益肾达络饮治疗多发性硬化的神经免疫机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多发性硬化(Multiple Sclerosis,MS)是一种主要累及中枢神经系统(CNS)白质并导致多部位髓鞘脱失的自身免疫性疾病,具有易复发和致残率高的特点,属于神经系统疑难病。可在神经系统中留有病灶,形成不可逆性神经功能障碍,严重影响患者生存质量。本病在北欧及北美较常见,在非洲和东方人中发病率较低。随着诊断手段的不断改进,近年来MS的发病率在我国有明显增高的趋势。
     本文以中医和西医对MS的发病机制及治疗概况为背景,通过对与该病有关的文献资料的复习,从中医理论角度探讨多发性硬化的发病机理。从本病发病学、病变定位的不同方面,阐发了肾精不足,脏腑功能失调,复受外邪,络损髓伤的基本病机特点及“益肾,解毒,通络”的治法思路;以著名古方地黄饮子的配伍和功效特点为依据,在此方的基础上创立益肾达络饮作为本病的治疗方剂,并进行初步实验研究。
     本研究包括理论探讨和实验研究二部分:多发性硬化的病因病机理论探讨;多发性硬化的实验研究。
     研究一多发性硬化的病因病机理论探讨
     围绕多发性硬化的发病进程,从病因出发,结合疾病不同发病时期的特点深入探讨病机,阐述不同时期的病机变化。发作期内外因相合,肾精不足、毒邪外侵综合作用于人体,导致督脉、脑、肾同病。缓解期以正虚为主,督脉不充,肾阳不足,脑髓失养。复发期再感邪气或外邪引动旧邪复燃,毒侵督脉,损伤脑髓。以脏腑与经络相结合,提出本病是在肾精不足,脏腑功能失调基础上,湿浊内蕴,浊毒内生,毒损督脉,戕害脑髓,络损髓伤,败坏形体而发病的病机理论。
     研究二多发性硬化的实验研究
     本实验研究旨在通过制备MS动物模型,在中药干预的前提下,研究其临床症状、体征评价、病理改变观察,为中医药治疗MS提供现代生物学依据。
     课题通过经典动物模型实验性变态反应性脑脊髓炎(EAE)小鼠,采用HE染色、免疫组化、ELISA、原位杂交等实验方法,配合光镜、图像分析等细胞定性、半定量检测手段,从神经生物学分子水平探讨EAE病变过程中关键环节细胞因子的变化,并在此基础上观察益肾达络饮对EAE的影响及对免疫功能的调节作用。以期在从基因分子水平探讨EAE发病机制的同时,从治疗和康复角度研究益肾达络饮对EAE的作用机理。
     本研究选择SJL小鼠用PLP139-151诱导制备EAE复发-缓解模型。每天观察小鼠神经功能评分,并分别用醋酸泼尼松、益肾达络饮给予灌胃治疗14天,在造模后22天,即症状高峰期取材。通过ELISA、免疫组化、原位杂交等实验检测方法,探讨EAE病理机制。从中枢神经组织内T细胞亚群变化、趋化因子、黏附分子、轴索病变、p38等几方面着重观察了EAE病理改变及中药复方益肾达络饮对EAE的影响,探讨EAE发病机制,从轴索和髓鞘同时明确益肾达络饮对改善神经功能的作用机制。并进一步从神经免疫角度来揭示益肾达络饮对EAE神经细胞及轴索的保护作用,及其潜在的治疗MS的
Multiple Sclerosis(MS) is chronic inflammatory and demyelinating disorder disease involving white matter with the numerous affected areas of central nervous system possibly due to autoimmunity. The patients subjected to multiple sclerosis typically show alternating relapse and remission in the early stage of illness. MS is the one of the leading causes of neurological disability in young adults. It is regarded as stubborn disease. Producing the characteristic plaques or sclerosed areas that are the hallmark of the disease, MS has the serious effect to patient’s living quality because of irreversibility nervous functional impairment. The disease incidence of MS is much more higher in Northern Europe and North America than Africa and oriental area. With the unceasing improvement of diagnosis instrument, the disease incidence of MS recently shows a ascending tendency obviously in China.
     On the basis of the overview to pathogenesy and treatment of Traditional Chinese Medicine(TCM) and Western medicine for MS, MS pathogenesy is approached at the point of view on TCM. From the aspects of pathogenesis and pathological changes localization, we interpret the basic pathogenesis characteristic that is brain marrow and collateral injury due to deficiency of kidney-essence, function disharmony of entrails, recurrence of exogenous evil, and the direction to treatment according to tonifying kidney, removing toxic substance, removing obstruction in collaterals.On the basis of the feature of compatibility and efficacy of the distinguished ancient prescription-dihuang yin, we bring forward Yi Shen Da Luo Decoction as the treantment prescription to MS, and carry out initial empirical study of its animal models- experimental allergic encephalomyelitis (EAE).
     This research was consisted of two parts: Discussion on the theory of pathogeny and pathogenesis of Multiple Sclerosis;The empirical study on EAE mouse.
     Part one Discussion on the theory of pathogeny and pathogenesis of MS
     From the view of TCM, the pathologic mechanism of MS was discussed encircling pathogeny and the course, in order to explain the pathologic mechanism change combined with characteristic in different phase of MS. With the connection of zang-fu viscera and channel, we put forward the pathogenesis theory. On the basis of insufficiency of kidney essence and function disharmony of entrails, turbid dampness and toxin accumulated, Governor Channel was impaired by pathogenic factors and brain marrow was slayed with injury in collaterals and marrow.
引文
[1] Kira J. Multiple sclerosis in the Japanese population. Lancet Neurol, 2003,2(2):117-127.
    [2] 毛悦时,吕传真. 多发性硬化的流行病学. 国外医学·神经病学神经外科分册, 2004,31(4):328-331.
    [3] Schumecher GA. Problems of experimental trials of the rapy in MS: report by the panel of the evaluation of experimental trials of the rapy in MS. Ann N Y Acad Sci, 1965,122:552.
    [4] McDonald WI, Halliday AM. Diagnosis and classification of multiple sclerosis. Br Med Bull, 1977,33(1):4-9.
    [5] Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol, 1983,13(3):227-231.
    [6] McAlpine D. In: McAlpine D,Lumsden DE, Acheson ED, ed. Multiple sclerosis: a reappraisal. 2nd edition ed. Edinburgh:Churchill Livingstone,1972. 81307.
    [7] Lucchinetti CF, Rodriguez M. The controversy surrounding the pathogenesis of the multiple sclerosis lesion. Mayo Clin Proc, 1997,72(7):665-678.
    [8] Ewing C, Bernard CC. Insights into the aetiology and pathogenesis of multiple sclerosis. Immunol Cell Biol, 1998,76(1):47-54.
    [9] Hogancamp WE, Rodriguez M, Weinshenker BG. Identification of multiple sclerosis-associated genes. Mayo Clin Proc, 1997,72(10):965-976.
    [10] Hogancamp WE, Rodriguez M, Weinshenker BG. The epidemiology of multiple sclerosis. Mayo Clin Proc, 1997,72(9):871-878.
    [11] Hillert J, Olerup O. Multiple sclerosis is associated with genes within or close to the HLA-DR-DQ subregion on a normal DR15, DQ6, Dw2 haplotype. Neurology, 1993, 43(1):163-168.
    [12] Constantinescu CS, Hilliard B, Fujioka T, et al. Pathogenesis of neuroimmunologic diseases. Experimental models. Immunol Res, 1998,17(1-2):217-227.
    [13] Zhao BX,Liu DS,Hu WM,et al. Multiple sclerosis in China: A clinical study of 256 cases. In: Kuroiwa Y, KurlandLT, ed. Multiple sclerosis east and west. Fukuoka:Kyushu University Press,1982. 71-81.
    [14] 毛俊雄. 实用神经内科诊疗学. 第 12 版版. 河北:河北科学技术出版社,1999. 681.
    [15] Kurtzke JF, Hyllested K, Heltberg A. Multiple sclerosis in the Faroe Islands: transmission across four epidemics. Acta Neurol Scand, 1995,91(5):321-325.
    [16] Stern MB,Brown MJ,Galetta SL,et al. Penn neurology 2000: management of common neurologic problems:AlphaMedica Press,2000. 287-311.
    [17] Patajan JH,Gappmaiere,White AT,et al. The impact of aerobic training of fitness and quality of life in mutiple sclerosis. Ann Neurol, 1996,39(432-441).
    [18] Wynn NR,Rodriguez MO,Fallan W. Update on the epidemiology of MS. Mayo Clin Proc, 1989,64:808-817.
    [19] Sriram S, Stratton CW, Yao S, et al. Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann Neurol, 1999,46(1):6-14.
    [20] Gieffers J, Pohl D, Treib J, et al. Presence of Chlamydia pneumoniae DNA in the cerebral spinal fluid is a common phenomenon in a variety of neurological diseases and not restricted to multiple sclerosis. Ann Neurol, 2001,49(5):585-589.
    [21] Esposito M, Venkatesh V, Otvos L, et al. Human transaldolase and cross-reactive viral epitopes identified by autoantibodies of multiple sclerosis patients. J Immunol, 1999,163(7):4027-4032.
    [22] Olsson T, Kostulas V, Link H. Improved detection of oligoclonal IgG in cerebrospinal fluid by isoelectric focusing in agarose, double-antibody peroxidase labeling, and avidin-biotin amplification. Clin Chem, 1984,30(7):1246-1249.
    [23] Lucchinetti C, Bruck W, Parisi J, et al. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain, 1999,122 ( Pt 12):2279-2295.
    [24] Claudio L, Kress Y, Norton WT, et al. Increased vesicular transport and decreased mitochondrial content in blood-brain barrier endothelial cells during experimental autoimmune encephalomyelitis. Am J Pathol, 1989,135(6):1157-1168.
    [25] Calabresi PA, Fields NS, Farnon EC, et al. ELI-spot of Th-1 cytokine secreting PBMC's in multiple sclerosis: correlation with MRI lesions. J Neuroimmunol, 1998,85(2):212-219.
    [26] Morrissey SP, Deichmann R, Syha J, et al. Partial inhibition of AT-EAE by an antibody to ICAM-1: clinico-histological and MRI studies. J Neuroimmunol, 1996,69(1-2):85-93.
    [27] Pan W, Banks WA, Kennedy MK, et al. Differential permeability of the BBB in acute EAE: enhanced transport of TNT-alpha. Am J Physiol, 1996,271(4 Pt 1):E636-642.
    [28] Merrill JE, Murphy SP. Inflammatory events at the blood brain barrier: regulation of adhesion molecules, cytokines, and chemokines by reactive nitrogen and oxygen species. Brain Behav Immun, 1997,11(4):245-263.
    [29] Knobler RL, Marini JC, Goldowitz D, et al. Distribution of the blood-brain barrier in heterotopic brain transplants and its relationship to the lesions of EAE. J Neuropathol Exp Neurol, 1992,51(1):36-39.
    [30] Hartung HP, Rieckmann P. Pathogenesis of immune-mediated demyelination in the CNS. J Neural Transm Suppl, 1997,50:173-181.
    [31] Dietrich JB. The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J Neuroimmunol, 2002,128(1-2):58-68.
    [32] Steffen BJ, Breier G, Butcher EC, et al. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol, 1996,148(6):1819-1838.
    [33] Khoury SJ, Guttmann CR, Orav EJ, et al. Changes in activated T cells in the blood correlate with disease activity in multiple sclerosis. Arch Neurol, 2000,57(8):1183-1189.
    [34] Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in thecentral nervous system. Cell, 1996,85(3):299-302.
    [35] Wekerle H. T-cell autoimmunity in the central nervous system. Intervirology, 1993,35(1-4):95-100.
    [36] Storch M, Lassmann H. Pathology and pathogenesis of demyelinating diseases. Curr Opin Neurol, 1997,10(3):186-192.
    [37] Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood, 1994,84(7):2068-2101.
    [38] 杨金升. 肿瘤坏死因子在脑卒中时表达及作用. 国外医学·脑血管病分册, 1996,4(2):77.
    [39] Barres BA. Multiple extracellular signals are requitred for longterm oligodendrocyte survival. Development, 1991,18:283-295.
    [40] Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med, 1992,176(5):1355-1364.
    [41] Sheeran P, Hall GM. Cytokines in anaesthesia. Br J Anaesth, 1997,78(2):201-219.
    [42] Lahat N, Zlotnick AY, Shtiller R, et al. Serum levels of IL-1, IL-6 and tumour necrosis factors in patients undergoing coronary artery bypass grafts or cholecystectomy. Clin Exp Immunol, 1992,89(2):255-260.
    [43] Barnes PJ,Grunstein MM,Leff AR,et al. Asthma. New York:Lippincott-Raven,1997. 653-661.
    [44] Lydyard PM,Whelan A,Fanger MW. Instant notes in immunology. 影印版 ed. 北京:科学出版社,2000. 85-93.
    [45] 林学颜,张玲. 现代细胞与分子免疫学. 北京:科学出版社,1999. 233-261.
    [46] Luan J, Furuta Y, Du J, et al. Developmental expression of two CXC chemokines, MIP-2 and KC, and their receptors. Cytokine, 2001,14(5):253-263.
    [47] Tauber MG, Moser B. Cytokines and chemokines in meningeal inflammation: biology and clinical implications. Clin Infect Dis, 1999,28(1):1-11; quiz 12.
    [48] Mennicken F, Maki R, de Souza EB, et al. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci, 1999,20(2):73-78.
    [49] Baggiolini M. Chemokines and leukocyte traffic. Nature, 1998,392(6676):565-568.
    [50] Huang D, Han Y, Rani MR, et al. Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol Rev, 2000,177:52-67.
    [51] Campbell JJ, Foxman EF, Butcher EC. Chemoattractant receptor cross talk as a regulatory mechanism in leukocyte adhesion and migration. Eur J Immunol, 1997,27(10):2571-2578.
    [52] Persidsky Y, Ghorpade A, Rasmussen J, et al. Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol, 1999,155(5):1599-1611.
    [53] McManus C, Berman JW, Brett FM, et al. MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol, 1998,86(1):20-29.
    [54] Asensio VC, Lassmann S, Pagenstecher A, et al. C10 is a novel chemokine expressed in experimental inflammatory demyelinating disorders that promotes recruitment of macrophages to the central nervous system. Am J Pathol, 1999,154(4):1181-1191.
    [55] Simpson JE, Newcombe J, Cuzner ML, et al. Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol, 1998,84(2):238-249.
    [56] Miyagishi R, Kikuchi S, Fukazawa T, et al. Macrophage inflammatory protein-1 alpha in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological diseases. J Neurol Sci, 1995,129(2):223-227.
    [57] Franciotta D, Martino G, Zardini E, et al. Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J Neuroimmunol, 2001,115(1-2):192-198.
    [58] Zhang GX, Baker CM, Kolson DL, et al. Chemokines and chemokine receptors in the pathogenesis of multiple sclerosis. Mult Scler, 2000,6(1):3-13.
    [59] Van Der Voorn P, Tekstra J, Beelen RH, et al. Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol, 1999,154(1):45-51.
    [60] Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature, 1992, 356(6364): 63-66.
    [61] Barten DM, Ruddle NH. Vascular cell adhesion molecule-1 modulation by tumor necrosis factor in experimental allergic encephalomyelitis. J Neuroimmunol, 1994,51(2):123-133.
    [62] Brosnan CF, Cannella B, Battistini L, et al. Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology, 1995,45(6 Suppl 6):S16-21.
    [63] Droogan AG, McMillan SA, Douglas JP, et al. Serum and cerebrospinal fluid levels of soluble adhesion molecules in multiple sclerosis: predominant intrathecal release of vascular cell adhesion molecule-1. J Neuroimmunol, 1996,64(2):185-191.
    [64] Bo L, Peterson JW, Mork S, et al. Distribution of immunoglobulin superfamily members ICAM-1, -2, -3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol, 1996,55(10):1060-1072.
    [65] Charcot M. Histologie de la sclérose en plaques. Gaz Hop (Paris), 1868, 41: 554-5, 557-8, 566.
    [66] Genain CP, Cannella B, Hauser SL, et al. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med, 1999,5(2):170-175.
    [67] Mews I, Bergmann M, Bunkowski S, et al. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult Scler, 1998,4(2):55-62.
    [68] Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med, 1998,338(5):278-285.
    [69] De Stefano N, Narayanan S, Francis GS, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol, 2001,58(1):65-70.
    [70] Ferguson B, Matyszak MK, Esiri MM, et al. Axonal damage in acute multiple sclerosis lesions. Brain, 1997,120 ( Pt 3):393-399.
    [71] Perry VH, Anthony DC. Axon damage and repair in multiple sclerosis. Philos Trans R Soc Lond B Biol Sci, 1999,354(1390):1641-167.
    [72] Bitsch A, Schuchardt J, Bunkowski S, et al. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain, 2000,123 ( Pt 6):1174-1183.
    [73] Bjartmar C, Trapp BD. Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox Res, 2003,5(1-2):157-164.
    [74] Filippi M, Bozzali M, Rovaris M, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain, 2003,126(Pt 2):433-437.
    [75] Dutta R, McDonough J, Yin X, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol, 2006,59(3):478-489.
    [76] Bjartmar C, Kidd G, Ransohoff RM. A real-time insight into disease progression and the role of axonal injury in multiple sclerosis. Arch Neurol, 2001,58(1):37-39.
    [77] Hohlfeld R. Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain, 1997,120 ( Pt 5):865-916.
    [78] 许贤豪. 神经免疫学. 武汉:湖北科学技术出版社,2000. 210-235.
    [79] Schumacker GA, Beebe G, Kibler RF, et al. Problems of experimental trials of therapy in multiple sclerosis: report by the panel of the evaluation of experimental trials of therapy in multiple sclerosis. Ann N Y Acad Sci, 1965,122:552-568.
    [80] McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol, 2001,50(1):121-127.
    [81] Comi G, Filippi M, Barkhof F, et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet, 2001,357(9268):1576-1582.
    [82] Goodkin DE, Rudick RA, VanderBrug Medendorp S, et al. Low-dose (7.5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis. Ann Neurol, 1995,37(1):30-40.
    [83] 李 林 文 , 刘 咸 锋 . 环 磷 酰 胺 冲 击 疗 法 治 疗 多 发 性 硬 化 20 例 . 山 东 医 药 , 2001,41(7):66-67.
    [84] 曾湘豫,秦斌,曹国颖,等. 环孢菌素 A 血浓度监测对神经系统自身免疫性疾病治疗的意义. 中国神经免疫学和神经病学杂志, 2001,8(3):153-156.
    [85] Noseworthy JH, Gold R, Hartung HP. Treatment of multiple sclerosis: recent trials and future perspectives. Curr Opin Neurol, 1999,12(3):279-293.
    [86] Lopez E, Racadot E, Bataillard M, et al. Interferon gamma, IL2, IL4, IL10 and TNFalpha secretions in multiple sclerosis patients treated with an anti-CD4 monoclonal antibody. Autoimmunity, 1999,29(2):87-92.
    [87] Coles AJ, Wing MG, Molyneux P, et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol, 1999,46(3):296-304.
    [88] Kieseier BC, Seifert T, Giovannoni G, et al. Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology, 1999,53(1):20-25.
    [89] Ge Y, Grossman RI, Udupa JK, et al. Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS: quantitative MR assessment. Neurology, 2000,54(4):813-817.
    [90] Hong J, Zang YC, Tejada-Simon MV, et al. Reactivity and regulatory properties of human anti-idiotypic antibodies induced by T cell vaccination. J Immunol, 2000, 165(12): 6858-6864.
    [91] Zhang I, Raus J. T cell vaccination in multiple sclerosis. Mult Scler, 1996,1(6):353-356.
    [92] Zang YC, Hong J, Tejada-Simon MV, et al. Th2 immune regulation induced by T cell vaccination in patients with multiple sclerosis. Eur J Immunol, 2000,30(3):908-913.
    [93] McFarland HI, Lobito AA, Johnson MM, et al. Effective antigen-specific immunotherapy in the marmoset model of multiple sclerosis. J Immunol, 2001,166(3):2116-2121.
    [94] Bourquin C, Iglesias A, Berger T, et al. Myelin oligodendrocyte glycoprotein-DNA vaccination induces antibody-mediated autoaggression in experimental autoimmune encephalomyelitis. Eur J Immunol, 2000,30(12):3663-3671.
    [95] Karin N. Gene therapy for T cell-mediated autoimmunity: teaching the immune system how to restrain its own harmful activities by targeted DNA vaccines. Isr Med Assoc J, 2000,2 Suppl:63-68.
    [96] 耿同超,蔡哲,舒峻. 干细胞移植治疗多发性硬化回顾和展望. 中国康复理论与实践, 2005,11(6):457-458.
    [97] van Den Pol AN, Mocarski E, Saederup N, et al. Cytomegalovirus cell tropism, replication, and gene transfer in brain. J Neurosci, 1999,19(24):10948-10965.
    [98] Pette M, Muraro PA, Pette DF, et al. Differential effects of phosphodiesterase type 4-specific inhibition on human autoreactive myelin-specific T cell clones. J Neuroimmunol, 1999,98(2):147-156.
    [99] Wang T, Niwa S, Bouda K, et al. The effect of Am-80, one of retinoids derivatives on experimental allergic encephalomyelitis in rats. Life Sci, 2000,67(15):1869-1879.
    [100] Drew PD, Chavis JA. Female sex steroids: effects upon microglial cell activation. JNeuroimmunol, 2000,111(1-2):77-85.
    [101] Sicotte NL, Liva SM, Klutch R, et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol, 2002,52(4):421-428.
    [102] Low A, Hotze A, Krapf F, et al. The nonspecific clearance function of the reticuloendothelial system in patients with immune complex mediated diseases before and after therapeutic plasmapheresis. Rheumatol Int, 1985,5(2):69-72.
    [1] 刘晓艳,孙怡. 补肾固髓片治疗多发性硬化的临床与实验研究. 中国中西医结合杂志, 2001,21(1):12-16.
    [2] 谭东,陆伟. 多发性硬化的发病机制. 山东医药, 2002,42(14):551-552.
    [3] 刘宝炉. 肾气丸治疗多发性硬化症验案1则. 新中医, 1997,29(7):32-33.
    [4] 杨宁,高敏,高聪. 地黄合剂对多发性硬化患者外周血及脑脊液中T淋巴细胞亚群的影响. 中国老年学杂志. 22(7),2002. 304-306.
    [5] 王惠. 一贯煎治疗多发性硬化症15例. 光明中医杂志, 1996(4):39-40.
    [6] 石丽华,王庆武. 中西医结合对防治多发性硬化症复发的疗效初探. 广西中医药, 2004,27(2):14-16.
    [7] 李青,詹青,琚坚. 詹文涛教授辨证治疗多发性硬化经验. 北京中医药大学学报(中医临床版), 2003,10(1):18-20.
    [8] 邱仕君. 邓铁涛教授对多发性硬化的辨治经验. 新中医, 2000,32(8):9-10.
    [9] 梁健芬. 补肾健脾化淤法预防多发性硬化复发疗效观察. 实用中医药杂志, 2000,16(8):3-4.
    [10] 曹珊,韩丽,陶根鱼. 中医药防治多发性硬化的研究. 陕西中医学院学报, 2003,26(5):68-70.
    [11] 孙怡,顼宝玉. 中西医结合治疗多发性硬化40例疗效观察. 现代中医, 1997,10(3):142-143.
    [12] 董浩. 中医调肝对多发性硬化症康复治疗的理论探讨. 中国康复理论与实践, 1999,5(4):185-187.
    [13] 孙塑伦,李秀琴,王永炎. 温阳补肾法在神经系统疾病治疗中的应用. 吉林中医药, 1987(2):9.
    [14] 陈阳. 辨证治疗多发性硬化32例临床观察. 国医论坛, 1997,12(6):28.
    [15] 樊蓥,周仲瑛. 长程辨证治疗多发性硬化症16例. 中医杂志, 1997,38(3):161-162.
    [16] 何宽其. 补肾为主治验大脑白质多发性硬化1例. 浙江中医杂志, 2001,12(7):279.
    [17] 陆曦,王耀华. 中西医结合治疗多发性硬化症35例. 中西医结合杂志, 1990,10(3):174.
    [18] 范新发,贺建修. 六味地黄汤治疗多发性硬化1例. 中医杂志, 1999,40(5):314.
    [19] 孙怡. 温胆汤加减在神经科临床应用. 江苏中医, 1989,10(9):27.
    [20] 宋立群. 中医辨治多发性硬化体会. 中医杂志, 2000,41(3):142.
    [21] 张保平,赵铎,郭会军. 郑绍周教授治疗多发性硬化病经验. 中国中医药信息杂志, 2003,9(5):701.
    [22] 李鑫永. 补阳还五汤治疗多发性硬化. 四川中医,10(4):82.
    [23] 冯顺友. 独活寄生汤治疗多发性硬化症1例. 浙江中医杂志, 2000,35(3):129.
    [24] 樊永平. 化瘀通络为主治疗脑部疑难病症. 江苏中医, 2001,22(5):15-17.
    [25] 赵铎. 郑绍周教授治疗多发性硬化经验. 光明中医, 2005,20(5):28-29.
    [26] 刘晓艳,孙怡. 多发性硬化的临床与实验研究概况. 上海中医药杂志,2000,2(11):421-424.
    [27] 邓铁涛. 奇难杂病新编. 广州:广东科技出版社,1989. 25.
    [28] 陆曦,李智文,王华燕,等. 中医预防多发性硬化症复发的研究. 中医杂志, 1995,36(7):417-418.
    [29] 毕明刚,张宗杰,沈雁. 熄风通络方为主治疗多发性硬化症10例. 中医药学报, 1998,26(1):16.
    [30] 吴文. 补肾活血解毒中药治疗脱髓鞘病的临床分析. 河北中医, 2003,25(12):906-907.
    [31] 王乐善,朱凤霞,崔玉芹. 地黄饮子治疗多发性硬化症. 中医函授通讯, 1988,7(3):31.
    [32] 高敏,高聪,杨宁,杨晓文,陈丹青. 地黄合剂预防多发性硬化复发的临床观察. 中国中医药信息杂志, 2003,10(7):59.
    [33] 王殿华,李永利,平阳. 益髓灵胶囊治疗多发性硬化症60例临床观察. 山东中医杂志, 2005,24(3):151-152.
    [34] 刘瑞华. 雷公藤片对多发性硬化患者外周血T淋巴细胞亚群的影响. 中国神经免疫学和神经病学杂志, 2000,7(3):157-160.
    [35] 杨晓晖. 清开灵注射液治疗多发性硬化1例. 北京中医药大学学报, 1995,18(6):35.
    [36] 邓有辉,黄政贤,关冬麟. 大剂量蛇毒清栓酶治疗多发性硬化1例. 蛇志, 1993,5(2):17.
    [37] 冯树行,邓禄延. 青龙胶囊治疗多发性硬化1例. 蛇志, 1993,5(2):32.
    [38] 北京友谊医院神经科. 应用灵芝制剂治疗多发性硬化5例. 新医学副刊—神经系统疾病, 1978,4(2):97.
    [39] 史玉俊(译). 月见草油能治疗多种疾病的灵丹妙药. 天津医学, 1989(3):21.
    [40] 左向(译). 蜂毒用于多发性硬化症的研究. 国外药讯, 1994(7):37.
    [41] 胡佩珍,张树基. 中西医结合内科治疗学. 北京:化学工业出版社,1996. 806.
    [42] 苏柏青,李桂芝,方红. 紫外线照射充氧自血回输疗法合雷公藤治疗多发性硬化症. 中医药学报, 1994(6):38-39.
    [43] 徐启明. 大剂量激素冲击并抗栓酶治疗多发性硬化35例临床分析. 广西医科大学学报, 1995,12(2):283-284.
    [44] 梁健芬,董少龙,姚春,等. 中西医结合治疗多发性硬化症疗效观察. 辽宁中医杂志, 2000,27(5):221-222.
    [45] 丁金榜,丁辉. 针灸治疗多发性硬化症有显效. 陕西中医函授, 1995,10(5):12-13.
    [46] 欧阳谷,吕伟甄. 针灸、推拿治愈多发性硬化症1例. 上海针灸杂志, 1991,10(4):20.
    [47] 聂卉,房丽,梅晨健. 针刺背俞穴治疗多发性硬化症12例. 中国针灸, 2001,21(4):223.
    [48] 丁金榜,丁辉. 针灸治疗多发性硬化症1例. 上海针灸杂志, 1997,16(4):23.
    [49] 朱明,弗利克斯克莱·弗兰克. 海外病案2例. 北京中医药大学学报, 2001,24(6):75-76.
    [50] 杨兆钢. 针刺治疗多发性硬化69例临床观察. 内蒙古中医药, 1996,S1:40.
    [51] 梅洁(译). 针刺可保存多发性硬化患者视力. 国外医学·中医中药分册, 1997,19(2):59.
    [1] Njenga MK, Rodriguez M. Animal models of demyelination. Curr Opin Neurol, 1996,9(3):159-164.
    [2] Massacesi L, Genain CP, Lee-Parritz D, et al. Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for multiple sclerosis. Ann Neurol, 1995,37(4):519-530.
    [3] Owens T, Sriram S. The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis. Neurol Clin, 1995,13(1):51-73.
    [4] McFarlin DE, Blank SE, Kibler RF. Recurrent experimental allergic encephalomyelitis in the Lewis rat. J Immunol, 1974,113(2):712-715.
    [5] Tuohy VK, Sobel RA, Lees MB. Myelin proteolipid protein-induced experimental allergic encephalomyelitis. Variations of disease expression in different strains of mice. J Immunol, 1988,140(6):1868-1873.
    [6] Voskuhl RR, Pitchekian-Halabi H, MacKenzie-Graham A, et al. Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis. Ann Neurol, 1996,39(6):724-733.
    [7] Griffin AC, Whitacre CC. Sex and strain differences in the circadian rhythm fluctuation of endocrine and immune function in the rat: implications for rodent models of autoimmune disease. J Neuroimmunol, 1991,35(1-3):53-64.
    [8] Meyer AL, Benson JM, Gienapp IE, et al. Suppression of murine chronic relapsing experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. J Immunol, 1996,157(9):4230-4238.
    [9] Swanborg RH. Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clin Immunol Immunopathol, 1995,77(1):4-13.
    [10] Leadbetter EA, Bourque CR, Devaux B, et al. Experimental autoimmune encephalomyelitis induced with a combination of myelin basic protein and myelin oligodendrocyte glycoprotein is ameliorated by administration of a single myelin basic protein peptide. J Immunol, 1998,161(1):504-512.
    [11] Cua DJ, Hinton DR, Stohlman SA. Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. Th2-mediated suppression of autoimmune disease. J Immunol, 1995,155(8):4052-4059.
    [12] Whitacre CC, Gienapp IE, Meyer A, et al. Treatment of autoimmune disease by oral tolerance to autoantigens. Clin Immunol Immunopathol, 1996,80(3 Pt 2):S31-39.
    [13] Vandenbark AA, Celnik B, Vainiene M, et al. Myelin antigen-coupled splenocytes suppress experimental autoimmune encephalomyelitis in Lewis rats through a partially reversible anergy mechanism. J Immunol, 1995,155(12):5861-5867.
    [14] Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol, 1992,10:153-187.
    [15] Palaszynski KM, Loo KK, Ashouri JF, et al. Androgens are protective in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neuroimmunol, 2004,146(1-2):144-152.
    [16] Voskuhl RR, Palaszynski K. Sex hormones in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neuroscientist, 2001,7(3):258-270.
    [17] 曹翠丽,王惠,马常升,等. 实验性变态反应性脑脊髓炎模型的建立. 解剖学杂志, 2001,24(1):77-80.
    [18] 邢清和,郑荣远,王永铭,等. Wistar 大鼠过敏性脑脊髓炎模型的建立. 上海医科大学学报, 2000,27(6):471-473.
    [19] Hartung HP, Rieckmann P. Pathogenesis of immune-mediated demyelination in the CNS. J Neural Transm Suppl, 1997,50:173-181.
    [20] Raine CS. Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis. Lab Invest, 1984,50(6):608-635.
    [21] Olsson T, Dahlman I, Wallstrom E, et al. Genetics of rat neuroinflammation. J Neuroimmunol, 2000,107(2):191-200.
    [22] Racke MK, Sriram S, Carlino J, et al. Long-term treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 2. J Neuroimmunol, 1993,46(1-2):175-183.
    [23] Stosic-Grujicic S, Ramic Z, Bumbasirevic V, et al. Induction of experimental autoimmune encephalomyelitis in Dark Agouti rats without adjuvant. Clin Exp Immunol, 2004,136(1):49-55.
    [24] Zamvil SS, Mitchell DJ, Moore AC, et al. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature, 1986,324(6094):258-260.
    [25] Nicot A, Ratnakar PV, Ron Y, et al. Regulation of gene expression in experimental autoimmune encephalomyelitis indicates early neuronal dysfunction. Brain, 2003,126(Pt 2):398-412.
    [26] 秦新月,余刚,董为伟,等. 急性实验性变应性脑脊髓炎豚鼠脑白质肿瘤坏死因子α mRNA 的表达及意义. 中国临床康复, 2004,8(16):3196-3197.
    [27] 宋春杰,尹岭,王鲁宁,等. 髓鞘蛋白脂质蛋白多肽 139-151 诱发实验性自身免疫性脑脊髓炎小鼠模型. 中国神经免疫学和神经病学杂志, 2001,8(3):142-144.
    [28] 张金涛,金香兰,朱克,邢广羽,等. 髓鞘蛋白脂质蛋白多肽不同抗原决定簇对实验性自身免疫性脑脊髓炎模型神经功能评分及形态学改变的影响. 中国临床康复, 2005,9(5):70-72.
    [29] Weissert R, Wiendl H, Pfrommer H, et al. Action of treosulfan in myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis and human lymphocytes. J Neuroimmunol, 2003,144(1-2):28-37.
    [30] Montero E, Nussbaum G, Kaye JF, et al. Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. J Autoimmun, 2004,23(1):1-7.
    [31] Hjelmstrom P, Juedes AE, Fjell J, et al. B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoproteinsensitization. J Immunol, 1998,161(9):4480-4483.
    [32] Kojima K, Berger T, Lassmann H, et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J Exp Med, 1994,180(3):817-829.
    [33] Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol, 1983,13(3):227-231.
    [34] Koh CS, Paterson PY. Suppression of clinical signs of cell-transferred experimental allergic encephalomyelitis and altered cerebrovascular permeability in Lewis rats treated with a plasminogen activator inhibitor. Cell Immunol, 1987,107(1):52-63.
    [35] Degano AL, Bucher AE, Roth GA. Suppression of acute experimental allergic encephalomyelitis by intraperitoneal administration of synaptosomal antigens. J Neurosci Res, 1998,53(2):187-194.
    [36] Kono DH, Urban JL, Horvath SJ, et al. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J Exp Med, 1988,168(1):213-227.
    [37] 戚晓昆,蒲传强,朱克,等. 实验性变态反应性脑脊髓炎模型病理及组化研究. 中华神经科杂志, 1996,29(2):97-99.
    [38] Lossinsky AS, Buttle KF, Pluta R, et al. Immunoultrastructural expression of intercellular adhesion molecule-1 in endothelial cell vesiculotubular structures and vesiculovacuolar organelles in blood-brain barrier development and injury. Cell Tissue Res, 1999,295(1):77-88.
    [39] 辛晋敏,马存根,梁丽云. 实验性自身免疫性脑脊髓炎大鼠血-脑脊液屏障功能及动态变化. 中国神经免疫学和神经病学杂志, 2004,11(5):264-267.
    [40] McFarland HF. Complexities in the treatment of autoimmune disease. Science, 1996,274(5295):2037-2038.
    [41] Koyano S, Fukui A, Uchida S, et al. Synthesis and release of activin and noggin by cultured human amniotic epithelial cells. Dev Growth Differ, 2002,44(2):103-112.
    [42] Kanwar JR, Harrison JE, Wang D, et al. Beta7 integrins contribute to demyelinating disease of the central nervous system. J Neuroimmunol, 2000,103(2):146-152.
    [43] Sharma SD, Nag B, Su XM, et al. Antigen-specific therapy of experimental allergic encephalomyelitis by soluble class II major histocompatibility complex-peptide complexes. Proc Natl Acad Sci U S A, 1991,88(24):11465-11469.
    [44] Koh DR. Oral tolerance: mechanisms and therapy of autoimmune diseases. Ann Acad Med Singapore, 1998,27(1):47-53.
    [45] Chelen CJ, Fang Y, Freeman GJ, et al. Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J Clin Invest, 1995,95(3):1415-1421.
    [46] 高淑英,张凤蕴,陈君平,等. 经腹腔诱导免疫耐受抑制 EAE 的实验研究. 中国神经免疫学和神经病学杂志, 2003,10(1):44-47.
    [47] Bourquin C, Iglesias A, Berger T, et al. Myelin oligodendrocyte glycoprotein-DNA vaccination induces antibody-mediated autoaggression in experimental autoimmune encephalomyelitis. Eur J Immunol, 2000,30(12):3663-3671.
    [48] Karin N. Gene therapy for T cell-mediated autoimmunity: teaching the immune system how to restrain its own harmful activities by targeted DNA vaccines. Isr Med Assoc J, 2000,2 Suppl:63-68.
    [49] Kieseier BC, Seifert T, Giovannoni G, et al. Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology, 1999,53(1):20-25.
    [50] McFarland HI, Lobito AA, Johnson MM, et al. Effective antigen-specific immunotherapy in the marmoset model of multiple sclerosis. J Immunol, 2001,166(3):2116-2121.
    [51] Ishii T, Ohsugi K, Nakamura S, et al. Gene expression of oligodendrocyte markers in human amniotic epithelial cells using neural cell-type-specific expression system. Neurosci Lett, 1999,268(3):131-134.
    [52] 沈霞,张作慧,崔桂云,雒东江,王慧. 阿伐他汀对实验性变态反应性脑脊髓炎治疗作用的初步研究. 徐州医学院学报, 2005,25(1):32-35.
    [53] Einstein O, Karussis D, Grigoriadis N, et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci, 2003,24(4):1074-1082.
    [54] Pluchino S, Quattrini A, Brambilla E, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 2003,422(6933):688-694.
    [55] 白丽敏,宋发贤,李曦,等. 实验性变态反应性脑脊髓炎组织病理学变化及温阳补肾方对其的影响. 北京中医药大学学报, 2000,23(6):35-37.
    [56] 宋春杰,尹岭,朱克. 清开灵有效治疗实验性自身免疫性脑脊髓炎. 中国神经免疫学和神经病学杂志, 2003,10(3):156-158.
    [57] 刘晓艳,孙怡. 补肾固髓片治疗多发性硬化的临床与实验研究. 中国中西医结合杂志, 2001,21(1):10-14.
    [58] 刘颖,刘华,马存根,等. 雷公藤内脂醇对大鼠-表达的影响 EAE MCP 1 mRNA. 深圳中西医结合杂志, 2005,15(5):278-283.
    [59] 戴俐明,陈敏珠,徐叔云. 郁金对豚鼠实验性过敏性脑脊髓炎模型的疗效. 药学学报, 1982,17(9):692-695.
    [60] 郭琳,李跃华,季晓辉,阙玲俐,李玉华,张颖冬. 青藤碱治疗大鼠实验性自身免疫性脑脊髓炎的研究. 南京医科大学学报(自然科学版), 2004,24(2):100-102.
    [61] 梁战华,贾玉杰,姜妙娜,等. 银杏叶提取物 EGb761 对实验性变态反应性脑脊髓炎的影响. 中国临床康复, 2004,8(19):3384-3386.
    [1] 罗卫芳,郭树仁,程士德.中医学肾本质现代研究概述.中国中医基础医学杂志, 2001,7(4): 75-77
    [2] 江新梅,宋晓南,陈嘉峰等主译.多发性硬化手册.辽宁科学技术出版社 2003,5
    [3] 清·傅山.傅青主女科.上海科学技术出版社 1991,9
    [4] 李运伦.毒邪的源流及其分类诠释.中医药学刊,2001.18(1):44 -45
    [5] 雷燕.络病理论探微.北京中医药大学学报, 1998,21(2):18-23
    [1] Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol, 1992;10:153-187
    [2] van der Veen RC, Trotter JL, Kapp JA.Immune processing of proteolipid protein by subsets of antigen-presenting spleen cells. J Neuroimmunol. 1992 ,38(1-2):139-146.
    [3] Kono DH, Urban JL, Horvath SJ. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J Exp Med, 1988;168(1):213-227
    [4] Yu GP, Zhu K, Tian DH, et al. Expression of transcription factor NF-κB p65 in CNS of experimental allergic encephalomyelitis. Chin J Neuroimmunol Neurol, 1998,5:16-19.
    [5] Williams RM, Lees MB, Cambi F, Macklin WB.Chronic experimental allergic encephalomyelitis induced in rabbits with bovine white matter proteolipid apoprotein. J Neuropathol Exp Neurol. 1982 ,41(5):508-521.
    [6] 宋春杰,尹岭,王鲁宁,朱克.髓鞘蛋白脂质蛋白多肽139-151诱发实验性自身免疫性脑脊髓炎小鼠模型.中国神经免疫学和神经病学杂志2001,8(3):142-144.
    [7] Penkowa M and Hidalgo J. Metallothione in treatment reduces proinflammatory cytokines IL-6 and TNFα and apoptotic cel death during experimental autoimmune encephalomyelitis(EAE) [J]. Exp Neurol. 2001,170:1-14.
    [1] Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol, 1992;10:153-187
    [2] Mancardi G, Hart BA, Capello E, et al. Restricted immune responses lead to CNS demyelination and axonal damage. J Neuroimmunol,2000,107(2):178-183
    [3] Ichikawa M, Johns TG, Liu JL, et al. Analysis of the fine B cell specificity during the chronic/relapsing course of a multiple sclerosis-like disease in Lewis rats injected with the encephalitogenic myelin oligodendrocyte glycoprotein peptide 35-55. J Immunol, 1996,157(2):919-926
    [4] Rose LM, Clark EA,Hruby S, et al. Fluctuations of T- and B-cell subsets in basic protein-induced experimental allergic encephalomyelitis (EAE) in long-tailed macaques. Clin Immunol Immunopathol,1987,44(1)93-106
    [5] Pagenstecher A, Lassmann S, Carson MJ, er al. Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J Immunol, 2000,164(9):4481-4492
    [6] Massacesi L, Joshi N, Lee-Parritz D, et al. Experimental allergic encephalomyelitis in cynomolgus monkeys. Quantitation of T cell responses in peripheral blood. J Clin Invest,1992,90(2):399-404
    [7] Weinberg AD, Wallin JJ, Jones RE, et al. Target organ-specific up-regulation of the MRC OX-40 marker and selective production of Th1 lymphokine mRNA by encephalitogenic T helper cells isolated from the spinal cord of rats with experimental autoimmune encephalomyelitis. J Immunol, 1994,152(9):4712-4721
    [8] Rudick RA, Ransohoff RM, Lee JC, et al. Neurol, 1998,50:1294-1300
    [9] Kono DH, Urban JL, Horvath SJ. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J Exp Med, 1988;168(1):213-227
    [10] Willenborg DO, Fordham SA, Cowden WB, Ramshaw IA. Cytokines and murine autoimmune encephalomyelitis: inhibition or enhancement of disease with antibodies toselect cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand J Immunol. 1995;41(1):31-41.
    [11] Yasuda CL, AL-Sabbagh A, Oliveira EC, Diaz-Bardales, Garcia AA, Santos LM. Interferon beta modulates experimental autoimmune encephalomyelitis by altering the pattern of cytokine secretion. Immunol Invest 1999 ;28(2-3):115-126
    [12] Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature, 1996;383(6603):787-793.
    [13] Hofstetter HH, Shive CL, Forsthuber TG. Pertussis toxin modulates the immune response to neuroantigens injected in incomplete Freund's adjuvant: induction of Th1 cells and experimental autoimmune encephalomyelitis in the presence of high frequencies of Th2 cells J Immunol. 2002 1;169(1):117-125.
    [1] Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol, 1992;10:153-187
    [2] Kono DH, Urban JL, Horvath SJ. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J Exp Med, 1988;168(1):213-227
    [3] Matejuk A, Dawyer J, Ito A, et al. Effects of cytokine deficiency on chemokine expression in CNS of mice with EAE. [J]. J Neurosci Res, 2002, 67(5):680-688.
    [4] Karpus WJ, Kennedy KJ. MIP-1alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol, 1997,62(5):681-687
    [5] Ransohoff RM, Hamilton TA, Tani M, et al. Astrocyte expression in murine experimental allergic encephalomyelitis[J]. FASEB,1993,7:592-600
    [6] Baggiolini M. Chemokines and leukocyte traffic.[J] Nature,1998,392(6676):565-568.
    [7] Izikson L, Klein RS, Charo IF, et al. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med. 2000 , 192(7): 1075-1080.
    [8] Huang D, Han Y, Rani MR, et al. Chemokines and Chemokine receptors in inflammationof nervous system: manifold roles and exquisite regulation[J]. Immunol Rev, 2000,177:52-67.
    [9] Ranshoff RM. Chemokines in neurological disease models: correlation between chemokine expression patterns and inflammatory pathology[J].J Leukocyte Biol,1997,62(5):645-652.
    [10] McManus C. Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF. MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. [J]. Neuroimminol,1998,8 (1):20-29.
    [11] Glabinski AR, VK Tuochy, RM Ransohoff. Expression of chemokines RANTES, MIP-1α, and GROα correlates with inflammation in acute experimental autoimmune encephalomyelitis[J]. Neuroimmunomodulation,1998,5(3-4):166-171.
    [1] Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol, 1992;10:153-187
    [2] Kono DH, Urban JL, Horvath SJ. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J Exp Med, 1988;168(1):213-227
    [3] Yu GP, Zhu K, Tian DH, et al. Expression of transcription factor NF-κB p65 in CNS of experimental allergic encephalomyelitis. Chin J Neuroimmunol Neurol, 1998,5:16-19.
    [4] Raine CS, Lee SC, Scheinberg LC, et al. Adhesion molecules on endothelial cells in the central nervous system: an emerging area in the neuroimmunology of multiple sclerosis. Clin Immunol Immunopathol. 1990,57(2):173-187.
    [5] Lee SJ, Benveniste EN. Adhesion molecule expression and regulation on cells of the central nervous system[J]. J Neuroimmrnol, 1999,98(2):77-88.
    [6] Aloisi F. Ria F. Penna G, et al. Microglia are more efficient than astrocytes in antigen processing and in Thl but not Th2 cell activation[J]. J Immunol, 1998,160(10):4671-4680.
    [7] Tan L, Gordon KB, Mueller JP, et al. Presentation of proteolipid protein epitopes and B7-1-dependent activationof encephalitogenic T cells by IFN-γ-activated SJL/J astrocytes [J]. J Immunol, 1998,160:4271-4279.
    [8] Rothlein R. Overview of leukocyte adhesion[J]. Neurology 1997,49(Suppl4):S3-S4.
    [9] Cannella B,Raine CS.The adhesion molecule and cytokine profile of multiple sclerosis lesions[J].Ann Neurol,1995,37:424-435.
    [10] Bilinska M,Frydecka I,Podemski R.Clinical course and changes of soluble interleukin-2 receptor and soluble forms of intercellu-alar adhesion molecule-1(ICAM-1) in serum of multiple sclerosis patients[J].Neurol Neurochir Pol,2001Jan-Feb;35(1):47-56.
    [11] Bo L, Peteson JW, Mork S, et al.Distribution of immmuoglobulin superfamily members ICAM-1,-2,-3,and the beta22 integrin LFA-1 in multiple sclerosis lesions[J].J Neuropathol Exp Neurol,1996,55:1060-1072.
    [12] Kawai K,Kobayashi Y,Shiratori M et al.Intrathedal administration of antibodies againstLFA-1 and against ICAM-1 suppresses experimental allergic encephalom yelitis in rats[J].CellImmunol,1996,17:262-268.
    [13] 尚晓玲,邢广宇,张金涛等.益肾达络饮对实验性自身免疫性脑脊髓炎 IFN-γ、IL-4 的影响. 中医药管理杂志(2006 年第 4 期发表)
    [1] 戚晓昆,蒲传强,朱克,等. 实验性变态反应性脑脊髓炎模型病理及组化研究. 中华神经科杂志, 1996,29(2):97-99.
    [2] Kono DH, Urban JL, Horvath SJ. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J Exp Med, 1988;168(1):213-227
    [3] Kang J, Lemaire HG, Unterbeck AA, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface recptor [J]. Nature, 1987, 325:733
    [4] Salbaum JM, Weidemann A, Lemaire HG, et al. The promoter of Alzheimer's disease amyloid A4 precursor gene. EMBO J. 1988 Sep;7(9):2807-2813.
    [5] Rohan de Silva HA, Jen A, Wickenden C, Jen LS, et al. Cell-specific expression of beta-amyloid precursor protein isoform mRNAs and proteins in neurons and astrocytes. Brain Res Mol Brain Res. 1997,47(1-2):147-156.
    [6] Tomimoto H, Akiguchi I, Wakia H, et al. Ultrastructural localization of amyloid protein precursor in the normal and postischemic gerbil brain [J].Brain Res,1995,672(1-2):187-195.
    [7] Yang Y, Quitschke WW, Brewer GJ. Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Brain Res Mol Brain Res. 1998 ,60(1):40-49.
    [8] Amara FM, Junaid A, Clough RR, et al. TGF-beta(1), regulation of alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line: mRNA stabilization. Brain Res Mol Brain Res. 1999,71(1):42-49.
    [9] Chen ST, Jen A,Gentleman SM, et al. Effects of bFGF and TGFbeta on the expression of amyloid precursor and B-cell lymphoma protooncogene proteins in the rat retina. Neuroreport, 1999 ,10(3):509-512.
    [10] Ringheim GE, Aschmies S, Petko W. Additive effects of basic fibroblast growth factor and phorbol ester on beta-amyloid precursor protein expression and secretion. Neurochem Int, 1997 ,30(4-5):475-81.
    [11] Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997 ,77(4):1081-1132.
    [12] Scott JN, Parhad IM, Clark AW. Beta-amyloid precursor protein gene is differentially expressed in axotomized sensory and motor systems. Brain Res Mol Brain Res. 1991,10(4):315-325.
    [13] Otsuka N, Tomonaga M, Ikeda K. Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury. Brain Res. 1991 ,568(1-2):335-358.
    [14] Arai H, Higuchi S, Matsushita S, et al. Expression of beta-amyloid precursor protein in the developing human spinal cord. Brain Res. 1994 ,642(1-2):132-136.
    [15] Oehmichen M, Meissner C, Schmidt V, et al. Pontine axonal injury after brain trauma and nontraumatic hypoxic-ischemic brain damage[J]. Int J Legal Med, 1999,112(4):261-267.
    [16] Juhler M. Pathophysiological aspects of acute experimental allergic encephalomyelitis [J].Acta Neurol Scand Suppl,1988,119:1-21.
    [1] Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000 ,12(1):1-13.
    [2] Kono DH, Urban JL, Horvath SJ. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J Exp Med, 1988;168(1):213-227
    [3] New L, Han J. The p38 MAP Kinase pathway and its biological function[J].Trends Cardiovasc Med, 1998,8(5):220-228.
    [4] Ma XL, Kumar S, Gao F, et al. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation. 1999 ,99(13):1685-1691.
    [5] BannermanDD,GoldblumSE. Biology of disease: direct effect of endotoxin on the endothelium barrier function and injury [J].Lab Invest,1999,79(10):1181-1199.
    [6] CanoE,MahadevanLC. Parallel signal processing among mammaliam MAPKs [J]. TIBS,1995, 20(3): 117-122.
    [7] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001,410(6824):37-40.
    [8] Han J,Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994,265(5173):808-811.
    [9] Rosen LB, Greenberg ME. Stimulation of growth factor receptor signal transduction by activation of voltage-sensitive calcium channels. Proc Natl Acad Sci U S A. 1996 ,93(3):1113-1118.
    [10] Hans JS, Michael JW. Mitogen-activated protein kinases: specific messages from ubiquitous messsngers [J] .Mol Cell Biol,1999,19 (4):2435-2444.
    [11] LeeS, ParkJ, CheY, et al. Constitutive activity and differential localization of p38alpha and p38beta MAPKs in adult mouse brain. [J].JNeurosciRes,2000,60(5):623-631.
    [12] McLaughlin B, Pal S, Tran MP, et al. p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci. 2001 May 15;21(10):3303-3311.
    [13] 黄翠萍,张珍祥,徐永健.p38蛋白激酶对大鼠肺泡巨噬细胞活化机制的调控. 中国病理生理杂志, 2003;19 (5):661-663.
    [14] Tamura DY, Moore EE, Johnson JL, et al. p38 mitogen-activated protein kinase inhibition attenuates intercellular adhesion molecule-1 up-regulation on human pulmonary microvascular endothelial cells. Surgery. 1998,124(2):403-407.
    [15] Willenborg DO, Fordham SA, Cowden WB, Ramshaw IA. Cytokines and murine autoimmune encephalomyelitis: inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand J Immunol. 1995;41(1):31-41.
    [16] Yasuda CL, AL-Sabbagh A, Oliveira EC, Diaz-Bardales, Garcia AA, Santos LM. Interferon beta modulates experimental autoimmune encephalomyelitis by altering the pattern of cytokine secretion. Immunol Invest 1999 ;28(2-3):115-126
    [17] Kim SH, Kim J, Sharma RP. Inhibition of p38 and ERK MAP kinases blocksendotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacol Res. 2004 ,49(5):433-439.
    [18] Chen P, Li J, Barnes J, et al. .Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol. 2002,169(11):6408-6416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700