La_2NiO_(4+δ)-La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)复合阴极材料的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
La_2NiO_(4+δ)和La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)具有电子-离子混合导电特性,是中温固体氧化物燃料电池(SOFC)阴极的候选材料。本论文选择La_2NiO_(4+δ)与La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)为组元,设计并制备出(100-x)wt.%La_2NiO_(4+δ)+xwt.%La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(x=10-60)复合体阴极材料,研究了烧结温度和组成对复合体阴极材料结构和性能的影响,其目的在于为研制具有优良综合性能的新型阴极材料提供科学依据。
     本论文考查了复合体材料中两组元在高温下的化学相容性。XRD测试结果显示,复合体陶瓷样品的衍射峰可分别归属为La_2NiO_(4+δ)组元和La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)组元的衍射峰,说明复合阴极两组元La_2NiO_(4+δ)和La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)在高温下有无明显化学反应,具有良好的化学相容性。
     本论文研究了烧结温度对La_2NiO_(4+δ)-La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)复合体陶瓷结构与导电性能的影响。研究结果表明,适当的提高烧结温度可以明显改善陶瓷的显微结构和导电性能。根据导电性能测试结果确定,x=60的复合体陶瓷样品的合适烧结温度为1400℃,其它组成的复合体陶瓷样品的合适烧结温度为1450℃。
     本论文研究了组成对La_2NiO_(4+δ)-La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)复合体陶瓷结构与性能的影响。研究结果显示,随复合体陶瓷中La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)组元相对含量的增加,复合体陶瓷的总电导率提高、氧离子电导率降低、热膨胀数增大。
     根据导电性能和热膨胀性能的研究结果确定,x=30的组成为该复合体阴极材料的最佳组成。在600℃-800℃温度范围内,其总电导率保持在100 S·cm~(-1)以上;在100℃-730℃温度范围内,其平均热膨胀数为14.4×10~(-6)K~(-1)。在导电性能和热膨胀性能上,该组成满足中温SOFC对阴极材料的性能要求。
La_2NiO_(4+δ)(LN) and La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ) (LSCF) are current candidate materials for cathodes of intermediate temperatures solid oxide fuel cells (SOFC) because of their electronic-ionic conducting properties. In this work, (100-x)wt.% LN-xwt.% LSCF (x=10-60) composite cathodes have been designed and prepared with the LN and LSCF as the two components. The effects of sintering temperature and composition on the structure, chemical stability, mixed conducting properties and thermal expansion behaviors of the composite cathodes have been investigated from the viewpoint of seeking for the preferred compositions with both the desired electrical conducting and thermal expansion properties.
     The chemical compatibility between the LN and LSCF at high temperatures has been investigated. X-ray diffraction (XRD) analysis was employed to examine the phase structure of the composites after annealing at 1450℃. The results indicated that the XRD peaks of the composites can be assigned to those of the two end members, respectively. No significant solid state reaction product was detected between the two components during the annealing, demonstrating an acceptable chemical compatibility for the LN and LSCF.
     The effects of sintering temperature and composition on the mixed conducting and thermal expansion properties of the composite cathodes have been investigated. The preferred sintering temperatures have been ascertained for the composites in terms of the electrical conductivity data. The composition with x=60 presented the highest electrical conductivity when sintering at 1400℃, while the other compositions showed a preferred sintering temperature of 1450℃. It has been found that increasing the relative content of LSCF resulted in a rise of electrical conductivity, a decrease of ionic conductivity and an increase of thermal expansion coefficient (TEC).
     The preferred composition was determined to be 70wt.% LN-30wt.% LSCF with respect to both the electric conductivity and TEC data. The composition exhibited electrical conductivities above 100 S·cm~(-1) in the temperature range of 600℃-800℃and a TEC of 14.4×10~(-6)K~(-1) averaged between 100℃-730℃.
引文
[1] 李杨,魏敦崧,潘卫国.燃料电池发展现状与应用前景.能源技术,2001,22(4):157-160
    
    [2] 仇立干,吴林,石慧.燃料电池进展.电池工业,2001,6(5):233-236
    
    [3] 候丽萍,张暴暴.固体氧化物燃料电池的统结构及其研究进展.西安工程科技学院学报,2007,21(2):267-270
    
    [4] R.George.燃料电池及其发展前景.国际电力,2001,2:24-26.
    
    [5] 毛宗强.氢能离我们还有多远-我国燃料电池现状、差距及对策.电源技术,2003,27:179-182
    
    [6] 田大栓.燃料电池的特点与应用前景.煤气与热力,2006,26(12):31-32
    
    [7] 刘江,吕喆,刘巍等.固体氧化物燃料电池的工艺探索及相关的性能研究.中国科学(A辑),1997,27(10):930-935.
    
    [8] 李永峰,董新法,林维明.固体氧化物燃料电池的现状和未来.电源技术,2002,26(6):462-465
    
    [9] O. Yamamoto. Solid oxide fuel cells: fundamental aspects and prospects. Electrochemical Acta,2000,45:2423-2435.
    
    [10] 张士军,魏亦军.固体氧化物燃料电池的研究进展.2006,8(37):53-56
    
    [11] 孟广耀,付清溪,彭定坤.中温固体氧化物燃料电池.太阳能学报,2002,23(3):378-382
    
    [12] 阎加强,张培新,单松高等.中低温固体氧化物燃料电池的研究.材料导报,1998,12(4):44-47
    
    [13] 黄建兵,杨力寨,彭冉冉等.新型低温固体氧化物燃料电池研究进展.太阳能学报,2005,26(1):134-140
    
    [14] 魏楸桐,郭瑞松、王风华.固体氧化物燃料电池复合阴极材料研究.电源技术,2004,28(1):64-66
    
    [15] 刘荣辉,马文会,王华.固体氧化物燃料电池阴极材料的研究进展.云南化工,2005,32(3):45-49
    
    [16] 黄端平,徐庆,陈文等.新型中温固体氧化物燃料电池阴极材料的研究.陶瓷学报,2006,27(3):275-279
    
    [17] V. V. Kharton , E. V. Tsipis , A. A. Yaremchenko , et al., Surface-limited oxygen transport and electrode properties of La_2Ni_(0.8)Cu_(0.2)O_(4+δ). Solid State Ionics, 2004, 166(1-2):327-371
    
    [18] S. J. Skinner, C. N. Munnings, G. Amow, et al., Evaluation of La_2Ni_(1-x)Co_x0_(4+δ) as a sofc cathode material. 8~(th) International Symposium on Solid Oxide Fuel Cells (SOFC-Ⅷ) (S.C. Singhal, M. Dokiya, Ed.),2003,7:552-559
    
    [19] 马学菊,马文会,杨斌.固体氧化物燃料电池阳极材料的研究进展.电源技术,2007,31(9):751-756
    
    [20] S. P. Jian. Issues on development of (La, Sr)MnO_3 cathode for solid oxide fuel cells. Journal of Power Sources, 2003,124(3):390-402
    
    [21] Y. Takeda, Y. Sakakiy, T. Ichickawa, et al., Stability of La_(1-x)A_xMnO_(3-z)(A=Ca, Sr) as cathode materials for solid oxide fuel cells. Solid State Ionics,1994, 72(2): 257-264
    
    [22] Y. L. Yang, C. L. Chen, C. W. Chu, et al., Impedance studies exchange on dense thin film electrodes of La_(0.8)Sr_(0.2)Co_(3-y). Journal of Electrochemical Sources, 2000, 147(11):4001-4008
    
    [23] S. Carter, A. Selcuk, R. J. Charter, et al., Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics, 1992, 53-56:597-608
    
    [24] Z. P. Shao, M. H. Sossina. A high-performance cathode for the next generation of solid oxide fuel cells. Nature, 2004, 431:170-173
    
    [25] J. W. Stevenson, T. R. Armstrong, R. D. Carneim, et al., Electrochemical properties of mixed conduting perovskite La_(1-x)M_xCo_(1-y)Fe_yO_(3-δ) (M=Sr, Ba, Ca). Journal of Electrochemical Sources, 1996, 143:2722-2729
    
    [26] K. Q. Huang, H. Y. Lee, B. G. John. Sr- and Ni-Doped LaCoO_3 and LaFeO_3 perovskites. Journal of Electrochemical Sources, 1998,145:3220-3227
    
    [27] Y. Teraoka, T. Nobunaga, K. Kamoto, et al., Influence of constituent metal cations in substituted LaCoO_3 on mixed conductivity and oxygen permeability. Solid State Ionics,1991,48:207-212
    
    [28] Y. Teraoka, T. Nobunaga, K. Okamoto, et al., Influence of constituent metal cations in substituted LaCoO_3 on mixed conductivity and oxygen permeability. Solid State Ionics,1990, 48(3-4):207-212
    
    [29] L. W. Tai, M. M. Nasrallah, H. U. Anderson, et al., Structure and electrical properties of La_(1-x)Sr_xCo_(1-y)Fe_yO_3.Part 1. The system La_(0.8)Sr_(0.2)Co_(1-y)Fe_yO_3. Solid State Ionics, 1995, 76: 259-271.
    
    [30] L. W. Tai, M. M. Nasrallah, H. U. Anderson, et al., Structure and electrical properties ofLa_(1-x)Sr_xCo_(1-y)Fe_yO_3. Part 2. The system La_(1-x)Sr_(x2)Co_(0.8)Fe_(0.2)O_3. Solid State Ionics, 1995, 75:273-289
    
    [31] V. V. Kharton, A. A. Yaremchenko, M. V. Patrakeev. Thermal and chemical inducedexpansion of La_(0.3)Sr_(0.7)(Fe,Ga)O_(3-δ) ceramics. Journal of European Ceramic Society, 2003, 23:1417-1426
    
    [32] Qing Xu, Duan-ping Huang, Wen Chen, et al., Structure, electrical conducting and thermal expansion properties of Ln_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3 (Ln=La, Pr, Nd, Sm) perovskite-type complex oxides. Journal of Alloys and Compounds, 2007,429:34-39
    
    [33] E. Boehm, J. M. Bassat, M. C. et al., Oxygen transport properties of La_2Ni_(1-x)Cu_xO_(4+δ) mixed conducting oxides. Solid State Sciences, 2003, 5: 973-981
    
    [34] F. Mauvy, J. M. Bassat, E. Boehn, et al., Chemical oxygen diffusion coefficient measurement by conductivity relacation-correlation between tracer diffusion coefficient and chemical diffusion coefficient. Journal of European Ceramic Society, 2004, 24: 1265-1269
    
    [35] E. Boehm, J. M. Bassat, P. Dordor, et al., Oxygen diffusion and transport properties in non-stoichiometric Ln_(2-x)NiO_(4+δ) oxides. Solid State Ionics, 2005, 176:2717-2725
    
    [36] M. A. Darorukh, V. V. Vashook, H. Ullmann, et al., Oxides of the AMO_3 and A_2MO_4-type: structural stability, electrical conductivity and thermal expansion. Solid State Ionics, 2003, 158:141-150
    
    [37] 黄端平.层状结构La_2NiO_(4+δ)体混合导体的化学合成、结构与性能研究:[博士学位论文].武汉:武汉理工大学材料科学与工程学院,2006
    
    [38] 卢自桂,江义,董永来等.锰酸镧和氧化钇稳定的氧化锆复合阴极的研究.高等学校化学学报,2001,22(5):791-795
    
    [39] H. J. Hwang, J-W. Moon, S. H. Lee, et al., Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs. Journal of Power Sources, 2005, 145:243-248
    
    [40] Qing Xu, Duan-ping Huang, Wen Chen, et al., Structure elcetrical conducting and thermal expansion properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3-Ce_(0.8)Sm_(0.2)O_(3-δ) composite cathodes. Journal of Alloys and Compounds, 2008,454:460-465
    
    [41] K. B. Yoo, G. M. Choi. Cathodic overpotential of La_(0.6)Sr_(0.4)CoO_3 and its composite cathodes LSC-LSGM on LaGaO_3-based fuel cell. Journal of European Ceramic Society,2007,27: 4211-4214
    
    [42] 于丽君.CGO基单室固体氧化物燃料电池相关材料的合成于性能研究:[硕士学位论文].黑龙江:黑龙江大学无机化学,2006
    
    [43] A. L. Shaula, V. V. Kharton, F. M. B. Marques. Phase interaction and oxygen transport in La_(0.8)Sr_(0.2)Fe_(0.8)Co_(0.2)O_(3-δ)-(La_(0.9)Sr_(0.1)_(0.98)Ga_(0.8)Mg_(0.2)O_3 composites. Journal of European Ceramic Society, 2004,24:2631-2639
    
    [44] B. Wei, Z. Lu, X. Q. Huang, et al., Electrochemical characteristics of Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) -Sm_(0.2)Ce_(0.8)O_(1.9)composite materials for low-temperature solid oxide fuel cell cathodes. Materials Letters, 2006, 60: 3642-3646
    
    [45] Z. F. Hou, M. Yang, A. Y. Yang. An investigation of LSM-LSC composites for IT-SOFC. The 15_(th) proceedings of Solid State Ionics, Baden-Baden, Germany, 2005.7
    
    [46] W. Zhou, Z. P. Shao, R. Ran. Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)+LaCoO_3 composite cathode for Sm_(0.2)Ce_(0.8)O_(1.9)-electrolyte based intermediate-temperature solid-oxide fuel cells. Journal of Power Sources,2007,168:330-337
    
    [47] K. Sasaki, J. Tamura, M. Dokiya. Noble metal alloy-Zr(Sc)O_2 cermet cathode for reduced-temperature SOFCs. Solid State Ionics, 2001, 144:233-240
    
    [48] K. T. Lee, A. Manthiram. Electrochemical performance of Nd_(0.6)Sr_(0.4)Co_(0.5)Fe_(0.5)O_(3-δ)-Ag composite cathodes in intermediate temperature solid oxide fuel cells. Journal of Power Sources,2006,160:903-908
    
    [49] 李艳,吕吉吉,黄喜强等.掺银的Sm_(0.5)Sr_(0.5)CoO_3中温固体氧化物燃料电池复合阴极材料的制备与性能研究.中国稀士学报,2004,22(5):660-664
    
    [50] M. Sahibzada, S. J. Benson, R. A. Rudkin, et al., Pd-promoted La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3 cathodes. Solid State Ionics,1998,113-115:146-152
    
    [51] S. R. Wang, T. Kato, S. Nagata. Performance of a La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_3-Ce_(0.8)Gd_(0.2)O_(1.9)-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics,2002,146:203-210
    
    [52] J. D. Zhang, Y. Ji, H. B. Gao. Composite cathode La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3-Sm_(0.1)Ce_(0.9)O_(1.9)-Ag for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2005, 395: 322-325
    
    [53] H. Wullens, D. Leroy, M. Devillers. Preparation of ternary Bi-La and Bi-Pr oxides from polyaminocarboxylate complexes. International Journal of Inorganic Materials, 2001, 3: 309-321
    
    [54] H. Wullens, N. Bodart, M. Devillers. New bismuth(Ⅲ), lanthanum(Ⅲ), praseodymium(Ⅲ), and heterodinuclear Bi-La and Bi-Pr complexes with polyaminocarboxylate ligands. Journal of Solid State Chemistry, 2002,167:494-507
    
    [55] D. P. Huang, Q. Xu, F. Zhang, et al., Synthesis and electrical conductivity of La_2NiO_(4+δ) drived from a polyaminocarboxylate complex precursor. Materials Letters, 2006,60: 1892-1895
    
    [56] L. A. Chick, L. R. Pederson, G. D. Maupin, et al., Glycine-nitrate combustion synthesis of oxide ceramic powder. Materials Letters,1990,10:6-10
    
    [57] 杨勇杰,杨建华,屠恒勇等,铬酸锶镧材料的制备与性能研究,无机材料学报,1999,14(5):739-744
    
    [58] 黄端平.La_(1-x)Sr_xCo_(1-y)Fe_yO_3复合氧化物的化学法合成、结构与混合导电性能研究:[硕士学位论文].武汉:武汉理工大学材料科学与工程学院,2003
    
    [59] 赵宗源,陈立泉.快离子导体的阻抗谱研究.科学通报,1981,11(6):348-35.
    
    [60] 林祖镶,郭祝昆.快离子导体.上海:上海科学技术山版社,1983
    
    [61] T. L. Nguyen, K. Kobayashi, T. Honda, et al., Preparation and evaluation of doped ceria interlayer on supported stabilized zirconia electrolyte SOFCs by wet ceramic processes. Solid State Ionics, 2004,174(1-4):163-174
    
    [62] J. A. Lane, J. A. Kilner. Oxygen surface exchange on gadolinia doped ceria. Solid State Ionics,2000,136-137:927-932
    
    [63] C. C. Chen, M. M. Nasrallah, H. U. Anderson. Immitance response of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3 based electrochemical cells. Journal of Electrochemical Sources,1995,142(2):491-496
    
    [64] I. Riess. Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors. Solid State Ionics,1996,91:221-232.
    
    [65] 黄端平,徐庆,陈文等.La_(0.6)Sr_(0.4)Co_(1-y)Fe_yO_3的混合导电性研究.无机材料学报,2005,20(1):133-138
    
    [66] M. T. Colomer,B. C. H. Steele, J. A. Kilner. Structural and electrochemical properties of the Sr_(0.8)Ce_(0.1)Fe_(0.7)Co_(0.3)O_(3-δ) perovskite as cathode material for ITSOFCs. Solid State Ionics,2002, 147(1-2):41-48
    
    [67] R. Peng, C. Xia, Q. Fu, et al., Sintering and electrical properties of (CeO_2)_(0.8)(Sm_2O_3)_0.1 powders prepared by glycine-nitrate process. Materials Letters, 2002,56(6):1043-1047
    
    [68] 黄端平,徐庆,陈文等.钙钛矿复合氧化物La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_3的合成与电学性能.无机材料学报、2003,18(5):1039-1044
    
    [69] 李光强,徐秀光.固体电解质氧传感器的阻抗谱分析.无机材料学报,1995,10(1):120-122
    
    [70] Zview(Ver.2.1). Impedance/Gain phase graphics and analysis software, Scribner Associates, 1994
    
    [71] Q. Xu, D. P. Huang, W. Chen, et al., X-ray photoelectron spectroscopy investigation on chemical states of oxygen on surfaces of mixed electronic-ionic conducting La_(0.6)Sr_(0.4)Co_(1-y)Fe_yO_3 ceramics. Applied Surface Science, 2004, 228:110-114
    
    [72] J. Jamnik. Impedance spectroscopy of mixed conductors with semi-blocking boundaries. Solid State Ionics, 2003,157:19-28
    
    [73] R. M. C. C. Clemmer, S. F. Corbin, Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes. Solid State Ionics, 2004, 166: 251-259
    
    [74] R. E. Dutton, M. N. Rahaman, Sintering, creep, and electrical conductibity of model glass-matrix composites. Journal of the American Ceramic Society,1992,75(8):2146-2154
    
    [75] F. M. Figueiredo, F. M. B. Marques, J. R. Frade. Electrical properties and thermal expansion of LaCoO_3/La(Zr,Y)_2O_7 compositesl. Solid State Ionics,2001,138:173-182
    
    [76] V. V. Kharton, A. A. Yaremchenko, A. L. Shaula, et al., Transport properties and stability of Ni-containing mixed conductors with perovskite- and K_2NiF_4-type structure. Journal of Solid State Chemistry,2004,177:26-37
    
    [77] S. Nishiyama, D. Sakaguchi, T. Hattori. Electrical conduction and thermoelectricity of La_2NiO_(4+δ) and La_2(Ni,Co)O_(4+δ). Solid State Communications,1995,94(4):279-282.
    
    [78] V. V. Kharton, A. P. Viskup, E. N. Naumovich, et al.. Oxygen ion transport in La_2NiO_4-based ceramics. Journal of Materials Chemistry,1999,9:2623-2639
    
    [79] Q. Xu, D. P. Huang, W. Chen, et al., Influence of sintering temperature on microstructure and mixed electronic-ionic conduction properties of perovskite-type La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_3 ceramics. Ceramics International, 2004, 30: 429-433
    
    [80] J. E. Elshof, H. J. M. Bouwmeester, H. Verweij. Oxyen,transport through La_(1-x)Sr_xFeO_(3-δ) membranes Ⅱ.Permeation in air/CO,CO_2 gradients. Solid State Ionics, 1996, 89:81-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700