四种人脸识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脸识别是近二十年来模式识别中的一个重要课题,近年来人脸识别系统已经可以较为准确的在某些限定的条件下对人脸进行识别,随着应用范围的不断扩展,受到越来越多企业和单位的重视。现在,人脸识别已经在公共安全、智能监控、数字身份认证、电子商务、多媒体和数字娱乐等领域显现了巨大的应用价值。随着人脸识别的应用越来越广泛,人们对于人脸识别实用性的要求则变得越来越严格。虽然现今的大多数人脸识别算法已经可以在较为固定的环境下对人脸进行较为正确的识别,但实际使用过程中,由于受到光照、姿势、表情、遮挡等因素的影响,人脸识别的精度仍然不能满足实际的要求。本文针对上述存在问题进行探究,并取得了如下的主要成果:
     1、针对主成分分析( PCA)方法和仿生方法在特征提取和降维方面的不足,提出一种Gabor特征提取的仿生人脸识别方法。该方法首先提取人脸图像Gabor特征向量,经2DPCA方法降维处理后运用仿生识别方法对其进行人脸识别。在Yale Face database B和PIE人脸库上验证了该方法的有效性。实验结果表明,该方法的分类准确性优于仿生识别方法和PCA等方法。
     2、针对基于欧氏空间的人脸识别算法框架与人类的视觉感知系统有着很大差异的问题,提出了一种相关性子空间人脸识别方法,通过相关性度量多维尺度分析(Correlation MDS,CMDS)方法寻找到一个相关性保持的子空间,将高维人脸数据投影到此子空间中,使得人脸图像间的相似性能够得到保持。既然高维数据中的非线性几何结构常常是嵌在数据间的相似性,因此相关性子空间人脸识别方法能够有效地获取高维人脸数据中的非线性流形结构。在多个数据集上的实验结果表明:该方法可有效地提取高维数据的内在结构。
     3、从人类认知方式出发,提出了一种基于统计学习的局部匹配人脸识别方法,该方法首先将人脸图像划分成若干小块,将每个子块看成一弱分类器,接着利用Adaboost学习算法将这些弱分类器组成一个强分类器,将各个子块(特征)有效地组合起来,发挥他们的最佳判别能力,提高最终的分类效果。与整体匹配方法相比,局部匹配的人脸识别对人脸局部变化(光照、表情、姿态等)更具有健壮性,实验结果表明该方法可有效地提高人脸的识别准确率并对人脸的表情和光照具有较好的鲁棒性。
     4、针对稀疏表示方法存在对负系数缺乏必要的物理意义解释且不能通过常用的梯度下降法来求解的问题,提出了一种非负稀疏表示的人脸识别方法,其理论基础是将测试图像表示成训练图像的非负稀疏线性组合,这样更符合人类的认知且更具有实际的物理意义,还可将稀疏表示中L1范数最小化问题转换成基于L2范数最小化的稀疏表示问题,从而能够通过常用的梯度下降法来求解。该方法无需进行降维,特征选择,合成训练样本和变换域等操作。在Yale B扩展数据库上的大量的实验结果表明了该算法的有效性。
Face recognition was one of the most prominent areas in pattern recognition for several decades. Numerous face recognition methods have been proposed. Current systems can do fairly accurate recognition under constrained scenarios using these face recognition methods. It has attracted much attention due to its potential application values. Nowadays, face recognition has great value in public safety, intelligence surveillance, identification, E-commerce, multimedia, digital entertainment and so on.
     Requirements of the practicality of the face recognition are increased along with the wide use. Also, most of the current face recognition methods can do fairly accurate recognition in fixed environment. But the fixed environment constrain is not suitable for most of the application. This paper discuss the problems mentioned above, the following contributions are made:
     1. In order to overcome the shortcomings of Principal Component Analysis(PCA) and bionic methods in feature extracting and dimension reduction, a method for extracting Gabor features of face images based on Gabor wavelet is presented. First, Gabor features are extracted from face images. After reduced dimension by 2DPCA, the nearest classifier is trained for classification. The experiments being performed on Yale Face Database B and PIE human face image database show the method presented in this paper is superior to bionic recognition algorithm and PCA algorithm.
     2. According to the difference between face recognition algorithm in Euclidean metric subspace and human visual perception system, we propose a face recognition method in correlation measure subspace. It aims to find a subspace with preserving correlation measure by correlation multidimensional scaling. Then high-dimensional face image data are projected into such a space. As a result, the similarities between face images are preserved. Since there is a low-dimensional nonlinear manifold lying in the high-dimensional data, the dimensionality and nonlinear geometry of that manifold often is embedded in the similarities between the data points. Thus, the proposed method can effectively learn the nonlinear manifold embedded in the high-dimensional face images. The experimental results on various databases show that the proposed methods can effectively extract the intrinsic structure of high-dimensional data.
     3. From the way of human cognition, we propose a local matching face recognition method based statistical learning. It first divides the image into several subimages, then each subimage is considered as a weak classifier. The Adaboost learning algorithm is used to train the weak classifiers and construct a strong classifier. As a result, each subimage is effectively combined together to explore their best discriminanting power and improve the classification accuracy. Compared with holistic matching methods, the local matching method is robust to variations in illumination, expression, and pose, etc. The experimental results show the proposed method can improve the face recognition accuracy and is robust to variations in illumination and expression.
     4 Sparse representation is difficult to explain the physical meanings of negative coefficient and can not be solved by using gradient descent method. According the limitation of sparse representation, we propose a face recognition method via nonnegative sparse representation. In this method, the testing image is represented as a linear combination with nonnegative coefficients of the training images. The nonnegative limitation is more consistent with human cognitive and has practical physical interpretation. The proposed method transforms L1 norm minimization into L2 norm minimization which can be solved by using gradient descent method. This method achieves state-of-the-art performance using raw imagery data, with no need for dimension reduction, feature selection, synthetic training examples or domain-specific information. Extensive experiments on Extended Yale B database verify the efficacy of the proposed method.
引文
[1] Bertillon. Identification of human beings by the system of Alphonse[J]. Journal of the franklin Institute, Vol. 167, no. 5:321-358, 1909.
    [2] Alex(Sandy) Pentland, Tanzeem Choudhury. Face Recognition for Smart Environments[J]. IEEE Computer, February 2000:50-55.
    [3] Frederic I. Parke. A model for human faces that allows speech synchronized animation[J], Computers and Graphics, Vol. 1, no. 1:3-4, 1975.
    [4] L. D. Harmon, S. C. Kuo, P. F. Raming and U. Raudkivi. Identification of human face profiles by computer [J], Pattern Recognition, Vol. 10, no. 5:301-312,1978.
    [5] Goldstein, A. Jay and Harmon, Leon D. and Lesk, Ann B. Identification of Human Faces[J], IEEE, Vol 59, No 5: 748-746, 1971.
    [6] Kaya, Y. and Kobayashi, K. A Basic Study on Human Face Recognition[J], Frontiers of Pattern Recognition, 1972: 265-289.
    [7] T. Kanade. Computer Recogniton of Human Faces[J], Basel and Stuttgart, 1977: 23-32.
    [8] Bledssoe W W. Man-machine facial recognition[R]. Techinical Report RPI 22. Panoramic Research Inc, Palo Alto, CA. 1966.
    [9] Bruneli R, Poggio T. Face recognition: feature versus templates[J]. IEEE Trans. PAMI, vol.15, no.10: 1042-1052, 1993.
    [10] Huang C L, Chen C W. Human facial feature extraction for face interpretation and recognition[J]. Pattern Recognition, 25(2): 1435-1444, 1992.
    [11] Kanade T. Computer recognition of human faces[M]. Basel and Stuttgart: Birkhauser, 1977.
    [12] Yuille A, Cohen D. Feature extraction from faces using deformable templates[C]. Proc. IEEE Computer Soc. Conf. on CVPR, 1989,104-109.
    [13] Craw I. Recognizing face features and faces[J]. IEE Colloquium on Machine Storage and Recognition of Faces, London, ,no.7:1-4, 1992.
    [14] Lee S. Y., Han Y. K., and Park R. H. Recognition of human front faces using knowledge-based feature extraction and neuro-fuzzy algorithm[J]. Pattern Recognition, 29(11): 1863-1876, 1996.
    [15] Buhmann J. et al. Size and distortion invariant object recognition by hierarchical graph matching[C]. International Conference on Neural Networks, 1990:441-416.
    [16] Lades, M., Vorbruggen, JC; Buhmann, J., et al., Distortion invariant object recognition in the dynamic link architecture[J], IEEE Transaction on Computer, vol. 42, no.3: 300-311, 1993.
    [17] Wiskott L., Fellows J. M., N. KruK ger. Face Recognition by Elastic Bunch Graph Matching[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, vol.19, no.7: 775-779, 1997.
    [18] Grudin M. A., Lisboa P. J. G., Harvey D. M. Compact Multi-level Representation of Human Faces for Recognition[C]. Proceedings of IEE Conference on IPA-97. 1997, 111-115.
    [19] Nastar C., Moghaddam B. A. Flexible Images: Matching and Recognition Using Learned Deformations[J]. Computer vision and Image Understanding, 1997, 65(2): 179-191.
    [20] Kohonen T. Self-organization and associative memory[M]. Berlin: Springer, 1988.
    [21] D. DeMers, G. W. Cottrell. Nonlinear Dimensionality Reduction [A]. in Advances in Neural Information Processing System. San Mateo, CA: Morgan Kaufmann, 1993, 580-587.
    [22] Lawrence S., Giles C. L., Tsoi A. C., Back A. D.. Face recognition: a convolutional neural-network approach[J], IEEE Trans. Neural Network, vol. 8, no.1: 98-113, 1997.
    [23] Ranganath S. and Arun K.. Face recognition using transform features and neural networks[J]. Pattern Recognition, vol. 30, no.10: 1615-1622, 1997.
    [24] Lin S. H., Kung S. Y., and Lin L. J. Face recognition/detection by probabilistic decision-based neural network[J]. IEEE Trans. on Neural Networks, vol.8, no.1: 114-132, 1997.
    [25] Gutta S., Wechsler H. Face Recognition Using Hybrid Classifiers[J]. Pattern Recognition, 1997, 30(4): 539-553.
    [26] L. Sirovich and M. Kirby, Low-dimensional Procedure for the Characterization of Human Face[J]. Journal of the Optical Society of America A, Vol. 4, No. 3, 1987.
    [27] M. Kirby and L. Sirovich, Application of the Karhunen-Loeve Procedure for the Characterization of Faces[J]. Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 1, 1990.
    [28] M. A. Turk and A. P. Pentland, Face Recognition Using Eigenfaces[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991.
    [29] M. A. Turk and A. P. Pentland, Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, Vol. 3, No. 1, 1991.
    [30] Wilks S S . Mathematical Statistics[M], New York Wiley Press, 1962:577-57.
    [31] Duda R ,Hart P .Pattern Classification and Scene Analysis[M], New York Wiley Press,1973:169-182.
    [32] W. Zhao, R. Chellappa and A. Krishnaswamy, Discriminant Analysis of Principal Components for Face Recognition[C], Proceedings of the International Conference on Automatic Face and Gesture Recognition, 1998.
    [33] W. Zhao, R. Chellappa and P. J. Phillips, Subspace Linear Discriminant Analysis for FaceRecognition[R]. Technical Report CAR-TR-914/CS-TR-4009, Center for Automation Research, University of Maryland, 1999.
    [34] K. Fukunaga, Introduction to Statistical Pattern Recognition[M], Academic Press, 1990.
    [35] D. L. Swets and J. Weng, Using Discriminant Eigenfeatures for Image Retrieval[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8:831-836, 1996.
    [36] D. L. Swets and J. Weng, Using Discriminant Eigenfeatures for Image Retrieval[R], Technical Report CPS-96-16, Michigan State University, 1996.
    [37] P. N Belhumeur, J .P. Hespanha and D. J. Kriegman, Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection[C]. Proceedings of European Conference on Computer Vision, 1996.
    [38] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7:711-720, 1997.
    [39] J. Yang, H. Yu and W. Kunz, An Efficient LDA Algorithm for Face Recognition[C], Proceedings of the Sixth International Conference on Control, Automation, Robotics and Vision, 2000.
    [40] H. Yu and J. Yang, A Direct LDA Algorithm for High-Dimensional Data– with Application to Face Recognition[J], Pattern Recognition, Vol. 34, No. 10:2067-2070, 2001.
    [41] L. F. Chen, H. Y. M. Liao, J. C. Lin, M. T. Ko and G. J. Yu, A New LDA-based Face Recognition System Which Can Solve the Small Sample Size Problem[J]. Pattern Recognition, Vol. 33, No. 10, 1713-1726, 2000.
    [42] A. Hyvarinen, J. Karhunen, E. Oja. Independent Component Analysis[M]. John Wiley & Sons, Inc. 2001.
    [43] Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution [ J],Neural Computation,7:1129-115, 1995
    [44] M. S. Bartlett, J. R. Movellan, T. J. Sejnowski. Face recognition by independent component analysis[J]. IEEE Transactions on Neural Network, Vol. 13, No.6, pp. 1450-1464, 2002.
    [45] D. Deniz, M. Castrillon, M. Hernandez. Face recognition using Independent component analysis and support vector machines[C]. Proceeding of International Conference on Audio- and Video-based Person Authentication, Lecture Notes, pp. 59-64, 2001.
    [46] C. J. Liu, H. Wechsler. Comparative assessment of independent component analysis for face recognition[C]. Proceedings of International Conference on Audio and Video based Biometric Person Authentication, 1999.
    [47] K. Back, B. A. Draper, J. R. Beveridge, et al. PCA vs ICA: A comparison on the FERET dataset[C]. Proceedings of International Conference on Computer Vision, Pattern Recognition and Image Processing, 2002.
    [48] H. S. Seung and D. D. Lee. The Manifold Ways of Perception[J]. 2000, Science, Vol. 290, 2268-2269.
    [49] S. Z. Li, X. Hou, H. Zhang, and Q. Cheng. Learning Spatially Localized Parts-based Representations[C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001, Vol. I, pages 207–212, Hawaii, USA.
    [50] D. Guillamet, J. Vitri_a. Evaluation of Distance Metrics for Recognition Based on Non-negative Matrix Factorization [J], Pattern Recognition Letters, Vol.24:1599–1605, 2003.
    [51] S.Z. Li, S.W. Hou, etc. Learning Spatially,Parts-based Representation[C]. Proc. IEEE International Conference on Computer Vision and Pattern Recognition, 2001:207-212.
    [52] D. Donoho and V. Stodden. When does Non-negative Matrix Factorization Give a Correct Decomposition into Parts? [M]. In Advances in Neural Information Processing (Proc. NIPS 2003). MIT Press, 2004, Vol.16.
    [53] M. D. Plumbley and E. Oja. A Non-Negative PCA Algorithm for Independent Component Analysis[J]. IEEE Transactions on Neural Networks, Vol. 15, No. 1:66-76 , Jan. 2004.
    [54] Taiping Zhang; Bin Fang; Yuan Yan Tang; Guanghui He; Jing Wen; Topology Preserving Non-negative Matrix Factorization for Face Recognition[J], IEEE Transactions on Image Processing, Volume: 17 , Issue: 4 2008 , Page(s): 574– 584.
    [55] Xiaoming Bai; Chengzhang Wang; Revised NMF with LDA based color face recognition [J], Networking and Digital Society (ICNDS), 2010 , Page(s): 156– 159.
    [56] J. Tenenbaum, V. De Silva and J. Langford. A global geometric framework for nonlinear dimension reduction[J]. Science, 290: 2319-2323, 2000.
    [57] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 290: 2323-2326, 2000.
    [58] M. Belkin and P. Niyogi. Laplacian Eigenmaps and Spectral techniques for embedding and Clustering[J]. Neural Information Processing Systems 14 (NIPS’2001):585-591, 2002.
    [59] X. He and P. Niyogi. Locality Preserving Projections[J]. Neural Information Processing Systems 16 (NIPS’2003).
    [60] X. He, S. Yan, Y. Hu, P. Niyogi and H. Zhang. Face Recognition Using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 3:328-340, 2005.
    [61] B. Moghaddam, C. Nastar and A. Pentland, Bayesian Face Recognition Using Deformable Intensity Differences[C], Proceedings of IEEE Conference on Computer Vision and PatternRecognition, June 1996.
    [62] B. Moghaddam, W. Wahid and A. Pentland, Beyond Eigenfaces: Probabilistic Matching for Face Recognition[C], Proceedings of the International Conference on Automatic Face and Gesture Recognition, Nara, Japan, April 1998:30-35.
    [63] B. Moghaddam, T. Jebara and A. Pentland, Bayesian Face Recognition[J], Pattern Recognition, Vol.33:1771-1782 , 2000.
    [64] X. G. Wang and X.O. Tang, Unified Subspace Analysis for Face Recognition[C], Proc. International Conference on Computer Vision, 2003:679-686.
    [65] X. G. Wang, and X.O. Tang, A Unified Framework for Subspace Face Recognition[J], IEEE Transaction on Pattern Analysis and Machine Intelligence,Vol.26, No.9:1222-1228 , 2004.
    [66] B. Scholkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, 2002.
    [67] B. Scholkopf, A. J. Smola, and K.-R. M?uller. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, vol.10, no.3: 1299-1319, 1998.
    [68] M. H. Yang, N. Ahuja, D. Kriegman. Face recognition using kernel eigenfaces[C]. Proceedings of International Conference on Image Processing:37-40, 2000.
    [69] M. H. Yang. Kernel Eigenfaces vs Kernel Fisherfaces: Face recognition using kernel methods[C]. Proceedings of International Conference on Automatic Face and Gesture Recognition. pp. 215-220, 2002.
    [70] K. I. Kim, K. Jung, H. J. Kim. Face recognition using kernel principal component analysis[J]. IEEE Signal Processing Letters. Vol. 9, No.2:40-42, 2002.
    [71] S. Mika, G. Ratsch, J. Weston, et al. Fisher discriminant analysis with kernels[C]. Proceedings of the 1999 IEEE Signal Processing Society Workshop Neural Networks for Signal Processing IX:41-48, 1999.
    [72] Ming Hsuan Yang. Kernel Eigenfaces vs. Kernel Fisherface: Face recognition Using Kernel Methods[C]. Proc Fifth IEEE International Conf. Automatic Face and Gesture Recognition:215-220, 2002.
    [73] Juwei Lu, K. N. Plataniotis, A. N. Venetsanopoulos. Face Recognition Using Kernel Direct Discriminant Analysis Algorithms[J]. IEEE Transactions on Neural Networks, 14(1): 117-126, 2003.
    [74]王守觉.仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用[J].电子学报,30(10):1417-1420, ,2002.
    [75]王守觉.人工神经网络的多维空间几何分析及其理论[J].电子学报,30(1):1-4, ,2002.
    [76] Miao Cheng, Bin Fang, Yuan Yan Tang, Taiping Zhang, Jing Wen, Incremental embeddingand learning in the local discriminant subspace with application to face recognition[J], IEEE Transactions on Systems, Man, and Cybernetics, Part C, In press.
    [77] Miao Cheng, Bin Fang, Jing Wen, Yuan Yan Tang, Marginal discriminant projections: An adaptable marginal discriminant approach to feature reduction and extraction[J], Pattern Recognition Letters, In press.
    [78] Bin Fang, Miao Cheng, Yuan Yan Tang, Guanghui He, Improving the discriminant ability of local margin based learning method by incorporating the global between-class separability criterion[J], Neurocomputing, vol. 73, no.1 : 536-541, 2009.
    [79] Xuelong Li; Yanwei Pang; Yuan Yuan; L1-Norm-Based 2DPCA[J], IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1170– 1175, 2010.
    [80] D. Gabor.Theory of communication[J].Joural of Institute for Eleetrieal Engineering,93:429-57, 1946.
    [81]] D.F.Dunn,W. E. Higgins. Optimal Gabor filters for texture segmentation[J]. IEEE Trans. On Image processing,4(7): 947一964,1995.
    [82] D.A. Pollen,S.E.Ronner. Visual cortical neurons as localized spatial frequeney filters[J], IEEETrans. On Systems,Man and Cyberneties,1983,13(5):907一916.
    [83] A.K. Jain,F. Farroldmia,Unsupervised Texture Segmentation Using Gabor Fitter[J], Pattem Recognition ,24(12):1167一1186, 1991.
    [84]董学志,宋建中,韩广良.一种利用Gabor小波特征的目标跟踪方法[J].光学技术,2003, 29(7):484-486.
    [85]吴高洪,章毓晋,林行刚.分割双纹理图像的最佳Gabor滤波器设计方法[J].电子学报,2001,29(l):48一50.
    [86] A.M. Martinez and R. Benavente. The AR Face Database. CVC Technical Report 24, June 1998.
    [87] T. Sim, S. Baker, and M. Bsat, The cmu pose, illumination, and expression database[J], IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 12, 2003.
    [88] T. F. Cox and M. A. A. Cox, Multidimensional Scaling[M]. 2nd ed. Chapman and Hall, 2001.
    [89] S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding[J]. Science, vol. 290, no.5500:2323–2326, 2000.
    [90] P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, vol. 15:1373–1396, 2003.
    [91] Jolliffe, I.T., Principal Component Analysis, 2nd ed. Springer, NY, 2002.
    [92] X. He and P. Niyogi, Locality preserving projections[M]. In Advances in Neural Information Processing Systems 16. MIT Press, 2003.
    [93] J.H. Ham, D.D. Lee, and L.K. Saul, Learning high dimensional correspondences from low dimensional manifolds[C]. In ICML’03, workshop on the continuum from labeled to unlabeled data in machine learning and data mining, 2003:577–584.
    [94] H. S. Seung and D. D. Lee, The manifold ways of perception[J]. Science, vol. 5500:2268–2269, 2000.
    [95] D. K. Agrafiotis and H. Xu, A self-organizing principle for learning nonlinear manifolds[C]. Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25:15 869–15 872, 2002.
    [96] J. Venna and S. Kaski, Local multidimensional scaling[J]. Neural Networks., vol. 19, no. 6:889–899, 2006.
    [97] J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction[J]. Science, vol. 290, no. 5500:2319–2323, 2000.
    [98] B.V.K.V. Kumar, A. Mahalanobis, and R.D.Juday, Correlation Pattern Recognition[M]. Cambridge Univ. Press, 2006.
    [99] D. R. Hardoon, S. R. Szedmak, and J. S. Taylor, Canonical correlation analysis: An overview with application to learning methods[J].Neural Computation, vol. 16, no. 12:2639–2664, 2004.
    [100] Y. Fu, S. Yan, and T. S. Huang, Correlation metric for generalized feature extraction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 12:2229–2235, 2008.
    [101] T.F. Cox and M.A.A. Cox, Multidimensional Scaling, second ed. Chapman & Hall, 2001.
    [102]胡国定张润楚.多元数据分析方法[M].南开大学出版社1990.
    [103] Xiao-Zhang Liu; Wen-Sheng Chen; Yuen, P.C.; Guo-Can Feng; Learning Kernel in Kernel-Based LDA for Face Recognition Under Illumination Variations[J]. IEEE on Signal Processing Letters, Vol. 16, no.12 : 1019-1022, 2009
    [104] Cui Li-Lin; Zhu Hai-chao; Zhang Lin-ke; Ma Chao; The study of KPCA active learning method based on the ROC curve [C].2nd International Conference on Education Technology and Computer (ICETC), V4:284-287, 2010
    [105] S. Mika, G. Ratsch, J. Weston, B. Sch¨okopf, and K. Muller, Fisher discriminant analysis with kernels[C]. in Proceedings of IEEE Neural Networks for Signal Processing Workshop, 1999:41–48.
    [106] R. Herbrich and T. Graepel, A pac-bayesian margin bound for linear classifiers[J]. IEEE Transactions on Information Theory, vol. 48, no. 12:3140–3150, 2002.
    [107] L.Wang, Feature selection with kernel class separability[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, vol. 30, no. 9:1534–1546, 2008.
    [108] A.V. Nefian and M.H. III. Hayes, Maximum likelihood training of the embedded hmm for face detection and recognition[C]. in Proceedings, 2000 International Conference on Image Processing, 2000:33–36.
    [109] A. B. A. Graf and S. Borer, Normalization in support vector machines[C]. In Proceedings of the 23rd DAGM-Symposium on Pattern Recognition, 2001:277–282.
    [110] A. Asuncion and D.J. Newman, UCI machine learning repository[Z]. 2007. [Online]. Available: http://www.ics.uci.edu/_mlearn/MLRepository.html
    [111] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, From few to many: Generative models for recognition under variable pose and illumination[J]. IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6 :643-660, 2001.
    [112] I. Dagher and R. Nachar, Face recognition using IPCA-ICA algorithm[J]. IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6:996-1000, 2006.
    [113] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, Face recognition using Laplacian faces[J]. IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3:328-340, 2005.
    [114] Bernd Heisele,Purdy Ho, and Tomaso Poggio.Face recognition with support vector machines:Global versus component-based approach[C].International Conference on audio and video-based Biometric Authentication, 1997 .
    [115] Yuri IVanov, Bernd Heisele,and Thomas Serre . Using component features for face recognition[C].In proceedings of the 6th International Conference on Automatic Face and Gesture Recognition, 2004.
    [116] B.Weyrauch,B.Heisele,J.Huang,and V Blanz.Component-based face recognition with 3d morphable models[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2004.
    [117] http://www.umedm.com/Article/2008/20080109231904-1294.html[Z]
    [118] T.0jala,M.Pietikainen,and D.Harwood。A comparative study of texture measures with classitication based on feature distributions[J] . Pattern Recognition, vol.29, no.1 :51_59,1996.
    [119] J.Friedman,T.Hastie,and R.Tibshirani.AdditiVe logistic regression:a statistical view of boosting[R].Technical report,Department of Statistics,Sequoia Hall,Stanford Univerity,July 1998.
    [120] Y. Freund and R.E.Schapire.A decision—theoretic generalization of online learningand an application to boosting[J].Journal of Computer and System Sciences, vol.55, no.1:1 19-139, 1997.
    [121] J.Kittler,M.Hatel,R.P W.Duin,and J.Matas.On combining classifiers[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, no.3:226-239, 1998.
    [122] Timo Ahonen and Matti Pietikainen.Face description with local binary patterns,:Application to face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.28,no.12:2037-2041, 2006
    [123] W. Zhao, R. Chellappa, J. Phillips, and A. Rosenfeld, Face recognition: A literature survey[J]. ACM Computing Surveys, Vol.35, no. 4:399–459, 2003.
    [124] Electronic privacy information center, face recognition[Z]. http://www.epic.org/ privacy/facerecognition/, 2006.
    [125] F. Macwilliams and N. Sloane, The Theory of Error-Correcting Codes[M]. North-Holland, 1981.
    [126] R. Basri and D. Jacobs, Lambertian reflection and linear subspaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 3:218–233, 2003.
    [127] Wright, J.Yang, A.Y. Ganesh, A. Sastry, S.S.; Yi Ma; Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31 , no. 2: 210-227, 2009 .
    [128] R. Horn and C. Johnson, Matrix Analysis[M]. Cambridge Univ. Press,1985.
    [129] A. Georghiades, P. Belhumeur, and D. Kriegman, From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6:643–660,2001.
    [130] K. Lee, J. Ho, and D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 5:684–698, 2005.
    [131] R. E. Schapire, The Strength of Weak Learnability[J]. Machine Learning vol.5, no.2:197-227, 1990.
    [132] J. Zhu, H. Zou, S. Rosset and T. Hastie, Multi-class AdaBoost[J]. Statistics and Its Interface, vol. 2:349–360, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700