高分辨率全谱分解方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震信号是典型的非平稳信号,需要借助时频分析技术刻画其频率随时间的变化特征,这在地震勘探中被称为地震谱分解技术。随着我国陆上油气田勘探程度的增加,勘探目标逐渐转向地层、岩性等复杂油气藏。在这种情况下,常规的谱分解方法已经越来越不能满足地震解释对精度和分辨率的要求,在薄层探测中甚至会得出错误的结论。为此,本文研究了两种聚焦性好、分辨率高的谱分解方法,分别为基于Gabor变换的时频谱重排方法(Reassignment)和基于稀疏反演的谱分解方法,并研究了与之相关的一些算法和技术。文中将能同时产生时频能量谱和有效时频相位谱的谱分解方法称为全谱分解方法,是相对于传统谱分解只利用时频能量信息,而忽略时频相位信息而提出的概念。本文研究力求在一定程度上提高解释能力,为生产和开发提供技术支持,从而降低储层勘探和开发的风险。
     传统时频分析方法是研究高分辨谱分解方法的基础,本文首先回顾了几种常用的时频分析方法,包括短时窗Fourier变换法(STFT)、Gabor变换、连续小波变换(CWT)、S变换和Wigner-Ville分布(WVD)方法。重点从时频分辨率和相位特征两方面对其进行了对比分析。为提高计算效率,并给后续反演谱分解方法提供正反变换算子,本文利用基函数的概念,将几种线性时频分析方法正变换推导成互相关运算形式,逆变换推导成褶积运算形式,并在频率域实现。
     本文研究的第一种高分辨率谱分解方法是基于Gabor变换的时频谱重排方法。系统阐述了时频谱重排方法的原理并推导了实现过程。将谱重排法用于地震数据谱分解,测试例子表明谱重排方法产生的时频谱聚焦性要比常规谱分解方法高很多,计算量仅是Gabor变换方法的2~3倍。但是,对于地震数据这种方法在频率方向聚焦效果受高斯窗参数的影响,高值时低频信号聚焦好,而高频信号在频率方向聚焦不足;低值时高频信号聚焦效果好而低频信号在频率方向聚焦不足。为了解决这个问题,本文提出使用时变窗参数方法,有效的改善了Gabor变换谱重排效果,使其在整个频带内产生聚焦性好、分辨率高的时频谱,本文将提出的这种方法称为变窗参数的Gabor谱重排方法。
     在谱重排域,信号能量高度聚焦,随机噪声能量分散,信号和噪声水平有明显的区分。利用这一特点,本文提出了基于重排谱域阈值的地震数据随机噪声压制技术。利用此原理去噪的前提是存在一个信号可以从重排谱域反投影到时间域的逆过程。为此,本文提出了一种时频谱重排逆过程的实现方法。通过在正变换过程中记录一个加权因子和重排坐标函数,实现信号重构。拟合数据例子证明了谱重排逆过程的可行性和正确性。针对2D地震数据去噪,考虑地震记录的横向连续性和相关性,本文提出首先将2D地震数据转换到频率-空间域,再逐频率运算,在空间-波数域进行谱重排和阈值,称之为空间-波数域谱重排去噪方法。拟合例子和实际数据例子证明了谱重排在随机噪声去除上的有效性。
     本文研究的另一种高分辨率、聚焦性好的谱分解方法是基于稀疏反演的谱分解方法。用非平稳地震褶积模型和基函数分解信号两种方式描述了反演谱分解问题的建立过程,前者被证明等价于CWT变换,是后者的一个特例。用线性反演理论系统的论述了反演谱分解的求解原理。为产生稀疏时频分布,本文使用了L1范数约束条件。快速迭代软阈值算法(FISTA)和In-Crowd算法都是用来求解L1范数正则化问题的快速算法,前者实现简单,适合复数运算,后者更重要的是体现了一种将大型矩阵优化问题降解为小的拥挤矩阵问题的思想。本文提出了将两种算法相结合的方法用于稀疏反演谱分解,拟合算例证明了组合方法比单独使用FISTA算法要快2~3倍。传统谱分解方法对单个地震道独立运算,忽略了地震数据的空间连续性,本文基于反演算法提出了一种考虑横向连续性的谱分解方法,将上一道的结果进行延时校正后作为当前道的初始解,热启动反演算法,速度较单道求解提高了5倍以上。将稀疏反演谱分解用于实际数据储层低频异常检测,用实例证明了稀疏反演谱的高分辨率特性及其在储层识别和层位识别上的优势。利用有效信号在反演时频谱域的稀疏性,本文将基于稀疏反演的谱分解技术用于地震随机噪声去除,拟合算例结果说明了这种方法具有很好的压制强随机噪声的能力。
     将基于稀疏反演谱分解的时频相位谱概念引入到储层检测和层位识别中。由于分辨率的原因,常规谱分解方法得到的相位谱很难用于储层检测和层位识别,而由稀疏反演谱分解产生的时频相位谱,携带有地震记录的时频相位信息,具有与时频能量谱一样的高分辨率特性,并且可用于地层信息解释,因此,稀疏反演谱分解属于高分辨率全谱分解方法。实际数据例子说明,时频相位谱展示了时频能量谱无法展示的额外信息,作为时频能量谱的重要补充,在地震储层和层位识别上表现出了很强的优势和应用前景,有潜力成为地震解释的一把新的利刃。
     两种高分辨率谱分解方法在文中的拟合和实际数据例子上都得到了很好的效果,但在实际生产中仍处于探索阶段,广泛推广前需要解决一些与之相关的问题。本文发现并解决其中两个问题。反演谱分解中使用的子波与地震记录真实子波存在误差时,会轻微影响谱分解的效果,为解决这一问题,本文提出了一种基于子波误差L2范数约束的子波校正技术,可以对误差较小的初始子波进行修正。高分辨率谱分解技术在得到高分辨率时频谱的同时,引起了分频数据体空间采样不足的问题,为此,本文基于压缩感知和离散余弦变换提出了谱数据的空间切片重构技术,实际数据例子证明,所提方法有效的解决了分频数据沿层切片和等时切片空间欠采样问题。高分辨率谱分解技术的发展也必将带动与之相关的新技术的发展。比如,薄层调谐效应在常规谱分解中会引起陷频效应,影响真实分频AVO曲线。本文提出了基于稀疏反演的分频AVO技术,有效的克服了调谐效应的影响。
Seismic signals are typically of non-stationary, which require time-frequencyrepresentations, known as spectral decomposition techniques in geophysics, todescribe its frequency characteristics varying with time. With the increased degree ofChina’s onshore oil and gas exploration, exploration targets are gradually shifting tothe complex oil and gas reservoirs such as stratigraphy or lithology reservoirs. In thiscase, common spectral decomposition methods have become increasingly unable tomeet the accuracy and resolution requirements of seismic interpretation. For thisreason, this paper is committed to research on spectral decomposition methods andtechniques to obtain high-resolution and concentrated time-frequency distributions.The research seeks to improve the interpretation power and provide technical supportfor the production and development, thereby reducing the risk of reservoir explorationand development.
     Common time-frequency representations will play a basic role in the explorationof high-resolution methods. This paper first reviews several common time-frequencyrepresentations, including the STFT, Gabor transform, CWT, S transform andWigner-Ville distribution. These representations are compared particularly focus onthe resolution and phase characteristics. To provide forward and inverse operators forthe following-up high-resolution methods, utilizing the concept of basis function, theforward processes of linear time-frequency transformations are derived tocross-correlations and inverse transformations are derived to convolutions. Thecross-correlation and convolutions are adjoint operators and their frequencyimplementation increases the computational efficiency.
     Two high-resolution spectral decomposition methods are developed in this paper,the first of which is the Gabor transform based reassignment method. The theory andderivation of reassignment are well stated, as well as some synthetic and real dataexamples. The test results show that, the reassigned spectrum are much moreconcentrated than the Gabor spectrum with only2~3times more computational cost.However, the frequency resolution of the reassigned spectrum is affected by theparameter sigma of Gaussian windows. Large sigma value leads to wider windowlength in the time domain, which is good for low frequency components and viceversa. To solve this problem, this paper propose to use a time varying sigma, since thefrequency components of seismic data are usually damped with time. The proposedapproach is called variable window parameter reassignment.
     For seismic data contaminated by the random noise, thresholding in the time-frequency domain can help to attenuate the noise. However, it is hard toattenuate the noise without losing effective energy in the Gabor spectrum domain,since the signal energy spreads in the transformed domain, leading to a low disparityof the energy level with the noise. In the reassigned spectrum domain, the effectivesignal energy is strongly concentrated to points, while random noise spreads in thewhole time-frequency map with a much lower energy level. Consequently, a randomnoise attenuation method is proposed in this paper through thresholding in thereassigned Gabor domain. Time-frequency de-noising in the reassigned domain needsan inverse reassignment operator to go back to the time domain. Then, a weightingfactor is created during the forward reassignment process to save the information ofhow many components are transferred from a point to the desired point. In this way,after thresholding (or masking) the reassigned spectrum to attenuate the random noise,the Gabor spectrum can be reconstructed with this pre-computed weighting factor.Synthetic examples demonstrate the effectiveness of the proposed method. Thereassignment method is mainly demonstrated to work on1D signals in the timedomain. For2D seismic signals, events with varying dips in the time-space domainwill turn to be Chirp or chirp-like signals in the frequency-spacial domain. So, analternative choice is to perform the reassignment along the lateral spacial direction inthe space-wavenumber domain to preserve the lateral continuity of the seismic events,which is referred to as the space-wavenumber reassignment. The synthetic and realdata examples show that the reassignment method is a feasible option for spectraldecomposition and incoherent noise attenuation.
     Another high-resolution decomposition method developed in this paper is thesparse inversion based method, also referred to as inverse spectral decompositionmethod. The inversion problem of spectral decomposition can be described throughtwo different approaches, one of which is using the concept of non-stationary seismicconvolutional model, expressing that the signal is composed from the sum of theconvolutions of wavelets of different frequencies and corresponding reflectivity. Thefrequency dependent reflectivity are referred to as the time-frequency distribution.Another approach states that the frequency dependent reflectivity are generated fromsignal decomposition by special basis functions. The first approach is shown to be thesame as the CWT, which is a special case of the second approach of statement. Thetheory of linear inversion is introduced to solve the inversion problems. To generatesparse spectra, L1norm regularization methods are used, such as the fast iterativesoft-thresholding algorithm (FISTA) and the In-Crowd algorithm. The FISTA ispopular due to its simply implement and the ability to deal with complex numbers.The In-Crowd algorithm is more like a flow or an idea rather than an algorithm. Thispaper integrate FISTA with In-Crowd algorithm, using FISTA to solve sub-problem ateach In-Crowd update. Synthetic examples show that the integrated method is nearly3times faster than FISTA used singly. Seismic data contains many traces with high spatial correlation. There is usually only a little time delay and some random noisedifference between two adjacent traces. Most of characteristic of the two traces aresimilar. Utilizing this property, the result of previous trace after a time-delaycorrection can be as a initial solution to warm start inversion of current trace. In thisway,6times of the computational cost are reduced. The sparse property in thespectrum is also used for the random noise attenuation, the robust ability of which isshown in a synthetic example.
     The concept of time-frequency phase spectrum is introduced for the hydrocarbonreservoir detection and horizons identification. Due to the low-resolution, the phasespectra of common time-frequency distributions are difficult utilized for seismicinterpretation. While the phase spectrum from inversion method, carring theinformation of local phase, has the same high-resolution level with the time-frequencyenergy spectrum. The real data example show that horizons are more easily identifiedwith the help of the phase information than using the energy information only. As animportant complement to the time-frequency energy spectrum, the time-frequencyphase spectrum has the potential to become a new seismic interpretation tool.
     The two high-resolution spectral decomposition methods both show good resultsin the synthetic and real examples. However, they are now still in the exploratorystage, so that before extensive applications, there are some related problems to solve.Two of them are investigated in this paper. The residual between the estimatedwavelet and the real wavelet will affect the result of the inversion spectrum. In orderto solve this problem, a wavelet correction technique is presented based on the L2norm constraint of the wavelet error. The sparse inversion spectral decompositionmethod pursues a high time-frequency resolution distribution and improves he abilityof interpretation of thin-layers. However, on the opposite side, the high resolutiondecomposition leads to under-sampled in the time slices and horizon slices of thespectra of3D seismic data. To overcome this drawback, we propose a discrete Cosinetransform based sparse recovery method which increases the visualization ofunder-sampled spectrum slices. A real data example is used to demonstrate theeffectiveness of the proposed method. The new techniques of high-resolution spectraldecomposition will promote the development of some related new techniques, one ofwhich is presented in this paper. Frequency-dependent AVO contains additionalattributes of the reservoir, which can enhance the accuracy of the seismicinterpretation. However, one difficult of extracting the additional attributes from thinlayers is that the tuning effects affect seismic amplitudes which can mask or at leastalter the features associated with permeability and fluid content. Therefore, this paperpresents one approach to remove the effects of thin-beds on frequency-dependentAVO analysis via spectral inversion.
引文
[1] Potter R K, Kopp G A, Kopp H G. Visible speech[M]. New York: Dover Publications, Inc.,1947.
    [2] Gabor D. Theory of communication. Part1: The analysis of information[J]. ElectricalEngineers-Part III: Radio and Communication Engineering, Journal of the Institution of,1946,93(26):429-441.
    [3] Gabor D. Theory of communication. Part2: The analysis of hearing[J]. Electrical Engineers-Part III: Radio and Communication Engineering, Journal of the Institution of,1946,93(26):442-445.
    [4] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J].Pattern Analysis and Machine Intelligence, IEEE Transactions on,1989,11(7):674-693.
    [5] Sinha S, Routh P S, Anno P D, et al. Spectral decomposition of seismic data withcontinuous-wavelet transform[J]. Geophysics,2005,70(6): P19-P25.
    [6] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory—Part I:Complex signal and scattering in multilayered media[J]. Geophysics,1982,47(2):203-221.
    [7] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the Stransform[J]. IEEE Transactions on Signal Processing,1996,44:998-1001.
    [8] Pinnegar C R, Mansinha L. The S-transform with windows of arbitrary and varying shape[J].Geophysics,2003,68(1):381-385.
    [9]高静怀,陈文超,李幼铭,等.广义S变换与薄互层地震响应分析[J].地球物理学报,2003(04):526-532.
    [10] Classen T, Mecklenbrauker W F G. The Wigner Distribution: A Tool for Time-FrequencySignal Analysis-Part2: Discrete-Time Signals[J]. Philips Journal of Research,1980,35:276-350.
    [11] Wu X Y, Liu T Y. Seismic spectral decomposition and analysis based on Wigner-Villedistribution for sandstone reservoir characterization in West Sichuan depression[J]. JournalOf Geophysics And Engineering,2010,7(2):126-134.
    [12] Wigner E. On the Quantum Correction For Thermodynamic Equilibrium[J]. Physical Review,1932,40(5):749-759.
    [13] Rioul O, Flandrin P. Time-scale energy distributions: a general class extending wavelettransforms[J]. Signal Processing, IEEE Transactions on,1992,40(7):1746-1757.
    [14] Wang Y H. Seismic time-frequency spectral decomposition by matching pursuit[J].Geophysics,2007,72(1): V13-V20.
    [15] Marllat S, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. Ieee Transactionson Antennas and Propagation,1993,41(12):3397-3415.
    [16] Wang Y H. Multichannel matching pursuit for seismic trace decomposition[J]. Geophysics,2010,75(4): V61-V66.
    [17] Huang N E. computer implicated empirical mode decomposition method, apparatus, andarticale of manufacture[J]. U.S. Patent Pending,1996.
    [18] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the RoyalSociety of London, Series A: Mathematical, Physical and Engineering Sciences,1998,454:903–995.
    [19] Han J, van der Baan M. Empirical mode decomposition for seismic time-frequencyanalysis[J]. Geophysics,2013,78(2): O9-O19.
    [20] Kodera K, De Villedary C, Gendrin R. A new method for the numerical analysis ofnon-stationary signals[J]. Physics of the Earth and Planetary Interiors,1976,12(2-3):142-150.
    [21] Auger F, Flandrin P. Improving the readability of time-frequency and time-scalerepresentations by the reassignment method[J]. Signal Processing, IEEE Transactions on,1995,43(5):1068-1089.
    [22] Flandrin P, Auger F, Chassande-Mottin E. Time-frequency reassignment: from principles toalgorithms[J]. Applications in Time-Frequency Signal Processing,2003:179-203.
    [23] Han L, Sacchi M D, Han L. Spectral decomposition and de-noising via time-frequency andspace-wavenumber reassignment [J]. Geophysical Prospecting,2013: no--no.
    [24] Portniaguine O, Castagna J. Inverse spectral decomposition[J]. SEG Technical ProgramExpanded Abstracts,2004,23(1):1786-1789.
    [25] Bonar D C, Sacchi M D. Complex spectral decomposition via inversion strategies[J]. SEGTechnical Program Expanded Abstracts,2010,29(1):1408-1412.
    [26] Han L, Han L, Li Z. Inverse spectral decomposition with the SPGL1algorithm[J]. Journal ofGeophysics and Engineering,2012,9(4):423-427.
    [27] Poularikas A D. Transforms and applications handbook, third edition[M].43, CRC Press,2010.
    [28] Abry P, Goncalves P, Flandrin P. Wavelet-based spectral analysis of1/f processes. inAcoustics, Speech, and Signal Processing,1993. ICASSP-93.,1993IEEE InternationalConference on.1993.
    [29] Mallat S. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way[M].Academic Press,2008.
    [30] Sinha S K, Routh P S, Anno P D, et al. Time-frequency attribute of seismic data usingcontinuous wavelet transform[J]. SEG Technical Program Expanded Abstracts,2003,22(1):1481-1484.
    [31] Sinha S K, Routh P S, Anno P D, et al. Scale attributes from continuous wavelet transform[J].SEG Technical Program Expanded Abstracts,2005,24(1):779-781.
    [32] de Matos M C, Davogusto O, Zhang K, et al. Continuous wavelet transform phase residuesapplied to detect stratigraphic discontinuities[J]. SEG Technical Program Expanded Abstracts,2010,29(1):1494-1499.
    [33] Tai S, Han D H. Castagna J P. Attenuation estimation with continuous wavelet transforms[J].SEG Technical Program Expanded Abstracts,2006,25(1):1933-1937.
    [34] Kulesh M, Holschneider M, Diallo MS, et al. Modeling of wave dispersion using continuouswavelet transforms[J]. Pure And Applied Geophysics,2005,162(5):843-855.
    [35] Kazemeini S H, Juhlin C, Zinck-Jorgensen K, et al. Application of the continuous wavelettransform on seismic data for mapping of channel deposits and gas detection at the CO2SINKsite, Ketzin, Germany[J]. Geophysical Prospecting,2009,57(1):111-123.
    [36] Holschneider M, Diallo M S, Kulesh M, et al. Characterization of dispersive surface wavesusing continuous wavelet transforms[J]. Geophysical Journal International,2005,163(2):463-478.
    [37] Tselentis G A, Martakis N, Paraskevopoulos P, et al. Strategy for automated analysis ofpassive microseismic data based on S-transform, Otsu's thresholding, and higher orderstatistics[J]. Geophysics,2012,77(6): Ks43-Ks54.
    [38] Askari R, Ferguson R J. Dispersion and the dissipative characteristics of surface waves in thegeneralized S-transform domain[J]. Geophysics,2012,77(1): V11-V20.
    [39] Ruthner M P, Oliveira A S d. Application of S Transform in the Spectral Decomposition ofSeismic Data.9th International Congress of the Brazilian Geophysical Society2005.
    [40]郭爱华,路鹏飞,刘鹏,等.基于广义S变换的地震资料谱分解技术研究[J].石油天然气学报,2008(03):83-86+445.
    [41]陈学华,贺振华,黄德济.基于广义S变换的地震资料高效时频谱分解[J].石油地球物理勘探,2008(05):530-534+483.
    [42]陈学华,贺振华,黄德济.基于广义S变换的信号提取与抑噪[J].成都理工大学学报(自然科学版),2006(04):331-335.
    [43] Ville J. Theorie et Applications de la Notion de Signal Analytique[J]. Cables et Transmission,1948,2.
    [44] Li Y, Zheng X. Spectral decomposition using Wigner-Ville distribution with applications tocarbonate reservoir characterization[J]. The Leading Edge,2008,27(8):1050-1057.
    [45] Zhang R. Spectral Decomposition of Seismic Data via Wigner-ville Distribution and ChirpletTransform.70th EAGE Conference&Exhibition2008.
    [46] Li Y, Li J, Zheng X. Channel system characterization using Wigner-Ville distribution-basedspectral decomposition[J]. SEG Technical Program Expanded Abstracts,2010,29(1):1418-1422.
    [47] Wang Z W, Wang X L, Xiang M, et al. Reservoir information extraction using a fractionalfourier transform and a smooth pseudo Wigner-Ville distribution[J]. Applied Geophysics,2012,9(4):391-400.
    [48] Sattar F, Salomonsson G. The use of a filter bank and the Wigner-Ville distribution fortime-frequency representation[J]. Ieee Transactions on Signal Processing,1999,47(6):1776-1783.
    [49] Wu X Y, Liu T Y. Spectral decomposition of seismic data with reassigned smoothed pseudoWigner-Ville distribution[J]. Journal Of Applied Geophysics,2009,68(3):386-393.
    [50] Neto E P D, Custaud M A, Frutoso J, et al. Smoothed pseudo Wigner-Ville distribution as analternative to Fourier transform in rats[J]. Autonomic Neuroscience-Basic&Clinical,2001,87(2-3):258-267.
    [51] Ozbek A, Ozdemir A K, Vassallo M. Interpolation by matching pursuit[J]. SEG TechnicalProgram Expanded Abstracts,2009,28(1):3254-3258.
    [52] Zhang T, Li X Y. Chapman M. Estimating frequency-dependent seismic attributes bymatching pursuit: A case study[J]. SEG Technical Program Expanded Abstracts,2008,27(1):3023-3027.
    [53] Wu G N, Cao S Y, Sun N. Matching pursuit method based on complex seismic traces and itsapplication of hydrocarbon exploration[J]. Chinese Journal of Geophysics-Chinese Edition,2012,55(6):2027-2034.
    [54] Nguyen T, Castagna J. Matching pursuit of two dimensional seismic data and its filteringapplication[J]. SEG Technical Program Expanded Abstracts,2000,19(1):2067-2069.
    [55] Karahanoglu N B, Erdogan H. A*orthogonal matching pursuit: Best-first search forcompressed sensing signal recovery[J]. Digital Signal Processing,2012,22(4):555-568.
    [56]冯磊,姜在兴.基于匹配追踪的谱分解方法及其应用[J].勘探地球物理进展,2009(01):33-36+83-84.
    [57]张显文,韩立国,王宇,等.地震信号谱分解匹配追踪快速算法及其应用[J].石油物探,2010(01):1-6+15.
    [58] Song H B, Bai Y, Pinheiro L, et al. Analysis of ocean internal waves imaged by multichannelreflection seismics, using ensemble empirical mode decomposition[J]. Journal of Geophysicsand Engineering,2012,9(3):302-311.
    [59] Bekara M, van der Baan M. Random and coherent noise attenuation by empirical modedecomposition[J]. Geophysics,2009,74(5): V89-V98.
    [60] Battista B M, Knapp C, McGee T, et al. Application of the empirical mode decompositionand Hilbert-Huang transform to seismic reflection data[J]. Geophysics,2007,72(2):H29-H37.
    [61] Chakraborty A, Okaya D. Frequency-time decomposition of seismic data usingwavelet-based methods[J]. Geophysics,1995,60(6):1906-1916.
    [62] Castagna J P, Sun S, Siegfried R W. Instantaneous spectral analysis: Detection oflow-frequency shadows associated with hydrocarbons[J]. The Leading Edge,2003,22(2):120-127.
    [63] Gardner T J, Magnasco M O. Sparse time-frequency representations[J]. Proceedings of theNational Academy of Sciences of the United States of America,2006,103(16):6094-9.
    [64] Sejdic E, Djurovic I, Jiang J. Time-frequency feature representation using energyconcentration: An overview of recent advances[J]. Digital Signal Processing,2009,19(1):153-183.
    [65] Wang H L, Siu K, Ju K W, et al. A high resolution approach to estimating time-frequencyspectra and their amplitudes[J]. Annals of Biomedical Engineering,2006,34(2):326-338.
    [66] Shafi I, Ahmad J, Shah S I, et al. Techniques to Obtain Good Resolution and ConcentratedTime-Frequency Distributions: A Review[J]. Eurasip Journal on Advances in SignalProcessing,2009.
    [67] Liu G C, Fomel S, Chen X H. Time-frequency analysis of seismic data using localattributes[J]. Geophysics,2011,76(6): P23-P34.
    [68] David B. Sparsity and Group Sparsity Constrained Inversion for Spectral Decomposition ofSeismic Data[D]. Department of Physics, University of Alberta,2012.
    [69]李林峡.高精度谱反演方法研究与应用[D].成都理工大学,2012.
    [70] Nelson D J. Cross-spectral methods for processing speech[J]. Journal of the AcousticalSociety of America,2001,110(5):2575-2592.
    [71] Fitz K, Haken L. On the use of time-frequency reassignment in additive sound modeling[J].Journal Of the Audio Engineering Society,2002,50(11):879-893.
    [72] Fulop S A. Fitz K. Algorithms for computing the time-corrected instantaneous frequency(reassigned) spectrogram, with applications[J]. The Journal of the Acoustical Society ofAmerica,2006,119(1):360-360.
    [73] Fulop S A. Accuracy of formant measurement for synthesized vowels using the reassignedspectrogram and comparison with linear prediction[J]. The Journal of the Acoustical Societyof America,2010,127(4):2114-7.
    [74] Plante F, Meyer G, Ainsworth W. Improvement of speech spectrogram accuracy by themethod of reassignment[J]. Speech and Audio Processing, IEEE Transactions on,1998,6(3):282-287.
    [75] Odegard J E, Baraniuk R G. Instantaneous frequency estimation using the reassignmentmethod[J]. Proceedings of the SEG Meeting,1998:1941-1944.
    [76] Pedersen H A, Mars J I, Amblard P O. Improving surface-wave group velocity measurementsby energy reassignment[J]. Geophysics,2003,68(2):677-684.
    [77] Kahoo A R, Siahkoohi H R. Random noise suppression from seismic data usingtime-frequency peak filtering. in EAGE.2009: EAGE.
    [78] Exxonmobil C W H, Exxonmobil M S D. Energy Reassignment of an Image for ImprovedPicking of Velocity Dispersion Curves[J]. Image (Rochester, N.Y.),2010(June2010):14-17.
    [79] Han L, Bonar D, Sacchi M D. Seismic Denoising by Time-Frequency Reassignment.GeoConvention2012: Vision. Calgary,2012:1-4.
    [80] Elboth T, Presterud I V, Hermansen D. Time-frequency seismic data de-noising[J].Geophysical Prospecting,2010,58(3):441-453.
    [81] Puryear C I, Portniaguine O N, Cobos C M, et al. Constrained least-squares spectral analysis:Application to seismic data[J]. Geophysics,2012,77(5): V143-V167.
    [82] Han L, Han L G, Ning Y L. The Impact of Wavelets on Inverse Spectral Decomposition. in73rd EAGE Conference&Exhibition incorporating SPE EUROPEC2011.2011. Vienna,Austria.
    [83] Han L, Han L G. Seismic spectral decomposition and denoising with In-Crowd algorithm,SEG Technical Program Expanded Abstracts2012,2012:1-5.
    [84] Han L, Han L, Ning Y. Reducing thin‐bed effects on frequency‐dependent AVO viaspectral inversion, SEG Technical Program Expanded Abstracts2011,2011:396-400.
    [85] Aster R, Thurber C, Borchers B. Parameter Estimation and Inverse Problems[M]. ElsevierAcademic Press,2005.
    [86] Sacchi M, Ulrych T. High‐resolution velocity gathers and offset space reconstruction[J].GEOPHYSICS,1995,60(4):1169-1177.
    [87] Trad D, Ulrych T, Sacchi M. Latest views of the sparse Radon transform[J]. Geophysics,2003,68(1):386-399.
    [88] Beck A, Teboulle M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear InverseProblems[J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202.
    [89] Chen S S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAMJournal on Scientic Computing,1998,20:33-61.
    [90] Malioutov D M, Cetin M, Willsky A S. Homotopy continuation for sparse signalrepresentation. in Acoustics, Speech, and Signal Processing,2005. Proceedings.(ICASSP'05). IEEE International Conference on.2005.
    [91] van den Berg E. Friedlander M P. Probing the Pareto frontier for basis pursuit solutions[J].SIAM J. Sci. Comput.,2008,31(2):890-912.
    [92] Gill P R, Wang A, Molnar A. The In-Crowd Algorithm for Fast Basis Pursuit Denoising[J].Signal Processing, IEEE Transactions on,2011,59(10):4595-4605.
    [93] Donoho D L. Compressed sensing[J]. Ieee Transactions on Information Theory,2006,52(4):1289-1306.
    [94] Baraniuk R G. Compressive sensing[J]. Ieee Signal Processing Magazine,2007,24(4):118-120+124.
    [95] Yilmaz Oz. Seismic data analysis[M]. Cambridge: Cambridge University Press,2001.
    [96] Taner M T, Koehler F, Sheriff R E. Complex seismic trace analysis[J]. Geophysics,1979,44(6):1041-1063.
    [97] Barnes A E. A tutorial on complex seismic trace analysis[J]. Geophysics,2007,72(6):W33-W43.
    [98] Hart B. Stratigraphically significant attributes[J]. The Leading Edge,2008(27):320-324.
    [99] de Matos M C, Davogustto O, Zhang K, et al. Detecting stratigraphic discontinuities usingtime-frequency seismic phase residues[J]. Geophysics,2011,76(2): P1-P10.
    [100] Chopra S, Marfurt K J. Seismic attributes for prospect identification and reservoircharacterization[M]. SEG and EAGE,2007.
    [101] Partyka G, Gridley J, Lopez J. Interpretational applications of spectral decomposition inreservoir characterization[J]. The Leading Edge,1999,18(3):353-360.
    [102] Burnett M D, Castagna J P, Mendez-Hernandez E, et al. Application of spectraldecomposition to gas basins in Mexico[J]. The Leading Edge,2003,22(11):1130-1134.
    [103] Sun S, Castagna J P, Siegfried R W. Examples of wavelet transform time-frequency analysisin direct hydrocarbon detection[J]. SEG Technical Program Expanded Abstracts,2002,21(1):457-460.
    [104] Marfurt K J, Kirlin R L. Narrow-band spectral analysis and thin-bed tuning[J]. Geophysics,2001,66(4):1274-1283.
    [105] Puryear C I, Castagna J P. Layer-thickness determination and stratigraphic interpretationusing spectral inversion: Theory and application[J]. Geophysics,2008,73(2): R37-R48.
    [106] Prasad R, Dawwas M, Tanoli S. Detecting Channel Sands using Spectral Decomposition on3-D Seismic Data: A case study. EAGE Detective Stories Behind Prospect GenerationWorkshop-Challenges and the Way Forward2009.
    [107] Wei X D. Interpretational Applications of Spectral Decomposition in Identifying MinorFaults.72nd EAGE Conference&Exhibition. Barcelona,2010.
    [108] Chapman M, Liu E, Li X Y. The influence of abnormally high reservoir attenuation on theAVO signature[J]. The Leading Edge,2005,24(11):1120-1125.
    [109] Liu E, Chapman M, Loizou N, et al. Applications of spectral decomposition for AVOanalyses in the west of Shetland[J]. SEG Technical Program Expanded Abstracts,2006,25(1):279-283.
    [110] Odebeatu E, Zhang J, Chapman M, et al. Application of spectral decomposition to detectionof dispersion anomalies associated with gas saturation[J]. The Leading Edge,2006,25(2):206-210.
    [111] Margrave G F, Lamoureux M P, Henley D C. Gabor deconvolution: Estimating reflectivityby nonstationary deconvolution of seismic data[J]. Geophysics,2011,76(3): W15-W30.
    [112]吴小羊.基于频谱分析技术的频散AVO反演研究[D].武汉:中国地质大学,2010.
    [113]薛志刚.高精度时频分析研究及其在地震资料解释中的应用[D].北京:中国石油大学,2010.
    [114]宁媛丽.频散介质基于反演谱分解的AVO方法研究[D].长春:吉林大学,2012.
    [115]张显文.储层地震预测技术与储层地球物理参数反演[D].长春:吉林大学,2010.
    [116]徐善辉.基于Hilbert-Huang变换的地震噪声衰减与薄层预测技术研究[D].长春:吉林大学,2012.
    [117] Claerbout J. Earth Soundings Analysis: Processing Versus Inversion. Stanford ExplorationProject[M]. Blackwell Scientic Publications,1992.
    [118] Tikhonov A N, Arsenin V Y. Solutions of Ill Posed Problems[M]. Washington, DC: V. H.Winston,1977.
    [119] Wei Y M, Zhang N M, Ng M K, et al. Tikhonov regularization for weighted total leastsquares problems[J]. Applied Mathematics Letters,2007,20(1):82-87.
    [120] Lampe J, Voss H. Large-scale Tikhonov regularization of total least squares[J]. Journal ofComputational and Applied Mathematics,2012,238:95-108.
    [121] Golub G H, Hansen P C, O'Leary D P. Tikhonov regularization and total least squares[J].Siam Journal on Matrix Analysis and Applications,1999,21(1):185-194.
    [122] Beck A, Ben-Tal A. On the solution of the Tikhonov regularization of the total least squaresproblem[J]. Siam Journal on Optimization,2006,17(1):98-118.
    [123] Kelley C T. Iterative Methods for Optimization[M]. SIAM Frontiers in AppliedMathematics,1999.
    [124] Scales J. Tomographic inversion via the conjugate gradient method[J]. GEOPHYSICS,1987,52(2):179-185.
    [125] Hestenes M, Stiefel E. Methods of conjugate gradients for solving linear systems[J].Journal of Research of the National Bureau of Standards,1952,49:409-436.
    [126] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccuratemeasurements[J]. Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
    [127] Cormode G, Muthukrishnan S. Combinatorial algorithms for compressed sensing[J].Structural Information and Communication Complexity, Proceedings,2006,4056:280-294.
    [128] Daubechies I, Defrise M, Mol C D. An iterative thresholding algorithm for linear inverseproblems with a sparsity constraint[J]. Commun. Pure Appl. Mathe.,2004,57:1413-1541.
    [129] Figueiredo M A T, Nowak R D, Wright S J. Gradient Projection for Sparse Reconstruction:Application to Compressed Sensing and Other Inverse Problems [J]. IEEE J. Sel. Top.Signal Process.,2007,1:586-597.
    [130] Figueiredo M A T, Nowak R D. An EM algorithm for wavelet-based image restoration[J].IEEE Trans. Image Process.,2003,12:906-916.
    [131] Yang A, Ganesh A, Sastry S, et al. Fast L1-Minimization Algorithms and An Application inRobust Face Recognition: A Review[R]. EECS Department, University of California,Berkeley,2010.
    [132] Seung-Jean K, Koh K, Lustig M, et al. An Interior-Point Method for Large-ScaleL1-Regularized Least Squares[J]. Selected Topics in Signal Processing, IEEE Journal of,2007,1(4):606-617.
    [133] Daubechies I, Devore R, Fornasier M, et al. Iteratively Reweighted Least SquaresMinimization for Sparse Recovery[J]. Communications on Pure and Applied Mathematics,2010,63(1):1-38.
    [134] Maleki A, Montanari A. Analysis of approximate message passing algorithm. inInformation Sciences and Systems (CISS),201044th Annual Conference on.2010.
    [135] Donoho D L, Maleki A, Montanari A. Message passing algorithms for compressed sensing:I. motivation and construction. in Information Theory Workshop (ITW),2010IEEE.2010.
    [136] Donoho D L, Maleki A, Montanari A. Message passing algorithms for compressed sensing:II. analysis and validation. in Information Theory Workshop (ITW),2010IEEE.2010.
    [137] Zwartjes P M, Sacchi M D. Fourier reconstruction of nonuniformly sampled, aliasedseismic data[J]. Geophysics,2007,72(1): V21-V32.
    [138] Margrave G F. Direct Fourier migration for vertical velocity variations[J]. Geophysics,2001,66(5):1504-1514.
    [139] Buland A, Kolbjornsen O, Omre H. Rapid spatially coupled AVO inversion in the Fourierdomain[J]. Geophysics,2003,68(3):824-836.
    [140] Galiana-Merino J J, Parolai S, Rosa-Herranz J. Seismic wave characterization usingcomplex trace analysis in the stationary wavelet packet domain[J]. Soil Dynamics andEarthquake Engineering,2011,31(11):1565-1578.
    [141] Claerbout J F. Fundamentals of geophysical data processing[M]. Blackwell ScientificPublications, Inc,1985.
    [142] White R. Properties of instantaneous seismic attributes[J]. The Leading Edge,1991,10(7):26-32.
    [143] Gdeisat B M, Lilley F. Two-Dimensional Phase Unwrapping Problem[J]. Engineering,2007,1:1-32.
    [144] Daubechies I, Lu J F, Wu H T. Synchrosqueezed wavelet transforms: An empirical modedecomposition-like tool[J]. Applied And Computational Harmonic Analysis,2011,30(2):243-261.
    [145] Gardner T J, Magnasco M O. Sparse time-frequency representations[J]. Proceedings Of theNational Academy Of Sciences Of the United States Of America,2006,103(16):6094-6099.
    [146] Kodera K, Gendrin R, Villedary C. Analysis of time-varying signals with small BTvalues[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on,1978,26(1):64-76.
    [147]韩利,韩立国.基于时变窗参数的Reassignment地震谱分解技术. in中国地球物理学会第二十八届年会.2012.中国北京.
    [148] Yuan S Y, Wang S X, Li G F. Random noise reduction using Bayesian inversion[J]. Journalof Geophysics and Engineering,2012,9(1):60-68.
    [149] Oropeza V E, Sacchi M D. A randomized SVD for Multichannel Singular SpectrumAnalysis (MSSA) noise attenuation[J]. SEG Technical Program Expanded Abstracts,2010,29(1):3539-3544.
    [150] Wang D L, Tong Z F, Tang C, et al. An iterative curvelet thresholding algorithm for seismicrandom noise attenuation[J]. Applied Geophysics,2010,7(4):315-324.
    [151] Liu G C, Chen X H, Du J, et al. Random noise attenuation using f-x regularizednonstationary autoregression[J]. Geophysics,2012,77(2): V61-V69.
    [152] Elboth T, Ida Vik Presterud, Hermansen D. Time-frequency seismic data de-noising[J].Geophysical Prospecting,2010,58(3):441-453.
    [153] Liu Y P, Li Y, Nie P F, et al. Spatiotemporal Time-Frequency Peak Filtering Method forSeismic Random Noise Reduction[J]. Ieee Geoscience and Remote Sensing Letters,2013,10(4):756-760.
    [154] Chen X H, He Z H, Huang D J, et al. Low frequency shadow detection of gas reservoirs intime-frequency domain[J]. Chinese Journal Of Geophysics-Chinese Edition,2009,52(1):215-221.
    [155] Tarantola A. Inverse problem theory and methods for model parameter estimation[M].SIAM,2005.
    [156] Bjorck A. Numerical Methods for Least Squares Problems[M]. Philadelphia: SIAM,1996.
    [157] Saunders M A. Solution of sparse rectangular systems using LSQR and CRAIG[J]. BIT,1995,35:588-604.
    [158] Paige C C, Saunders M A. An algorithm for sparse linear equations and sparse leastsquares[J]. ACM TOMS,1982,8(1):43-71.
    [159] Paige C C, Saunders M A. Sparse linear equations and least squares problems[J]. ACMTOMS1982,8(2):195-209.
    [160] Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting[J].Multiscale Modeling&Simulation,2005,4(4):1168-1200.
    [161] Yuan S, Wang S, Yu Y, et al. Ill-posed analysis for spectral inversion[J]. SEG TechnicalProgram Expanded Abstracts,2009,28(1):2447-2451.
    [162] Bao L, Lin Y Q, Wei Y M. Restarted generalized Krylov subspace methods for solvinglarge-scale polynomial eigenvalue problems[J]. Numerical Algorithms,2009,50(1):17-32.
    [163] Oldenburg D W, McGillivray P R, Ellis R G. Generalized Subspace Methods ForLarge-Scale Inverse Problems[J]. Geophysical Journal International,1993,114(1):12-20.
    [164] John A Scales, Adam G. Roubust methods in inverse theory[J]. Inverse Problems,1988,4:1071-1091.
    [165] Landweber L. An iteration formula for Fredholm integral equations of the first kind[J].American Journal of Mathematics1951,73:615-624.
    [166] Golub G, Loan C. Matrix computations[M]. Johns Hopkins University Press,1996.
    [167] Bioucas-Dias J M, Figueiredo M A T. A new twist: Two-step iterativeshrinkage/thresholding algorithms for image restoration[J]. IEEE TRansactions on ImageProcessing,2007,12:2992-3004.
    [168] Combettes P L, Pesque J C. Proximal thresholding algorithm for minimization overorthonormal bases[J]. SIAM J. on Optimization,2007,18:1351-1376.
    [169] Bao L, Lin Y Q, Wei Y M. Krylov subspace methods for the generalized Sylvesterequation[J]. Applied Mathematics and Computation,2006,175(1):557-573.
    [170] Robert J S. Wavelet denoising via sparse representation[J]. Science in China(SeriesF:Information Sciences),2009(08):1371-1377.
    [171] Kumar V, Oueity J, Clowes R M, et al. Enhancing crustal reflection data through curveletdenoising[J]. Tectonophysics,2011,508(1-4):106-116.
    [172] Edgar J A, van der Baan M. How reliable is statistical wavelet estimation?[J]. Geophysics,2011,76(4): V59-V68.
    [173] Wu H Z, Fu L Y, Meng X H. Blind deconvolution of seismic signals with non-whitereflectivities[J]. Exploration Geophysics,2007,38(4):235-241.
    [174] Van der Baan M, Pham D T. Robust wavelet estimation and blind deconvolution of noisysurface seismics[J]. Geophysics,2008,73(5): V37-V46.
    [175] Liao B Y, Huang H C. Estimation of the source time function based on blind deconvolutionwith Gaussian mixtures[J]. Pure and Applied Geophysics,2005,162(3):479-494.
    [176]陈小宏,田立新,黄饶.地震分频AVO方法研究现状与展望[J].海相油气地质,2009(04):60-66.
    [177] Wilson A, Chapman M, Li X Y. Frequency-dependent AVO inversion[J]. SEG TechnicalProgram Expanded Abstracts,2009,28(1):341-345.
    [178] Wu X, Chapman M, Wilson A, et al. Estimating seismic dispersion from pre-stack datausing frequency‐dependent AVO inversion[J]. SEG Expanded Abstracts2010,29(1):425-429.
    [179] Marmalyevskyy N, Roganov Y, Kostyukevych A, et al. Frequency depending AVO for agas-saturated periodical thin-layered stack[J]. SEG Technical Program Expanded Abstracts,2006,25(1):274-278.
    [180] Chapman M, Liu E, Li X. The influence of fluid-sensitive dispersion and attenuation onAVO analysis[J]. Geophysical Journal International,2006,167(1):89-105.
    [181] Wu X, Chapman M, Wilson A, et al. Estimating seismic dispersion from pre-stack datausing frequency-dependent AVO inversion[J]. SEG Technical Program Expanded Abstracts,2010,29(1):425-429.
    [182] Wilson A, Chapman M, Li X Y. Use of Frequency Dependent AVO Inversion to EstimateP-wave Dispersion Properties from Reflection Data.71st EAGE Conference&Exhibition2009.
    [183] Bakke N E, Ursin B. Thin-bed AVO effects[J]. Geophysical Prospecting,1998,46(6):571-587.
    [184] Widess M B. HOW THIN IS A THIN BED?[J]. Geophysics,1973,38(6):1176-1180.
    [185] Yoon W J, Farfour M. Spectral decomposition aids AVO analysis in reservoircharacterization: A case study of Blackfoot field, Alberta, Canada[J]. Computers&Geosciences,2012,46:60-65.
    [186] Shatilo A, Aminzadeh F. Constant normal-moveout (CNMO) correction: a technique andtest results [J]. Geophysical Prospecting,2000,48(3):473-488.
    [187] Romberg J. Imaging via compressive sampling[J]. Ieee Signal Processing Magazine,2008,25(2):14-20.
    [188] She Q S, Luo Z Z, Zhu Y P, et al. Spatially adaptive image reconstruction via compressivesensing. in Asian Control Conference,2009. ASCC2009.7th.2009.
    [189] Gonzalez R C, Woods R E. Digital Image Processing[M]. prentice hall,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700