. A fresh look at tumor inununosurveillance and immunotherapy[J].Nat Immunol,2001,2(4):293-299.
    [24]Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas [J].Cancer Res,2003,63(24):8996-9006.
    [25]Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression [J].Gene Ther Mol Biol.2006,10(A):133-146.
    [26]Okada H, Kohanbash G, Zhu X, et al. Immunotherapeutic approaches for glioma[J].Crit Rev Immunol.2009,29(1):1-42.
    [27]Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression [J].Gene Ther Mol Biol.2006,10(A):133-146.
    [28]Okada H, Kohanbash G, Zhu X, et al. Immunotherapeutic approaches for glioma [J]. Crit Rev Immunol.2009,29(1):1-42.
    [29]Facoetti A, Nano R, Zelini P, et al.Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors[J]. Clin Cancer Res.2005,11(23): 8304-8311.
    [1]Shibuya K,Shirakawa J,Kameyama T,et al.CD226(DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation[J].J Exp Med JT-The Journal of experimental medicine,2003,198(12):1829-1839.
    [2]Hsu KC, Keever-Taylor CA, Wilton A, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes[J].Blood,2005,105(12):4878-4884.
    [3]Giebel S, Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligand in compatibility in hematopoietic stem cell transplantation from unrelated donors [J].Blood, 2003,102(3):814-819.
    [4]Igarashi T, Wynberg J, Srinivasan R, et al. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells [J].Blood,2004,104(1):170-177.
    [5]Ruggeri L, Capanni M, Mancusi A, et al. Alloreactive natural killer cells in mismatched hematopoietic stem cell transplantation [J].Blood Cells Mol Dis,2004,33(3):216-221.
    [6]Sconocchia G, Lau M, Provenzano M, et al. The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions [J].Blood,2005,106(10):3666-3672.
    [7]Andreas D,Jennifer KH,Ming Yu BH,et al. A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity [J].Eur J Immunol,2003, 33:381-391.
    [8]Bottino C, Castriconi R, Pende D, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule[J]. J Exp Med.2003,18;198(4):557-567.
    [9]Chaves P, Torres MJ, Aranda A, et al. Natural killer-dendritic cell interaction in lymphocyte responses in hypersensitivity reactions to betalactams[J]. Allergy.2010,17,285:727-729.
    [10]Diefenbach A, J amieson AM, Liu SD. et al. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages [J]. Nat immunol, 2000,1(2):119-126.
    [11]Cocchi F,Menotti L,Dubreuil P,et al.Cell-to-cell spread of wild-type herpes simplex virus type l,but not of syncytial strains,is mediated by the immunoglobulin-like receptors that mediate virion entry, nectinl (PRR1/HveC/HIgR) and nectin2(PRR2/HveB) [J]. Virol JT-Journal of virology,2000,74:3909-3917.
    [12]Bottino C, Castriconi R,Moretta L,et al.Cellular ligands of activating NK receptors [J].Trends Immunol JT-Trends in immunology,2005,26(4):221-226.
    [13]Baury B,Masson D,McDermott BM Jr,et al. Identification of secreted CD155 isoforms[J]. Biochem Biophys Res Commun JT-Biochemical andbiophysical research communications, 2003,309(1):175-182.
    [14]Masson D,Jarry A,Baury B,et al. Overexpression of the CD155 gene in human colorectal carcinoma[J].Gut JT-Gut,2001,49(2):236-240.
    [15]Fuchs A,Cella M,Giurisato E,et al. Cutting edge:CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD 155)[J].J Immunol JT-Journal of immunology (Baltimore,Md:1950),2004,172:3994-3998.
    [16]Konjevic G,Mirjacic Martinovic K,Vuletic A,et al. Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients[J].Clin Exp Metastasis JT-Clinical& experimental metastasis,2007, 24(1):1-11.
    [17]Kim JY,Son YO,Park SW,et al. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation.Exp Mol Med JT-Experimental&molecular medicine,2006,38(5):474-484.
    [18]Alter G, Malenfant JM, Altfeld M. CD 107a as a functional marker for the identification of natural killer cell activity[J].J Immunol Methods JT-Journal of immunological methods, 2004,294:15-22.
    [19]Bernhardt G,Bibb JA,Bradley J,et al.Molecular characterization of the cellular receptor for poliovirus[J].Virology JT-Virology,1994,199:105-113.
    [20]Paschen A, Sucker A, Hill B, et al.Differential clinical significance of individual NKG2D ligands in melanoma:soluble ULBP2 as an indicator of poor prognosis superior to S100B [J]. Clin Cancer Res.2009;15(16):5208-5215.
    [21]Fuchs A,Cella M,Giurisato E,et al. Cutting edge:CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD 155 [J]. J Immunol.2004; 172(7):3994-3998
    [22]Long EO. Versatile signaling through NKG2D [J].Nat Immunol,2002,3(12):1119-1120.
    [23]Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas [J].Cancer Res,2003,63 (24):8996-9006.
    [24]Jamieson AM, Diefenbach A, McMahon CW, et al. The role of the NKG2D immuno-receptor in immune cell activation and natural killing [J]. Immunity,2002,17(1):19-29.
    [1]Collins VP. Brain tumors:classification and genes [J].J Neurol Neurosurg Psychiatry.2004, 75 Suppl 2:2-11.
    [2]张纪.深入开展胶质瘤综合治疗及其基础研究[J].中华神经外科杂志,2003,19(1):1-2.
    [3]Platten M, Wick W, Weller M. Malignant glioma biology:role for TGF-beta in growth, motility, angiogenesis, and immune escape [J].Microsc Res Tech.2001,52(4):401-410.
    [4]Re F, Standacher C, Zamai L, et al. Killer cell Ig-like receptors ligand-mismatched, alloreactive natural killer cells lyse primary solid tumors [J]. Cancer,2006,107(3):640-648.
    [5]周健,梅家转,郭坤元,等.人胶质瘤细胞U251逃逸NK细胞免疫杀伤机制的初步探讨[J].肿瘤防治研究,2008,35(4):247-250
    [6]Vanhaesebroeck B, Mareel M, Van Roy F, et al. Expression of the tumor necrosis factor gene in tumor cells correlates with reduced tumorigenicity and reduced invasiveness in vivo [J].Cancer Res,1991,51(8):2229-2238.
    [7]Mivechi NF, Dewey WC. DNA polymerase alpha and beta activities during the cell cycle and their role in heat radiosensitization in Chinese hamster ovary cells [J].Radiat Res,1985, 103(3):337-350.
    [8]Wallner KE, Galicich JH, Krol G, et al. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma [J].Int J Radiat Oncol Biol Phys.1989, 16(6):1405-1409.
    [9]Sarin H. Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors [J].J Transl Med.2009,7:77.
    [10]CavaIiere R, wen PY,schiff D.Novel therapies for malignant gliomas. [J].Neurol Clin.2007, 25(4):1141-1171.
    [11]Stupp R,Hegi ME,Mason WP,et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study:5-year analysis of the EORTC-NCIC trial[J].Lancet Oncol.2009,10(5):459-466.
    [12]逢艳,李学军,赵美蓉.复发性脑胶质瘤的西医治疗进展[J].医学研究杂志,2008,37(8):13-15.
    [13]Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma[J]. N Engl J Med.2005,352(10):987-996.
    [14]Gomez GG, Kruse CA.Mechanisms of malignant glioma immune resistance and sources of immunosuppression [J]. Gene Ther Mol Biol.2006;10(A):133-146.
    [15]Hsu KC, Keever-Taylor CA, Wilton A, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes [J].Blood,2005,105(12):4878-4884.
    [16]Igarashi T, wynberg J, Srinivasan R,et al. Enhanced cytotocicity of allogeneic NK cells with killer immuniglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells[J].Blood,2004,104(1):170-177.
    [17]Lanier LL.NK cell recognition [J].Annu Rev Immunol JT-Annual review of immunology, 2005,23:225-274.
    [18]Bottino C,Castriconi R,Pende D,et al.Identification of PVR (CD 155) and Nectin-2(CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule[J].J Exp Med JT-The Journal of experimental medicine,2003,198:557-567.
    [19]Pende D, Rivera P, Marcenaro S, et al. Major Histocompatibility Complex Class I-related Chain A and UL16-Binding Protein Expression on Tumor Cell Lines of Different Histotypes:Analysis of Tumor Susceptibility to NKG2D-dependent Natural Killer Cell Cytotoxicity [J]. Cancer Res,2002,62 (21):6178-6186.
    [20]Smyth ML, Godfrey DL, Trapani JA, et al. A fresh look at tumor inununo-surveillance and immunotherapy [J].Nat Immunol,2001,2(4):293-299.
    [21]Diefenbaeh A, Hsia JK, Hsiung MY, et al.A novel ligand for the NKG2D receptor activates NK cells and maerophages and induces tumor inununity [J]. Eur J Immunol,2003,33(2): 381-391.
    [22]Fodstad O, Hansen CT, Cannon GB, et al.Lack of Correlation between Natural Killer Aetivity and Tumor Growth Control in Nude Mice with Different Ilnmune Defects[J]. Cancer Researeh,1984,44(10):4403-4408.
    [23]Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas [J].Cancer Res,2003,63(24):8996-9006.
    [24]Harada H, Suzu S, Ito T, et al. Selective expansion and engraftment of human CD 16+ NK cells in Nod/SCID mice [J].Eur J Immunol.2005,35(12):3599-3609.
    [1]Collins VP. Brain tumors:classification and genes[J].J Neurol Neurosurg Psychiatry.2004, 75 Suppl 2:ii2-11.
    [2]张纪.深入开展胶质瘤综合治疗及其基础研究[J].中华神经外科杂志,2003,19(1):1-2.
    [3]Platten M, Wick W, Weller M. Malignant glioma biology:role for TGF-beta in growth, motility,angiogenesis, and immune escape [J].Microsc Res Tech.2001,52(4):401-410.
    [4]Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma[J]. N Engl J Med.2005,352(10):987-996.
    [5]Gomez GG, Kruse CA.Mechanisms of malignant glioma immune resistance and sources of immunosuppression[J]. Gene Ther Mol Biol.2006; 10(A):133-146.
    [6]王伟民,施冲,李天栋等.脑功能区的手术策略[J].中华神经外科杂志,2004,20(3):147-150.
    [7]朱文昱,兰青.神经肿瘤导航手术[J].实用肿瘤杂志,2007,22(4):284-286.
    [8]Roberts DW, Hartov A, Kennedy FE,et al. Intraoperative brain shift and deformation:a quantitative analysis of cortical displacement in 28 cases[J]. Neurosurgery.1998,43(4): 749-760.
    [9]Grummich P, Nimsky C, Pauli E, et al. Combining fMRI and MEG increases the reliability of presurgical language localization:a clinical study on the difference between and congruence of both modalities [J].NeuroImage.2006,32(4):1793-1803.
    [10]Lu S, Ahn D, Johnson G, et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors[J].AJNR.2003,24(5):937-941.
    [11]Shinoda J, Yano H, Yoshimura S, et al. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium[J]. Technical note. J Neurosurg.2003, 99(3):597-603.
    [12]Duffau H, Denvil D, Lopes M, et al.Intraoperative mapping of the cortical areas involved in multiplication and subtraction:an electrostimulation study in a patient with a left parietal glioma [J].Neurol Neurosurg Psychiatry.2002,73(6):733-738.
    [13]Walker MD, Alexander E Jr, Hunt WE,et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial[J]. J Neurosurg.1978,49(3): 333-343.
    [14]Wallner KE, Galicich JH, Krol G, et al. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma [J].Int J Radiat Oncol Biol Phys. 1989,16(6):1405-409.
    [15]Omay SB, Vogelbaum MA. Current concepts and newer developments in the treatment of malignant gliomas[J]. Indian J Cancer.2009,46(2):88-95.
    [16]Souhami L, Seiferheld W, Brachman D, et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme:report of Radiation Therapy Oncology Group 93-05 protocol[J].Int J Radiat Oncol Biol Phys.2004, 60(3):853-860.
    [17]Yoshikawa K, Saito K, Kajiwara K, et al. CyberKnife stereotactic radiotherapy for patients with malignant glioma[J].Minim Invasive Neurosurg.2006,49(2):110-115.
    [18]Lipani JD, Jackson PS, Soltys SG, et al. Survival following CyberKnife radiosurgery and hypofractionated radiotherapy for newly diagnosed glioblastoma multiforme[J].Technol Cancer Res Treat.2008,7(3):249-255.
    [19]Gabayan AJ, Green SB, Sanan A, et al. GliaSite brachytherapy for treatment of recurrent malignant gliomas:a retrospective multi-institutional analysis[J].Neurosurgery.2006,58(4): 701-709.
    [20]Sarin H. Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors [J].J Transl Med.2009,7:77.
    [21]Cavaliere R,wen PY,schiff D.Novel therapies for malignant gliomas. [J].Neurol Clin.2007, 25(4):1141-1171.
    [22]Immonen A, Vapalahti M, Tyynela K,et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma:a randomised, controlled study [J]. Mol Ther,2004,10:967-972.
    [23]Stupp R,Hegi ME,Mason WP,et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study:5-year analysis of the EORTC-NCIC trial[J]. Lancet Oncol.2009,10(5):459-466.
    [24]Kesari S,Schiff D,Drappatz J,et al. Phase Ⅱ study of protracted daily temozolomide for low-grade gliomas in adults[J].Clin Cancer Res 2009,15(1):330-337.
    [25]Smith KA, Ashby LS, Gonzalez LF, et al. Prospective trial of gross-total resection with Gliadel wafers followed by early postoperative Gamma Knife radiosurgery and conformal fractionated radiotherapy as the initial treatment for patients with radiographically suspected, newly diagnosed glioblastoma multiforme[J]. J Neurosurg.2008,109 Suppl: 106-117.
    [26]莫万彬.脑胶质瘤的局部化疗进展[J].华夏医学,2007.20(3):626-628.
    [27]Vredenburgh J, A Desjardins, J E Herndon Ⅱ, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme[J]. Journal of Clinical Oncology.2007,25(30):4722-4729.
    [28]Kreisl TN, Kim L, Moore K, et al. Phase Ⅱ trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma[J]. Journal of Clinical Oncology.2009,27 (5):740-745.
    [29]Gomez-Manzano C, Holash J, Fueyo J, et al. VEGF Trap induces antiglioma effect at different stages of disease [J]. Neuro Oncol.2008,10(6):940-945.
    [30]Rahman R, Smith S, Rahman C, et al. Antiangiogenic therapy and mechanisms of tumor resistance in malignant glioma[J]. J Oncol.2010;2010:251231.
    [31]Norden AD, Drappatz J, Wen PY.Novel antiangiogenictherapies for malignant gliomas[J]. The Lancet Neurology.2008,7(12):1152-1160.
    [32]Teodori E, Dei S, Martilli C, et al. The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance[J]. Current Drug Targets.2006,7(7):893-909.
    [33]Fruehauf JP, Brem H, Brem S,et al.In virro drug response and molicular markers associared with drug resistance in malignant gliomas [J].Clin Cancer Res.2006,12(15):4523-4532.
    [34]Guillemard V, Uri Saragovi H. Prodrug chemotherapeutics bypass p-glycoprotein resistance and kill tumors in vivo with high efficacy and target-dependent selectivity[J]. Oncogene.2004,23(20):3613-3621.
    [35]Hermisson M, Klumpp A, Wick W, et al. O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells[J]. J Neurochem.2006,96(3):766-776.
    [36]Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells[J]. Nature. 2001,414(6859):105-111.
    [37]Kang MK, Kang SK. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma[J]. Stem Cells Dev.2007,16(5):837-847.
    [38]Shervington A, Lu C. Expression of multidrug resistance genes in normal and cancer stem cells [J].Cancer Invest.2008,26(5):535-542.
    [39]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance [J].Nat Rev Cancer. 2005,5(4):275-284.
    [40]Liu G,Yuan X, Zeng Z,et al. Analysis of gene expression and chemoresistance of CD 133+cancer stem ceils in gliohlastonm[J]. Mol Cancer.2006,5:67.
    [41]Steiner HH, Bonsanto MM, Beckhove P, et al.Antitumor vaccination of patients with glioblastoma multiforme:a pilot study to assess feasibility,safety,and clinical benefit[J]. J Clin Oncol.2004,22(21):4272-4281.
    [42]Parney IF, Chang LJ,Farr-Jones MA,et al.Technical hurdles in apilot clinical trial of combined B7-2 and GM-CSF immunogene therapy for glioblastomas and melanomas[J]. J Neuro Oncol.2006,78(1):71-78.
    [43]Fakhrai H, Mantil JC, Liu L,et al. Phase I clinical trail of a TGF-beta antisense-modified tumor cells vaccine patients with advanced glioma [J].Cancer Gene Ther.2006,13(12): 1052-1060.
    [44]Sampson JH, Archer GE, Mitchell DA,et al. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma[J]. Semin Immunol.2008,20(5): 267-275.
    [45]Yamanaka R,Homma J,Yajima N,et al.Clinical evaluation of denritic cell vaecination for Pailents with recurrent glionla:results of clinical phase Ⅰ/Ⅱ trail[J]. Clin Cancer Res.2005, 11(11):4160-4167.
    [46]Caruso DA, Orme LM, Neale AM, et al. Results of a phase lstudy utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer[J].Neuro-oncol.2004,6(3):236-246.
    [47]Mitchell DA, Sampson JH.Toward effective immunotherapy for the treatment of malignant brain tumors[J].Neurotherapeutics.2009,6(3):527-538.
    [48]Mintz A, Gibo DM, Madhankumar AB, et al. Protein-and DNA-based active immunotherapy targeting interleukin-13 receptor alpha2[J].Cancer Biother Radiopharm. 2008,23(5):581-589.
    [49]Ueda R, Kinoshita E, Ito R, et al. Induction of protective and therapeutic antitumor immunity by a DNA vaccine with a glioma antigen, SOX6[J].IntJ Cancer.2008,122(10): 2274-2279.
    [50]Yaghoubi SS, Jensen MC, Satyamurthy N, et al. Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma[J].Nat Clin Pract Oncol. 2009,6(1):53-58.
    [51]Reardon DA, Zalutsky MR, Bigner DD. Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients [J].Expert Rev Anticancer Ther.2007, 7(5):675-687.
    [52]El AA, Han Y, Lesniak MS. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors[J]. J Neurosurg 2006,105(3): 430-437.
    [53]Miller J, Eisele G, Tabatabai G, et al. Soluble CD70:a novel immunotherapeutic agent for experimental glioblastoma [J]. J Neurosurg.2010,113(2):280-285.
    [54]Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression[J].Gene Ther Mol Biol.2006,10(A):133-146.
    [55]Okada H, Kohanbash G, Zhu X, et al. Immunotherapeutic approaches for glioma[J].Crit Rev Immunol.2009,29(1):1-42.
    [56]Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948;29(1):58-69.
    [57]Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms[J]. Trends Immunol 2005;26(9):485-495.
    [58]Miletic H, Fischer YH, Giroglou T, et al. Normal brain cells contribute to the bystander effect in suicide gene therapy of malignant glioma [J].Clin Cancer Res.2007,13:6761-6768.
    [59]Maatta AM, Samaranayake H, Pikkarainen J, et al. Adenovirus mediated herpes simplex virus-thymidine kinase/ganciclovir gene therapy for resectable malignant glioma[J].Curr Gene Ther.2009,9(5):356-367.
    [60]Merkel CA, da Silva Soares RB, de Carvalho AC, et al. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6[J].BMC Cancer.2010,10:316.
    [61]Harding TC, Lalani AS, Roberts BN, et al. AAV serotype 8-mediated gene delivery of a soluble VEGF receptor to the CNS for the treatment of glioblastoma [J].Mol Ther.2006, 13(5):956-966.
    [62]Zhen HN, Li LW, Zhang W, et al. Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells[J]. Int J Oncol.2007,31(5):1111-1117.
    [63]Szentirmai O, Baker CH, Bullain SS, et al. Successful inhibition of intracranial human glioblastoma multiforme xenograft growth via systemic adenoviral delivery of soluble endostatin and soluble vascular endothelial growth factor receptor-2:laboratory investigation[J]. J Neurosurg.2008,108(5):979-988.
    [64]Veiseh O, Kievit FM, Gunn JW, et al. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells [J].Biomaterials.2009,30(4):649-657.
    [65]Tondreau T, Lagneaux L, Dejeneffe M,et al.Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation [J].Differentiation. 2004,72(7):319-326.
    [66]Bexell D, Gunnarsson S, Tormin A, et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas[J].Mol Ther.2009,17 (1):183-190.
    [67]Nakamizo A, Marini F, Amano T, et al.Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas[J].Cancer Res.2005,65(8):3307-3318.
    [68]Hung SC, Deng WP, Yang WK, et al. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging[J].Clin Cancer Res.2005,11(21):7749-7756.
    [69]Hamada H, Kobune M, Nakamura K, et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy[J].Cancer Sci.2005,96(3):149-156.
    [70]Pouratian N, Schiff D. Management of low-grade glioma[J]. Curr Neurol Neurosci Rep. 2010,10(3):224-231.
    [71]Kaloshi G, Benouaich-Amiel A, Diakite F, et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults:the EORTC 22845 randomised trial[J].Lancet.2005,366(9490):985-990.
    [72]Kaloshi G, Benouaich-Amiel A, Diakite F, et al. Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome[J].Neurology.2007,68(21): 1831-1836.
    [73]Yoshino A, Ogino A, Yachi K, et al. Gene expression profiling predicts response to temozolomide in malignant gliomas[J].Int J Oncol.2010,36(6):1367-1377.
    [74]Weller M, Stupp R, Reifenberger G, et al. MGMT promoter methylation in malignant gliomas:ready for personalized medicine [J]. Nat Rev Neurol.2010,6(1):39-51.
    [75]Zhao H, Yu H, Liu Y, et al. DNA topoisomerase Ⅱ-alpha as a proliferation marker in human gliomas:correlation with PCNA expression and patient survival[J].Clin Neuropathol.2008, 27(2):83-90.
    [76]Calatozzolo C, Gelati M, Ciusani E, et al. Expression of drug resistance proteins PGP, MRP1, MRP 3, MRP 5 and GST-pi in human glioma[J]. J Neurooncol.2005,74(2): 113-121.
    [1]田志刚.NK细胞新理论对重大疾病的新解释[J].中国免疫学杂志,2002,18:75-78.
    [2]Lanier LL.Natural killer cells:roundup [J].Immunol Rev,2006,214:5-8.
    [3]Bennett NJ, Ashiru O, Morgan FJ, et al. Intracellular sequestration of the NKG2D ligand ULBP3 by human cytomegalovirus[J]. Immunol.2010;185(2):1093-102.
    [4]Chaves P, Torres MJ, Aranda A, et al. Natural killer-dendritic cell interaction in lymphocyte responses in hypersensitivity reactions to betalactams. Allergy.2010,17,285:727-729.
    [5]Sanchez CJ, Le Treut T, Boehrer A,et al.Natural killer cells and malignant haemopathies:a model for the interaction of cancer with innate immunity. Cancer Immunol Immunother. 2010,16:383-392.
    [6]Bottino C, Castriconi R,Moretta L,et al.Cellular ligands of activating NK receptors [J]. Trends Immunol JT-Trends in immunology,2005,26:221-226.
    [7]Shibuya A,Campbell D,Hannum C,et al.DNAM-l,a novel adhesion molecule involved in the cytolytic function of T lymphocytes[J]. Immunity JT-Immunity,1996,4:573-581.
    [8]Shibuya K,Shirakawa J,Kameyama T,et al.CD226(DNAM-1)is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation[J].J Exp Med JT-The Journal of experimental medicine,2003,198:1829-1839
    [9]Pende D,Bottino C,Cas PVR(CD155)and Nectin-2 (CD112)as ligands of the human DNAM-1(CD226)activating receptor:triconi R,et al.involvement in tumor cell lysis.Mol Immunol JT-Molecular immunology,2005,42:463-469.
    [10]Lopez M,Eberle F, Mattei MG, et al. Complementary DNA characterization and chromosomal localization of a human gene related to the poliovirus receptor-encoding gene[J].Gene JT-Gene,1995,155:261-265.
    [11]Lopez M,Aoubala M,Jordier F,et al.The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule[J].Blood JT-Blood,1998,92: 4602-4611.
    [12]Cocchi F,Menotti L,Mirandola P,et al.The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types land 2 in human cells[J].J Virol JT-Journal of virology,1998,72:9992-10002.
    [13]Cocchi F,Menotti L,Dubreuil P,et al.Cell-to-cell spread of wild-type herpes simplex virus type 1,but not of syncytial strains,is mediated by the immunoglobulin-like receptors that mediate virion entry, nectinl (PRR1/HveC/HIgR) and nectin2 (PRR2/HveB) [J]. J Virol JT-Journal of virology,2000,74:3909-3917.
    [14]Takahashi K.Nakanishi H,Miyahara M,et al.Nectin/PRR:an immunoglo- bulin-like cell adhesion molecule recruited to cadherin- based adherens junctions through interaction with Afadin,a PDZ domain- containing protein[J].J Cell Biol JT-The Journal of cell biology, 1999,145:539-549.
    [15]Petrov K,Dion M,Hoffmann L,et al.Bivalent Fv antibody fragments obtained by substituting the constant domains of a fab fragment with heterotetrameric molybdopterin synthase[J].J Mol Biol JT-Journal of molecular biology,2004,341:1039-1048.
    [16]Pende D,Castriconi R,Romagnani P,et al.Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor(CD155),on dendritic cells:relevance for natural killer-dendritic cell interaction.Blood JT-Blood,2006,107:2030-2036.
    [17]Bachelet I,Munitz A, Mankutad D,et al.Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2):a novel interface in the allergic process[J].J Biol Chem JT-The Journal of biological chemistry,2006,281:27190-27196.
    [18]Baury B,Masson D,McDermott BM Jr,et al.Identification of secreted CD155 is oforms[J]. Biochem Biophys Res Commun.2003;309(1):175-182.
    [19]Williams AF,Barclay AN.The immunoglobulin superfamily--domains for cell surface recognition Molecular characterization of the Bernhardt G,Bibb cellular receptor for poliovirus.Annu Rev Immunol JT-Annual review of immunology,1988,6:381-405.
    [20]Bernhardt G, Bibb JA, Bradley J,et al. Molecular characterization of the cellular receptor for poliovirus. Virology.1994 Feb 15;199(1):105-113.
    [21]SotesFuchs A,Cella M,Giurisato E,et al.Cutting edge:CD96(tactile) prom NK cell-target cell adhesion by interacting with the poliovirus receptor (CD 155) [J].J Immunol JT-Journal of immunology (Baltimore, Md:1950),2004,172:3994-3998.
    [22]Masson D,Jarry A,Baury B,et al.Overexpression of the CD155 gene in human colorectal carcinoma[J].Gut JT-Gut,2001,49:236-240.
    [23]Lanier LL.NK cell recognition[J].Annu Rev Immunol JT-Annual review of immunology, 2005,23:225-274.
    [24]Bottino C,Castriconi R,Pende D,et al.Identification of PVR(CD155)and Nectin-2(CD112) as cell surface ligands for the human DNAM-1(CD226) activating molecule[J].J Exp Med JT-The Journal of experimental medicine,2003,198:557-567.
    [25]Bauer S,Groh V,Wu J,et al.Activation of NK cells and T cells by NKG2D,a receptor for stress-inducible MICA[J].Science JT-Science(NewYork.N.Y),1999,285:727-729.
    [26]Guerra N,Tan YX,Joncker NT, et al.NKG2D-deficient mice are defective in tumor surveillance in models of spontaneousmalignancy[J].Immunity 2008;28:571-580.
    [27]Diefenbach A,Tomasello E,Lucas M,et al.Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D[J].Nat Immunol,2002, 3:1142-1149.
    [28]Coudert JD,Held W.The role of the NKG2D receptor for tumor immunity[J]. Semin Cancer Biol 2006,16:333-343.
    [29]Schrama D, Terheyden P, Otto K, Expression of the NKG2D ligand UL16 binding protein-1 (ULBP-1) on dendritic cells[J]. Eur J Immunol.2006;36(1):65-72
    [30]Kim KE, Song H, Hahm C, et al. Expression of ADAM33 is a novel regulatory mechanism in IL-18-secreted process in gastric cancer[J]. J Immunol.2009;182(6):3548-3555.
    [31]Wang Y, Chaudhri G, Jackson RJ. IL-12p40 and IL-18 play pivotal roles in orchestrating the cell-mediated immune response to a poxvirus infection[J]. J Immunol.2009; 183(5): 3324-3331.
    [32]Andreas D,Jennifer KH,Ming-Yu BH,et al. A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity [J].Eur J Immunol,2003, 33:381-391.
    [33]Baury B,Masson D, McDermott BM Jr,et al. Identification of secreted CD155 isoforms[J]. Biochem Biophys Res Commun JT-Biochemical andbiophysical research communications, 2003,309:175-182.
    [34]Williams AF, Barclay AN. The immunoglobulin superfamily--domains for cell surface recognition[J].Annu Rev Immunol JT-Annual review of immunology,1988,6:381-405.
    [35]JA,Bradley J. Molecular characterization of thBernhardt G,Bibb cellular receptor for poliovirus[J].Virology JT-Virology,1994,199:105-113.
    [36]Masson D,Jarry A,Baury B,et al. Overexpression of the CD 155 gene in human colorectal carcinoma[J].Gut JT-Gut,2001,49:236-240.
    [37]Kakunaga S,lkeda W,Shingai T,et al. Enhancement of serum-and platelet-derived growth factor-induced cell proliferation by Necl-5/Tage4/poliovirus receptor/CD 155 through the Ras-Raf-MEK-ERK signaling[J].JBiol Chem JT-The Journal of biological chemistry,2004, 279:36419-36425.
    [38]Fuchs A,Cella M,Giurisato E,et al. Cutting edge:CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155) [J]. J Immunol.2004; 172 (7):3994-3998
    [39]Konjevic G,Mirjacic Martinovic K,Vuletic A,et al. Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients[J].Clin Exp Metastasis JT-Clinical&experimental metastasis,2007,24: 1-11.
    [40]Kim JY,Son YO,Park SW,et al. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation[J].Exp Mol Med JT-Experimental&molecular medicine,2006,38:474-484.
    [41]Stober D,Jomantaite I,Schirmbeck R,et al. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+T cells in vivo[J], J Immunol JT-Journal of immunology(Baltimore,Md:1950),2003,170:2540-2548.
    [42]Mocikat R,Braumuller H,Gumy A,et al. Natural killer cells activated by MHC class I(low)targets prime dendritic cells to induce protective CD8 T cell responses[J]. Immunity JT-Immunity,2003,19:561-569.
    [43]Granucci F,Zanoni I,Pavelka N,et al. A contribution of mouse dendritic cell-derived IL-2 for NK cell activation[J].J Exp Med JT-The Journal of experimental medicine,2004, 200:287-295.
    [44]Adam C,King S,Allgeier T,et al. DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction[J].Blood JT-Blood,2005,106:338-434.
    [45]Fuchs A,Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance[J].Semin Cancer Biol JT-Seminars in cancer biology,2006,16: 359-366.
    [46]Yao L,Sgadari C,Furuke K,et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12[J].Blood JT-Blood,1999,93:1612-1621.
    [47]Alter G,Malenfant JM,Altfeld M. CD 107a as a functional marker for the identification of natural killer cell activity[J].J Immunol Methods JT-Journal of immunological methods,2004,294:15-22.
    [48]Chang CC,Ferrone S. NK cell activating ligands on human malignant cells:molecular and functional defects and potential clinical relevance[J].Semin Cancer Biol JT-Seminars in cancer biology,2006,16:383-392.
    [49]Shibuya A,Campbell D,Hannum C,et al.DNAM-l,a novel adhesion molecule involved in the cytolytic function of T lymphocytes[J].Immunity JT-Immunity,1996,4:573-581.
    [50]Pende D, Bottino C, Castriconi R, et al. PVR (CD 155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor:involvement in tumor cell lysis [J]. Mol Immunol.2005,42:463-469.
    [51]Williams AF,Barclay AN. The immunoglobulin superfamily-domains for cell surface recognition[J].Annu Rev Immunol JT-Annual review of immunology,1988,6:381-405.
    [52]Ishitsuka K, Ikeda S, Izumi Y, et al. Infection control for the treatment of hematological malignancies:a survey of the Kyushu Hematology Organization for Treatment[J]. Study Group (K-HOT) Rinsho Ketsueki.2003,44(7):483-490.
    [53]Obritsch WF, Kawashima H, Evangelista A, et al. Inhibition of in vitro T cell activation by corneal endothelial cells[J]. Cell Immunol.1992,144(1):80-94.
    [54]Jamieson AM,Diefenbach A,McMahon CW,et al.The role of the NKG2D immunoreceptor in immene cell activation and natural killing[J]. Immunity,2002,17(1):19-29.
    [55]Stevens C, Lipman M, Fabry S, et al.5-Aminosalicylic acid abrogates T-cell proliferation by blocking interleukin-2 production in peripheral blood mononuclear cells[J]. J Pharmacol Exp Ther.1995;272(1):399-406.
    [56]Koh CY, Blazar BR, George T, et al. Augmentation of anti-tumor effects by NK cell inhibitory receptor blockade in vitro and in vivo [J].Blood,2001,97(10):3132-3137.
    [57]Tomura M, Zhou XY, Maruo S, et al. A critical role for IL-18 in the proliferation and activation of NK1.1+CD3-cells [J].J Immunol,1998,160(10):4738-4746.
    [58]Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas [J].Cancer Res,2003,63(24):8996-9006.
    [59]Murphy WJ, Koh CY, Raziuddin A, et al. Immunobiology of natural killer cells and bone marrow transplantation:merging of basic and preclinical studies [J]. Immunol Rev,2001, 181(1):279-289.
    [60]Diefenbach A, Raulet DH. The innate immune response to tumors and its role in the induction of T cell immunity [J]. Immunol Rev,2002,188(1):9-21.
    [61]Ruggeri L, Capanni M, Casucci M, et al. Role of Natural Killer Cell Alloreactivity in HLA-Mismatched Hematopoietic Stem Cell Transplantation [J].Blood,1999,94(1):333-339.
    [62]Von Lilienfeld-Toal M, Frank S, Leyendecker C, et al.Reduced immune effector cell NKG2D expression and increased levels of soluble NKG2D ligands in multiple myeloma may not be causally linked[J]. Cancer Immunol Immunother.2010;59(6):829-839.
    [63]Jan Chalupny N,Sutherland CL,Lawrence WA, et al. ULBP4 is a novel ligand for human NKG2D[J].Biochem Biophys Res Commun,2003,305(1):129-135.
    [64]Igarashi T,Wynberg J,Srinivasan R,et al. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells[J].Blood,2004,104(1):170-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700