用户名: 密码: 验证码:
分布参数系统的确定学习理论及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体系统和振动系统广泛存在于自然界和工程界中。随着现代工业的飞速发展,人们对各种装备在轻型化、智能化、精密化程度上的要求和性能不断的提升,使得流体系统和柔性体振动系统被科学界和工业界所重视。由于这些系统本身材料质地的特性,使得其具有无限个自由度,系统的运动状态不再像通常的刚体系统那样可以用有限个参数就能完整的描述,而必须用场才能较完整的描述,即它们的状态既是时间变量的函数也是空间变量的函数,因而这类系统被称为“无限维分布参数系统”。要能对分布参数系统进行较好的设计或作用,首先就需要充分了解该系统的动态行为。但是在未知的动态环境下,要准确的知道分布参数系统的内部动态是一个极富挑战的任务。最近,Wang等人利用自适应控制和系统动力学的概念与方法,提出了确定学习理论。该理论研究非线性系统在未知动态环境下的知识获取、表达、存储和再利用等问题。
     本文主要研究含未知内部动态的非线性分布参数系统的确定学习问题,由于分布参数系统的无限维本质特性,使得在未知动态环境下准确建立完整的分布参数系统内部动态异常困难,甚至可以说是在现有条件下不可能完成的任务。我们主要运用确定学习理论提供的框架和方法,在一定的精度内实现对分布参数系统内部动态的准确逼近/辨识。然而,现有的确定学习理论是针对有限维动态系统建立的,而使得其不能直接的应用于无限维分布参数系统。因此,我们首先在合适精度内建立分布参数系统的有限维逼近系统,然后对有限维动态系统应用确定学习理论得到其沿轨迹的准确逼近,进而实现对原分布参数系统的内部动态辨识/逼近。所得到的系统模型不仅在一定精度内反映原分布参数的本质动态特性还易于工程实现,其中主要包括运用何种逼近方法将分布参数系统转化为有限维动态系统、系统的可辨识条件、辨识算法的设计等内容。本文的主要内容概括如下
     1.研究一类周向抛物型分布参数系统的确定学习问题。抛物型分布参数系统常常出现在流体、热传导和粒子扩散等物理系统中。系统的“周向”是指分布参数系统描述的物理对象具有环形的几何结构。根据系统的周向结构特点,我们首先利用离散Fourier变换极其逆变换的方法将所考虑的分布参数系统转化为有限维动态系统。其次,我们分析了有限维动态系统的几个重要性质。由于有限统动态系统的系数矩阵是由离散Fourier变换在离散过程中引入的,根据离散Fourier变换与循环矩阵的联系可知系数矩阵是一个循环矩阵;并且由系统的周向几何结构分析可得有限维系统的内部动态是沿系数矩阵的对角线局部占优。对有限维动态系统运用确定学习理论,通过采用径向基函数(Radial Basis Function,RBF)神经网络得到对有限统系统的主要内部动态的沿系统轨迹的精确逼近,进而得到抛物型分布参数系统内部动态沿轨迹的准确逼近。
     2.研究涡扇发动机轴流压气机系统的旋转失速初始扰动的建模与快速检测。旋转失速是轴流压气机系统的一种不稳定流动现象,当压气机处于旋转失速状态时,压气机的转子和定子叶片都承受巨大的压力而造成叶片的损伤,失速团的非轴对称流动使得燃烧室和涡轮内局部过热而可能烧坏壁面和叶片。旋转失速会使得压气机的流量和压力突然下降,导致发动机推力的骤然下降而大大限制压气机的性能和降低发动机的效率。由旋转失速造成的叶片槽道内的气流堵塞会引起发动机的喘振(压气机的另一种典型不稳定流动现象/故障)。因为发动机是在失速边界附近效率最大,所以检测旋转失速为提高发动机的性能和预防喘振极为重要。要阻止压气机不进入旋转失速,则需要在旋转失速发生前进行预测。因此,要快速检测旋转失速的初始扰动。快速准确的检测方法是以对初始扰动建立准确建模为基础。因此,我们首先研究旋转失速初始扰动的建模。我们在压气机周向和轴向上布置多个传感器测量压气机的流量和压力信号,运用确定学习理论采用动态RBF神经网络辨识初始扰动的内部动态,得到旋转失速初始扰动的内部动态沿轨迹的准确逼近。因而,建立旋转失速初始扰动的RBF神经网络模型。并将在辨识过程中收敛的RBF神经网络权值在收敛后一段时间内的平均值(常数权值)作为旋转失速初始扰动的模式保存,将多个旋转失速初始扰动建模生成的常数权值保存构成旋转失速初始扰动的模式库。在建模的基础上,我们运用保存的模式库快速检测旋转失速初始扰动。对被检测的压气机系统用模式库中保存的常数权值构造一系列的动态估计器,动态估计器的个数与模式库中保存的模式个数相同,动态估计器的维数与学习辨识过程中构造的RBF神经网络维数相同。由于RFB神经网络模型是旋转失速初始扰动模式内部动态的本质表现,因此动态估计器中嵌入了已辨识的旋转失速初始扰动的内部动态。将被检测的压气机的状态与动态估计器的状态做差生成残差系统,依据确定学习理论的动态模式识别方法,残差度量动态模式的相似性。因此,我们用平均l1范数对残差进行评估,所有残差中平均l1范数最小的那个就是压气机正出现的模式。当旋转失速初始扰动模式所对应的残差的范数最小时,就表明压气机中出现了失速初始扰动,则实现失速初始扰动的快速检测。由于,检测是在失速的初始扰动阶段完成,因此可以预测旋转失速,并且由于旋转失速是喘振的先兆,这样就可以预防喘振和预警发动机。
     3.研究带Dirchilet边界条件的完全共振型波动系统的确定学习问题。根据Lagrangian应力定律、Newton第二定律以及Dirchilet边界条件可知,所讨论的完全共振型波动系统是描述两端固定的柔性振动弦。我们讨论了两大类波动系统:1)系统内部动态部分未知;2)系统内部动态完全未知。我们利用有限差分方法将波动系统在空间域上离散为一个高维的常微分方程组描述的有限维非线性动态系统。然后,利用Gronwall不等式定理和Leary-Schauder不动点定理证明了有限维动态系存在唯一解,并且其解收敛到原波动系统的解。这就保证了这是一个有效的逼近,并且使得有限维动态系统保持了波动系统的本质动态特性。最后,我们运用确定学习理论构造了动态RBF神经网络,其沿轨迹精确辨识了有限维动态系统的内部动态,进而得到有限维截断误差精度内对波动系统内部动态的准确逼近。但是由于第1),2)类波动系统未知内部动态关联的离散点不一样,而使得RBF神经网络的输入维数不同。对于第1)类波动系统,RBF神经网络输入的只是离散点本身的信息,而第2)波动类系统则还要输入相邻两离散点的信息。对输入维数分析可知,输入的离散点是由未知内部动态中包含的最高阶空间微分项来决定。因此,在相同的截断误差精度内,系统中增加对空间变量的未知低阶微分项并不会增加RBF神经网络的输入维数。若要提高逼近精度,则可以通过增加有限维截断误差精度、空间离散点个数和神经元个数来实现。
Fluid systems and vibration systems are widely found in nature and industry. Withthe rapid development of modern industry, the improved performance of light, intelligence,precision of the equipment is requested, which makes ?uid systems and vibration systemsof ?exible body are concerned by the scienti?c and engineering community. Due to thetexture of materials, the system has an in?nite number of degrees of freedom, and thesystem state unlike the rigid-body system can be description by ?nite parameters butmust use a ?eld for complete description, which meas that the system state is not only afunction of time variable but also a function of spatial variables, thus the system is calledas in?nite-dimensional distributed parameter systems (DPS). If one wants to carry outor good design for DPS, a adequate understanding of dynamic behavior of the systemis necessary. However, in uncertain dynamical environments, to accurately acquaint thedynamics of DPS is a challenging task. Recently, Wang etc. propose the deterministiclearning theory (DLT) by utilizing results from concepts and tools of adaptive controland dynamical systems.
     This thesis studies the DLT of nonlinear DPS with unknown dynamics. Since thein?nite-dimensional essential feature, to establish complete and accurate dynamics is verydi?cult, evenmore it is a impossible task under current conditions. Using the DLT, weprovide a framework and methodology to approximate/identify the dynamics of nonlinearDPS within a certain accuracy. Therefore, we ?rst establish an approximation systemfor DPS in a ?nite-order accuracy; then by using the deterministic learning algorithm,we obtain an accurate radial basis function (RBF) neural network (NN) approximationof the ?nite-dimensional dynamical system (FDDS) along the trajectories; ?nally theidenti?cation of dynamics of the original DPS is achieved in some accuracy. The resultingsystem model can re?ects the nature of the original DPS in the accuracy, and it is easyto be work. The contents contain: ?nite-dimensional approximation method, systemidenti?ability conditions, and identi?cation algorithms, etc. The main contents of thethesis are as follows:
     1. We investigate the identi?cation of a class of parabolic DPS. The parabolic DPSusually arises from physical phenomena such as heat conduction, ?ow ?eld and particledi?usion. The considered DPS describe a homogeneous and isotropic object with circulargeometric structure. Based on this feature, we ?rst reduce DPS into a FDDS by thediscrete Fourier transform (DFT) method. Secondly, some important properties of FDDS,including the discrete symmetry and the partial dominance of system dynamics accordingto point-wise observations, are analyzed. Due to the coe?cient matrix is introduced by DFT in discrete process, the coe?cient matrix is a circulant matrix by the connectionbetween DFT and circulant matrix. The system geometry decides the dominant dynamicsof FDDS along the diagonal of coe?cient matrix. Finally, by using the deterministiclearning algorithm, it is show that locally relatively accurate NN approximation of maindynamics of the FDDS is achieved in local region along the recurrent trajectories. Then,a locally identi?cation of the dynamics of the parabolic DPS is accomplished.
     2. We investigate the modeling and rapid detection of rotating stall via deterministiclearning. Rotating stall is one distinct aerodynamic instabilities in axial ?ow compressorof turbofan engine. Once a compressor enters fully developed rotating stall, rotor andstator blades are under tremendous stress caused by stalled ?ow to damage the com-pressor, the non-axisymmetric ?ow can result internal overtemperatures in combustionchamber and turbine to burn the wall and blades. Rotating stall makes the mass ?owand press rise through the compressor is decreased which leads to the thrust sudden dropgreatly in engine, and the function is to increase the pressure of the ?ow. Thus, thiscondition severely limit the compressor performance and reduce the e?ciency of the en-gine. Evenmore, the blade channel blockage caused by the rotating stall ?ow can leadsurge which is another typical unsteady ?ow phenomena/fault in compressor. For thesereasons, rapid detection of rotating stall is very important for improving the performanceand preventing surge. To resistant the rotating stall, the key recognizes the rotatingstall precursor (RSP). Rapid and accurate detection method is based on precision modelof RSP. Therefore, the detection process for rotating stall consists of two phases: themodeling/identi?cation phase and the recognition phase. In the identi?cation phase, wearrange multiple sensors at circumferential and axial of compressor to measure ?ow andpressure signals. Then, based on the measured signals, use dynamical RBF NN to i-dentify the dynamics of RSP according to DLT. We obtain the RBF NN model, andaverage of the NN weights in a time segment after convergence process (constant NNweights). The constant NN weights is stored as the pattern for RSP. Using the sameprocedure, a pattern library of compressor can be established for rotating stall. In therecognition phase, based on the established model of RSP, we use pattern library storedin the identi?cation phase to rapid detection RSP. For monitored compressor system, aseries dynamical estimators is constructed by the constant NN weights. Since RFB NNmodel can present the dynamics of RSP, the dynamical estimator embeds the dynamicsof RSP. By comparing the monitored compressor system and dynamical estimators, aseries residual systems is obtained. By the rapid dynamical pattern recognition method,residual can measure the similarity for dynamical patterns. Therefore, we use an averageof l1 norm to evaluate the residuals. The smallest average norm of all residuals is the pattern coming in compressor. If the norm of the RSP is smallest, which is suggest therotating stall is coming; rapid detection of the RSP is achieved. Due to rapid detectioncompletes in rotating stall inception, rotating stall can be predicted, and the surge canbe prevented because rotating stall is a symptom of surge and alert engine.
     3. We investigate the DLT of completely resonant wave systems with Dirchiletboundary conditions. According to Lagrangian stress theorem, Newton’s second lawand the Dirchilet boundary conditions, considered completely resonant wave system isdescribed the ?exible vibrating string with ?xed endpoints. Two types of wave systemare discussed: 1) the unknown part of dynamics within the system; 2) the unknown allof dynamics within the system. We use ?nite di?erence method to discretize the wavesystem into a higher-dimensional nonlinear dynamic system in the space domain. Then,Gronwall inequality theorem and Leary-Schauder ?xed point theorem are used to provethe existence and uniqueness of solution of FDDS, and the solution of FDDS convergeto the solution of wave system. Therefore, these ensure that the approximation is valid,and makes the FDDS keeps the essence dynamics of the wave system. Finally, accordingto DLT, we employ the dynamical RBF NN to accurately identify the FDDS along thetrajectory. Then the accurate approximation of dynamics of the wave system is obtainedin some accuracy. Since it is di?erence that unknown dynamics of the ?rst and secondtype systems associated with the discrete points, the input dimension of RBF NN isdi?erent. For the ?rst type system, the input of RBF NN is only the discrete pointitself; while the second type system, the input of RBF NN is not only the discrete pointitself but also adjacent two discrete points. Analysis the input dimension, the input ofRBF NN is decide by the most order of spatial di?erential term. Therefore, if truncationerror accuracy is same, increasing the low-order di?erential item will not increase theinput dimension of RBF NN. To improve the approximation accuracy can be succeed byincreasing the ?nite-dimensional truncation error accuracy, the number of space discretepoints and the number of neurons.
引文
[1] Narendra K. S. and Parthasarathy K. Identi?cation and control of dynamic systemsusing neural networks [J]. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27.
    [2] Sanner R. M. and Slotine J. E. Gaussian networks for direct adaptive control [J].IEEE Transactions on Neural Networks, 1992, 3(6): 837-863.
    [3] Sadegh N. A perceptron network for functional identi?cation and control of nonlinearsystems [J]. IEEE Transactions on Neural Networks, 1993, 4(6): 928-988.
    [4] Kosmatopoulos E. B., Polycarpou M. M., Christodoulou M. A., et al. High-orderneural network structures for identi?cation of dynamical systems [J]. IEEE Transac-tions on Neural Networks, 1995, 6(2): 422-431.
    [5] Polycarpou M. M. Stable adaptive neural control scheme for nonlinear systems [J].IEEE Transactions on Automatic Control, 1996, 41(3): 477-451.
    [6] Ge S. S. and Wang C. Adaptive NN control of uncertain nonlinear pure-feedbacksystems [J]. Automatica, 2002, 38(4): 671-682.
    [7] Wang D. and Huang J. Neural nwtwork-based adaptive dynamic surface control fora class of uncertain nonlinear systems in strict-feedback form [J]. IEEE Transactionson Neural Networks, 2005, 16(1): 195-202.
    [8] Wang C. and Hill D. J. Ge S. S., et al. An ISS-modular approach for adaptive neuralcontrol of pure-feedback systems [J]. Automatica, 2006, 42(5): 723-731.
    [9] Wang C., Hill D. J. and Chen G. Deterministic learning of nonlinear dynamical sys-tems [A]. In: Proceedings of the 18th IEEE International Symposium on IntelligentControl [C]. 2003: 87-92.
    [10] Kurdila A. J., Narcowich F. J. and Ward J. D. Persistancy of excitation in identi?-cation using radial basis function approximations [J]. SIAM Jounal of Control andOptimization, 1995, 33(2): 625-642.
    [11] Wang C., Chen T. R., Chen G. R. and Hill D. J. Deterministic learning of nonlineardynamical systems [J]. International Journal of Bifurcation and Chaos, 2009, 19(4):1307-1328.
    [12] Wang C. and Hill D. J. Deterministic learning theory for identi?cation, recognitionand control [M]. Boca Raton, FL: CRC Press, 2009.
    [13] Shilnikov L. P., Shilnikov A. L., Turaev D. V., et al. Methods of qualitative theoryin nonlinear dynamics [M]. Singapore: World Scienti?c, 2001.
    [14] Wang C. and Hill D. J. Deterministic learning and rapid dynamical pattern recog-nition [J]. IEEE Transactions on Neural Networks, 2007, 18(3): 617-630.
    [15] Wang P. K. C. Control of distributed parameter systems [J]. Advances in ControlSystems, 1964, 1: 75-172.
    [16] Goodson R. E., Klein R. E. A di?nition and some results for distributed systemobservability [J]. IEEE Transactions on Automatic Control, 1970, 15: 165-174.
    [17] Polis M. P. and Goodson R. E. Parameter identi?cation in distributed systems: asynthesizing overview [J]. Proceedings of The IEEE, 1976, 64(1): 45-61.
    [18] Lamont G. B. and Kumar K. S. P. Sequential interpolating estimator for nonlinearpartial di?erential equation systems [J]. IFAC Symp. Control of Distributed Param-eter Systems, 1971: 5-8.
    [19] Titchmarsh E. C. Eigenfunction expansions [M]. London Oxford, 1962.
    [20] Seinfeld J. H., Gavalas G. R., Hwang M. Nonlinear ?ltering in distributed parametersystems [J]. AMSE Transactions on Journal of Dynamic Systems, Measurement, andControl, 1971, 93: 157-163.
    [21] Hwang M., Seinfeld J. H., Gavalas G. R. Optimal least square ?ltering and interpo-lation in distributed parameter systems [J]. Journal of Mathematical Analysis andApplications, 1972, 39(1): 49-74.
    [22] Chavent G. Identi?cation of functional parameters [A]. Proceedings of the Sympo-sium, University of Texas [C], 1974: 31-48.
    [23] Perdreauville F. J., Goodson R. E. Identi?cation of systems described by partialdiferential equations [J]. AMSE Transactions on Journal of Basic Engineering, 1966:463-468.
    [24] Ahmed N. U. Optimization and identi?cation of system governed by evolution e-quations on Banach space [M]. Longman Scienti?c and Technical, Essex, England,1989.
    [25]王康宁.分布参数控制系统[M].北京,科学出版社, 1986.
    [26] Yu W. H. Necessary condition for optimality in the identi?cation of elliptic sys-tem with pointwise parameter constraints [J]. Journal of Optimization Theory andApplications, 1996, 88(3): 725-742.
    [27] Kitamura S. and Nakagiri S. Identi?ability of spatially-varying and constant param-eters in distributed systems of parabolic type [J]. SIAM Journal on Control andOptimization, 1977, 15(5): 785-802.
    [28] Pierce A. Unique identi?caton of eigenvalues and coe?cients in a parabolic problem[J]. SIAM Journal on Control and Optimization, 1979, 17(4): 494-499.
    [29] Udwadia F. E. andSharma D. K. On the identi?cation of continuous vibrating sys-tems modelled by hyperbolic partial di?erential equations [J]. Quarterly AppliedMathematics, 1985, 42(4): 411-424.
    [30] Kravaris C. and Seinfeld J. H. Identi?ability of spatially-varying conductivity frompoint obsvervation as an inverse Sturm-Liouville problem [J]. SIAM Journal on Con-trol and Optimization, 1986, 24(3): 522-542.
    [31] Giudici M. Identi?cation of distributed physical patameters in di?fusive-like systems[J]. Inverse problems, 1991, 7: 231-245.
    [32] Nakagiri S. Identi?ability of linear systems in Hilbert spaces [J]. SIAM Journal onControl and Optimization, 1983, 8(4): 501-530.
    [33] Yamamoto M. and Nakagiri S. Identi?ability of operators for evolution equations inBanach space with an application to transport equations [J]. Jounal of MathematicalAnalysis and Applications, 1994, 186(1): 161-181.
    [34] Chang J. D. and Guo B. Z. Identi?cation of variable spacial coe?cients for a bemequation from boundary measurements [J]. Automatica, 2007, 43(4): 732-737.
    [35] Chang J. D. and Guo B. Z. Application of Ingham-Beurling-Type theorems to iden-ti?ability of vibrating systems: ?nite time identi?ability [J]. Di?erential and IntegralEquations, 2008, 21(11): 1037-1054.
    [36] Astrom K. J. and Wittenmark B. Adaptive control [M]. 2nd ed., Addison-Wesley,1995.
    [37] Goodwin G. C. and Sin K. S. Adaptive ?ltering, prediction and control [M]. Engle-wood Cli?s, NJ: Prentice-Hall, 1984.
    [38] Ioannou P. A. and Sun J. Robust adaptive control [M]. Englewood Cli?s, NJ:Prentice-Hall, 1995.
    [39] Landau Y. D. Adaptive control-the model reference approach [M]. New York: MarcelDekker, 1979.
    [40] Narendra K. S. and Annaswamy A. Stable adaptive systems [M]. Englewood Cli?s,NJ: Prentice-Hall, 1989.
    [41] Sastry S. S. and Bodson M. Adaptive control: Stability convergence and robustness[M]. Englewood Cli?s, NJ: Prentice-Hall, 1989.
    [42] Alt H. W., Ho?mann K. H. and Sprekels J. A numerical procedure to solve certainidenti?cation problems [J]. International Series of Numerical Mathematics, 1984, 68:11-43.
    [43] Ho?man K. H. and Sprekels J. On the identi?cation of parameters in general varia-tional inequalities by asymptotic regularization [J]. SIAM Journal on MathematicalAnalysis, 1984, 17(1): 198-217.
    [44] Ho?man K. H. and Sprekels J. On the identi?cation of elliptic problems by asymp-totic regularization [J]. Numerical Functional Analysis and Optimization, 1985, 7(1):57-77.
    [45] Ho?man K. H. and Sprekels J. On the identi?cation of parameters in general vari-ational inequalities by asymptotic regularization [J]. Numerical Functional Analysisand Optimization, 1986, 7(5): 157-177.
    [46] Baumeister J. and Scondo W. Adaptive methods for parameter identi?cation [M].Methoden und Verfahren Der Mathematischen Physik, 1987: 87-116.
    [47] Baumeister J. and Scondo W. Asymptotic embedding methods for parameter esti-mation [A]. In: Proceedings of the 26th IEEE Conference on Decision and Control[C]. 1987: 170-174.
    [48] Scondo W. Ein Modellabgleichsverfahren zur adaptiven Parameteter identi?cationin Evolutionsgleichungen [D]. Ph.D. Thesis, 1973.
    [49] Demetriou M. A. and Rosen I. G. Adapive identi?cation of second-order distributedparameter systems [J]. Inverse Problems, 1994, 10(2): 261-294.
    [50] Demetriou M. A. and Rosen I. G. On-line robust parameter identi?cation for parabol-ic systems [J]. IEEE Transactions on Adaptive Control and Signal Processing, 2001,15(6): 615-631.
    [51] Baumeister J., Scondo W., Demetriout M. A. and Rosen I. G. On-line parameterestimation for identi?cal dynamical systems [J]. SIAM Journal on Control and Op-timization, 1997, 35(2): 678-713.
    [52] Hong K. S. and Bentsman J. Application of averaging method for integro-di?erentialequations to model reference adaptive control of parabolic systems [J]. Automatica,1994, 30(9): 1415-1419.
    [53] Orlov Y. and Baumeister J. Adaptive control of distributed parameter systems [A].In: Proceedings of the 5th IEEE Mediterrannean Conference on Control and Systems[C]. 1997.
    [54] Micchelli C. A. Interpolation of scattered data: Distance matrices and conditionallypositive de?nite function [J]. Constructive Approximation, 1986, 2(1): 11-22.
    [55] Park J. and Sandberg I. W. Universal approximation usingradial-basis-function net-works [J]. MIT Press Journals Neural Computation, 1991, 3(2): 246-257.
    [56] Powell M. J. D. Radial basis functions for multivariable interpolation: a review [A].IMA Conference on Algorighms for the Approximation of function and Data [C],1985: 143-167.
    [57] Cover T. M. Geometrical and statistical properties of systems of linear inequali-ties with applications in pattern recognition [J]. IEEE Transactions on ElectronicComputers, 1965, 14(2): 326-334.
    [58] Wang C. and Hill D. J. Learning form neural control [J]. IEEE Transactions onNeural Networks, 2006, 17(1): 130-146.
    [59] Farrell J. Stability and approximator convergence in nonparametric nonlinear adap-tive control [J]. IEEE Transactions on Neural Networks, 1985, 9(5): 1008-1020.
    [60] Khalil H. K. Nonlinear systems [M]. 2nd ed. Englewood Cli?s, NJ: Prentics Hall,1996.
    [61] Smith J. O. Mathematics of the discrete Fourier transform, with Audio Applications[M]. W3K Publishing, 2007.
    [62] Hille E. Ordinary di?erential equations in the complex domain [M]. John Wiley andSons, Inc., New York, 1976.
    [63]郭大钧.非线性泛函分析[M].山东科技出版社, 2002.
    [64] Yin C. and Su B. A nonlinear di?usion theory for particle transport in strong ab-sorbers [J]. Annals of Nuclear Energy, 2002, 29(12): 1403-1419.
    [65] Wolschin G. Particle production and nonlinear di?usion in relativstic systems [J].Annalen der Physik, 2008, 17(7): 426-476.
    [66] Suslov S. A. Mechanism of nonlinear ?ow pattern selection in moderately non-Boussinesq mixed convection [J]. Physical Review E, 2008, 81(2): (026301)1-7.
    [67] Krstic M. Flow control by feedback [M]. Springer, 2002.
    [68] Wang J., Silva Neto A. J., Moura Neto F. D. and Su J. Function estimation withAlifanov’s iterative regularization method in linear and nonlinear heat conductionproblems [J]. Applied Mathematical Modelling, 2002, 26(11): 1093-1111.
    [69] Zokayi A. R., Hadizadeh M., Darania P. and Rajabi A. The relation between theEmden-Fowler equation and the nonlinear heat conduction problem with variabletransfer coe?cient [J]. Communications in Nonlinear Science and Numerical Simu-lation, 2006, 11(7): 845-853.
    [70] Kuznetsov Y. A. Elements of applied bifurcation theory [M]. Springer-Verlag NewYork, Inc., 1998.
    [71] Clark R. L., Saunders W. R. and Gibbs G. P. Adaptive Structures: Dynamics andControl [M]. A Wiley-Interscience Pubilication, John Wiley& Sons, NC, 1998.
    [72] Mansoux C. A., Cysling D. L.,Setiawan J. D. and Paduano J. D. Distrbuted non-linear modeling and stability analysis of axial compressor stall and surge [A]. In:Proceedings of the Annerican Control Conference [C]. 1994: 2305-2316.
    [73] Paduano J. D. Active control of rotating stall [D]. Ph. D. Thesis, MIT, 1992.
    [74] Paduano J. D. Analysis of compression system dynamics [M]. Active Control ofEngine Dynamics, RTO-EN-020, 2001.
    [75] Bottcher A. and Silvermann B. Introduce to large truncated toeplitz matrices [M].Springer Verlag, New York, 1999.
    [76] Curtain R. F., Iftime O. V. and Zwart H. J. On some aspects of platoon controlproblems [A]. In: Proceedings of the 48th Conference on Decision and Control [C],2009: 2357-2362.
    [77] Gray R. M. Toeplitz and circulant matrices: a review [M]. Norwell: Now Publishers,2006.
    [78] Demetriou M. A. and Rosen I. G. On the persistence of excitation in the adaptiveextimation of distributed parameter systems [J]. IEEE Transactions on AutomaticControl, 1994, 39(5): 1117-1123.
    [79] Orlov Y. and Bentsman J. Adaptive distributed parameter systems identi?cationwith enforceable identi?ability condition and reduced-order spatial di?erentiation[J]. IEEE Transactions on Automatic Control, 2000, 45(2): 203-216.
    [80] Hong K. S. and Bentsman J. Direct adaptive control of parabolic systems: Algorithmsynthesis and convergence and stability analysis [J]. IEEE Transactions on AutomaticControl, 1994, 39(10): 2018-2033.
    [81] Grossingho M. R. and Nkashama M. N. Periodic solutions of parabolic and telegraphequations with asymmetric nonlinearities [J]. Nonlinear Analysis: Theory, Methodsand Applications, 1998, 33(2): 187-210.
    [82] Lieberman G. M. Time-periodic solutions of quasilinear parabolic di?erential equa-tions I. Dirichlet Boundary Conditions [J]. Nonlinear Analysis, 2001, 264(2): 617-638.
    [83] Lieberman G. M. Time-periodic solutions of quasilinear parabolic di?erential equa-tions III: conormal boundary conditions [J]. Journal of Mathematical Analysis andApplications, 2001, 45(6): 755-773.
    [84] Zhang Q. and Lin Z. Periodic solutions of quasilinear parabolic systems with nonlin-ear boundary conditions [J]. Nonlinear Analysis: Theory, Methods and Applications,2010, 72(7): 3429-3435.
    [85] Teolis C., Gent D., Kim C., Teolis A., Paduano J. and Bright M. Eddy currentsensor signal processing for stall detection [A]. In: Proceedings of IEEE AerospaceConference [C]. 2005: 3479-3495.
    [86] Tan C. S., Day I. J., Morris S. and Wadia A. Spike-type compressor stall inception,detection, and control [J]. Annual Review of Fluid Mechanics, 2010, 42: 275-300.
    [87] McDougall N. M., Cumpsty N. A. and Hynes T. P. Stall inception in axial compres-sors [J]. ASME Journal of Turbomachinery, 1990, 112(1): 116-125.
    [88] Garnier V. H., Epstein A. H. and Greitzer E. M. Rotating wave as a stall inceptionindication in axial compressors [J]. ASME Journal of Turbomachinery, 1991, 113(2):290-301.
    [89] Day I. J. Stall inception in axial ?ow compressor [J]. ASME Journal of Turboma-chinery, 1993, 113(1): 1-9.
    [90] Day I. J. and Freeman C. The unstable behavior of low and high-speed compressors[J]. ASME Journal of Turbomachinery, 1994, 116(2): 194-201.
    [91] Wilson A. C. and Freeman C. Stall inception and development in an axial ?owaeroengine [J]. ASME Journal of Turbomachinery, 1994, 116(2): 216-225.
    [92] Day I. J., Breuer T., Escuret J., Cherrett M. and Wilson A. Stall inception and theprospects for active control in four high-speed compressors [J]. ASME Journal ofTurbomachinery, 1999, 121(1): 18-27.
    [93] Tryfonidis M., Etchevers O., Paduano J. D., Epstein A. H. and Hendricks G. J.Prestall behavior of several high-speed compressors [J]. ASME Journal of Turboma-chinery, 1995, 117(1): 62-80.
    [94] Hoss B., Leinhos D. and Fottner L. Stall inceptions in the compressor systme of aturbofan engine [J]. ASME Journal of Turbomachinery, 2000, 122(1): 32-44.
    [95] Bright M. M., Qammar H. K., Weigl H. J. and Paduano J. D. Stall precursor iden-ti?cation in high-speed compressor stagesusing chaotic time series anslysis methods[J]. ASME Journal of Turbomachinery, 1997, 119(3): 491-499.
    [96] Bright M. M., Qammar H. K. and Wang L. Z. Investigation of pre-stall mode andpip inception in high-speed compressors through the use of correlation integral [J].ASME Journal of Turbomachinery, 1999, 112(4): 743-750.
    [97] Bright M. M. Rotating pip detection and stall warning in high speed compressorsusing structure function [A]. In: AGARD RTO AVT Conference [C], 1998, 112(4):743-750.
    [98] Bright M. M. Chaotic time series analysis tools for identi?cation and stabilization ofrotating stall precursor events in high speed compressors, December, 2000, Universityof Akron.
    [99] Grassberger P. and Procaccia I. Measuring the strangeness of strange attractors [J].Physica D: Nonlinear Phenomena, 1983, 9(1): 189-208.
    [100] Kim T. Noisy precursors for nonlinear systme instability with application to axial?ow compressors [D]. Ph.D. Thesis, University of Maryland, 1997.
    [101] Liao S. F. and Chen J. Y. Time frequency analysis of rotating stall by means ofwavelet transform [J]. 1996, ASME 96-GT-57.
    [102] Cheng X. B., Chen J. Y. and Nie C. Q. Investigation on the precursor behaviorof compressor rotating stall through two-dimensional wavelet transform. Institute ofEngineering Thremophysics, Chinese Academy of Sciences: Beijing. 1999: 1-7.
    [103] Lin F., Chen J. Y. and Li M. L. Practical issues of wavelet analysis of unsteadyrotor tip ?ows in compressors [M]. AIAA, 2002.
    [104] Lin F., Chen J. and Li M. L. Experimental investigation of unteady rotor tip ?owsin a high speed compressor throttled to stall [J]. ASME Turbo Expo, 2002, 2002-GT-30360.
    [105] Xie F. and Xie S. S. Detection of rotating stall in aircraft engine based on waveletanalysis [J]. Journal of Aerospace Power, 2006, 21(4): 754-758.
    [106] Park H. G. Unsteady disturbance structures in axial ?ow compressor stall inception[D]. Master’s Thesis, MIT, 1994.
    [107]吴艳辉,楚武利,张皓光.轴流压气机失速初始扰动的研究进展[J].力学进展, 2008,38(5): 571-584.
    [108] Paduano J. D. Analysis of compression system dynamics. Unpublished, 2000.
    [109] Johnsen I. A. and Bullock R. O. Aerodynamic design of axial ?ow compressors [J].NASA SP-36, 1965.
    [110] McCaughan F. E. Application of bifurcation theory to axial ?ow compressor insta-bility [J]. Journal of Turbomachinery, 1989, 111: 426-433.
    [111] McCaughan F. E. Bifurcation analysis of axial ?ow compressor stability [J]. SIAMJournal on Applied Mathematics, 1990, 20: 1232-1253.
    [112] Abed E. H., Houpt P. K. and Hosny W. M. Bifurcation analysis of surge androtating stall in axial ?ow compressors [J]. AMSE Journal of Turbomachinery, 1993,115(4): 817-824.
    [113] Adomaitis R. A. and Abed E. H. Bifurcation analysis of nonuniform ?ow patternsin axial-?ow gas compressors [A]. In: 1stWorld Congress on Nonlinear Analysis [C],1992.
    [114] Iura T. and Rannie W. D. Experimental investigations of propagating stall in axialcompressors [J]. Transaction of the ASME, 1954: 463-471.
    [115] Emmons H. W., Pearson C. E. and Grant H. P. Compressor surge and stall propa-gation [J]. Transactions of the ASME, 1955, 77(3): 455-469.
    [116] Greitzer E. M. The stability of pumping systems -the 1980 Freeman Scholar Lecture[J]. ASME Journal of Fluid Engineering, 1981, 103: 193-242.
    [117] Takata H. and Nagano S. Nonlinear analysis of rotating stall [J]. Journal of Engi-neering for Power, 94(4), 1972.
    [118] Day I. J. Active suppression of rotating stall and surge in axial compressors [J].ASME Journal of Turbomachinery, 1993, 115(1): 10-47.
    [119] Gong Y. F. A computational model for rotating stall and inlet distortions in mul-tistage compressors [D]. Ph.D. Thesis, MIT, 1999.
    [120] Huu Duc. Vo., Tan C. S. and Greitzer E. M. Criteria for spike initiated rotatingstall [J]. ASME Journal of Turbomachinery, 2008, 130(1): 011023-1-9.
    [121]蒋康涛.低速轴流压气机旋转失速的数值模拟研究[D].中国科学院工程热物理研究所, 2004.
    [122] Moore F. K. A theory of rotating stall in axial compressors Part I: Small Distur-bances [J]. Journal of Engines for Gas Turbines and Power, 1984, 106(2): 313-320.
    [123] Moore F. K. A theory of rotating stall in axial compressors Part II: Finite Distur-bances [J]. Journal of Engines for Gas Turbines and Power, 1984, 106(2): 321-326.
    [124] Moore F. K. A theory of rotating stall in axial compressors Part III: Limit Cycles[J]. Journal of Engines for Gas Turbines and Power, 1984, 106(2): 327-334.
    [125] Moore F. K. and Greitzer E. M. A theory of post-stall transients in axial com-pression systems Part I: Development of Equations [J]. Journal of Engines for GasTurbines and Power, 1986, 108(1): 68-76.
    [126] Moore F. K. and Greitzer E. M. A theory of post-stall transients in axial compres-sion systems Part I: Application [J]. Journal of Engines for Gas Turbines and Power,1986, 108(2): 231-239.
    [127] McDougall N. M. Stall inception in axial compressors [D]. Ph.D. Thesis, CambridgeUniversity, 1988.
    [128] Paduano J. D., Valavani L. and Epstein A. H. Parameter identi?cation of com-pressor dynamics during closed-loop operation [A]. American control conference [C],1991: 2379-2385.
    [129] Paduano J. D., Valavani L., Epstein A. H., Greitzer E. M. and Guenette G R.Modeling for control of rotating stall [J]. Automatic, 1994, 30(9): 1357-1373.
    [130] Paduano J. D., Epstein A. H., Valavani L., Longley J. P., Greitzer E. M. andGuenette G R. Active control of rotating stall in a low-speed axial compressor [J].AMSE Journal of Turbomachinery, 1993, 115(1): 48-56.
    [131] Williams J. E. F. and Huang X. Active stabilization of compressor surge [J]. Journalof Fluid Mechanics, 1989, 204: 245-262.
    [132] Pinsley J. E., Guenette G. R., Epstein A. H. and Greitzer E. M. Active stabiliationof centrifugal compressor surge [J]. ASME Journal of Turbomachinery, 1991, 113(4):723-732.
    [133] Gysling D. L., Dugundji J., Greitzer E. M., et al. Dynamic control of centrifugalcompressor surge using tailored structures [J]. ASME Journal of Turbomachinery,1991, 113(4): 710-722.
    [134] Haynes J. M., Hendricks G. J. and Epstein A. H. Acitve stabilization of rotatingsatll in a three-stage of axial compressor [J]. ASME Journal of Turbomachinery,1994, 116(2): 226-239.
    [135] Gysling D. L. and Greitzer E. M. Dynamics control of rotating stall in axial ?owcompressors using aeromechanical feedback [J]. ASME Journal of Turbomachinery,1995, 117(3): 307-319.
    [136] Weigl H. L. Active stabilization of rotating stall and surge in a transonic singlestage axial compressor [D]. Ph.D. Thesis, MIT, 1997.
    [137] Epstein A. H., Williams J. E. F. and Greitzer E. M. Active suppression of aerody-namic instabilities in turbomachinery [J]. Journal of Propulsion, 1989, 5: 204-211.
    [138] Marz J., Hah C. and Neise W. An experimental and numerical investigation intothe mechanisms of rotating instability [J]. ASME Journal of Turbomachinery, 2002,124(3): 367-375.
    [139] Inoue M., Kuroumaru M., Iwamoto T. and Ando Y. Detection of a rotating stallprecursor in isolated axial ?ow compressor rotors [J]. ASME Journal of Turboma-chinery, 1991, 113(2): 281-289.
    [140] Hoying D. A., Tan C. S. and Vo H. D. Role of blade passage ?ow structures in axialcompressor rotating stall inception [J]. ASME Journal of Turbomachinery, 1999,121(4): 735-742.
    [141]杨荣菲,侯安平,周盛,周军伟.最大Lyapunov指数用于压气机局部性能的分析[J].航空学报, 2009, 30(4): 622-624.
    [142] Day I. J. Axial compressor stall [D]. Ph.D. Thesis, Cambridge University, 1976.
    [143] Wang C. and Chen T. R. Rapid detection of small oscillation faults via deterministiclearning [A]. In: Proceedings of 8th IEEE International Conference on Control andAutomation [C], 2010: 1629-1634.
    [144] Ding X. C. and Frank P. M. Fault detection via factorization approach [J]. Systemsand Control Letters, 1990, 14: 431-436.
    [145] Polycarpou M. M. and Trunov A B. Learning approach to nonlinear fault diagnosis:detectability analysis [J]. IEEE Transactions on Automatic Control, 2000, 45(4):806-812.
    [146] Zhang X. D., Polycarpou M. M. and Parisini T. A robust detection and isolationscheme for abrupt and incipient faults in nonlinear systems [J]. IEEE Transactionson Automatic Control, 2002, 47(4): 576-593.
    [147] Armstead D. C., Karls M. A. and Muncie I. Modeling a vibrating string [J]. SeniorHonors Thesis, 2004, :1-63.
    [148] Pakarinen J., Valimaki V. and Karjalainen M. Physics-based methods for modelingnonlinear vibrating strings [J]. ACTA Acustica United with Acustica, 2005, 91(2):312-325.
    [149] Freiling G. and Yurko V. Lectures on di?erential equations of mathematical physics:a ?rst course [M]. Nova Science Publishers, Inc., New York, 2008.
    [150] Morton K. W. and Mayers D. Numerical soluton of partial di?erential equations aninterduction [M]. Cambridge Universtity Press, 2005.
    [151] He Q. Semi-distrete method for generalized schro¨dinger-type equations [J]. Mathe-matics and Computers in Simulation, 1997, 43(2): 123-138.
    [152] Burkill J. C. Theory of ordinary di?erential equations [M]. Oliver and Boyd Ltd,1962.
    [153] Zhou G. P. and Wang C. Deterministic learning from control of nonlinear systemswith disturbances [J]. Progress in Natural Science, 2009, 19(8): 1011-1019.
    [154] Yuan X. Invariant manifold of hyperbolic-elliptic type for nonlinear wave equa-tion [J]. International Journal of Mathematics and Mathematical Sciences, 2003, 18:1111-1136.
    [155] Yuan X. Quasi-periodic solutions of completely resonant nonlinear wave equations[J]. Journal of Di?erential Equations, 2005, 230(1): 213-274.
    [156] Poschel J. Quasi-periodic solutions for nonlinear wave equation [J]. CommentariiMathematici Helvetici, 1996, 71(1): 269-296.
    [157] Procesi M. Quasi-periodic solutions for completely resonant nonlinear wave equa-tions in 1D and 2D [J]. Discrete and continuous dynamical systems, 2005, 13(3):541-552.
    [158] Gentile G., Mastropietro V. and Procesi M. Periodic solutions for completely reso-nant nonlinear wave equations with dirichlet boundary conditions [J]. Communica-tions in Mathematical Physics, 2005, 256(2): 437-490.
    [159] Bambusi B. and Paleari S. Families of periodic solutions of resonant PDEs [J].Nonlinear Science, 2001, 11(1): 69-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700