真空紫外用纳米绿色荧光粉的制备及光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米发光材料在真空紫外(VUV)激发下具有独特的光学特性,并且能够为显示技术分辨率的提高及器件小型化的发展提供可能。本论文主要采用水热法制备了真空紫外用纳米绿色发光材料:Mn2+离子掺杂的硅酸盐和稀土离子掺杂的氟化物。一方面,对传统的硅酸锌掺锰绿色发光材料进行了纳米级别的优化设计,并研究了其在真空紫外激发下的独特光学性能;另一方面,选择、设计并研究了新型氟化物纳米绿色发光材料。论文主要内容有:
     1.采用水热合成方法,以正硅酸乙酯(TEOS)作为硅源,在较低反应温度下合成了纯六方相结构的纳米Zn2SiO4:Mn2+发光材料,其合成温度(140℃)是已见文献报道中最低的。对所合成发光材料的性能研究表明,在真空紫外光激发下,纳米Zn2SiO4:Mn2+具有良好的绿光发射,其发射光谱是处于525 nm的宽带峰;通过表面活性剂的添加,可以制备不同形貌的Zn2SiO4:Mn2+发光材料。具有规则形貌的球形Zn2SiO4:Mn2+具有更高的发射强度。在制备得到的不同颗粒尺寸的系列球形Zn2-xSiO4:xMn2+纳米颗粒中,由于纳米材料的尺寸效应,在VUV激发下,随着颗粒尺度的减小,系列样品具的猝灭浓度提高,Mn2+离子的衰减时间变长。
     2.热处理和共掺杂其它离子能够有效改善水热得到的Zn2SiO4:Mn2+样品的光学性能。热处理后,纳米Zn2SiO4:Mn2+保持了其规则球形形貌,且发光强度明显增强,达到商用Zn2SiO4:Mn2+荧光粉的86%。这是由于热处理使得纳米颗粒的结晶性能提高,其表面缺陷减少,从而无辐射跃迁几率减少,发光强度提高。但是与热处理前样品比较发现其余辉时间增长。为了进一步改善纳米Zn2SiO4:Mn2+的余辉时间,在纳米Zn2SiO4:Mn2+的样品中共掺杂了其他金属离子,结果发现,适当的Mg2+离子掺杂,可使Zn2SiO4:Mn2+纳米颗粒的衰减时间缩短至4.98 ms;Ca2+离子掺杂的纳米Zn2SiO4:Mn2+颗粒的发光强度达到商用粉的107%。通过分析,认为共掺杂离子引起了纳米Zn2SiO4:Mn2+的晶格畸变,使得双重禁戒的Mn2+离子跃迁放宽,从而改善了纳米Zn2SiO4:Mn2+的发光强度以及余辉时间。
     3.水热法合成了六方相纳米NaYF4:Tb3+发光材料,得到的纳米NaYF4:Tb3+粒度均匀,分散性好。随着还原温度的升高,NaYF4的相结构逐渐由六方相转变成立方相。立方相纳米NaYF4:Tb3+在真空紫外下具有良好的绿光发射,立方相的NaYF4:Ce3+能够吸收到的紫外光的能量并将传递给Tb3+离子,使其在紫外区域的绿光发射强度明显提高。而六方相的纳米NaYF4:Ln3+(Ln=Sm,Dy)在真空紫外和紫外光激发下,表现了良好的发光性质。
For advancing display device technology, fine particle phosphors which have smaller particle size and more uniform particle shape than those present commercial phosphors are required. In this paper, we synthesized manganese doped silicate and rare earth doped fluoride nano-phosphor via hydrothermal route. The main work focused on the improvement of photoluminescence (PL) properties of traditional Zn2SiO4:Mn2+ phosphor in nano scale. In addition, the unique PL properties of nano phosphor under vacuum ultraviolet (VUV) excitation were also discussed. On the other hand, the VUV PL properties of rare earth doped fluoride nanophosphors were selected and studied.
     1.Nanoscaled hexagonal Zn2SiO4:Mn2+ green phosphor with regular and uniform morphology was synthesized by hydrothermal method at a low temperature of 140℃, which was the lowest synthesize temperature that ever reported. The as-synthesized nanophosphor exhibited intensive broad emission around 523nm, which was attributed to the 4T1-6A1 transition of Mn2+. When the cetyltrimethyl ammonium bromide (CTAB) as the surfactant molecules was adopted into the hydrothermal procedure, the morphology and the particle size of the phosphor could be controlled. The uniform spherical nanoparticles exhibited the strongest broad emission. Series of Zn2-xSiO4:xMn2+ nanophosphors with different particle size were producted when the condition of the hydrothermal changed. It was found that the highest concentration quenching occurred in the series of Zn2-xSiO4:xMn2+ nanophosphor with the smallest particle size, and the decay time of Mn2+ prolongered with the decrease of particle size due to size effect in nano-materials.
     2. Heat-treatment and codoping other ions could improve the PL properties of the hydrothermal production. After the heat-treatment, PL intensity of the Zn2SiO4:Mn2+ nanophosphor increased along with the elongered decay time, while still keeping the monodispersed spherical morplogy. The decay time of Mg2+ codoped Zn2SiO4:Mn2+ is 4.981 ms, is much shorter than the commercial bulk phosphor. The PL intensity of Zn2SiO4:Mn2+,Ca2+ nanophosphor was 107% of that of commercial bulk phosphor.
     3.Hexagonal NaYF4:Tb3+ nanophosphor with well dispersed morphology was synthesized by the hydrothermal route. With the increasing reduction temperature, the hexagonal NaYF4 (β-NaYF4) was gradually replaced by cubic NaYF4(a-NaYF4). Tb3+ doped cubic NaYF4 exhibited intensive green PL under VUV or ultraviolet (UV) excitation. The green emission of Tb3+ in cubic NaYF4 was obviously improved with Ce3+ codoped due to the energy transfer procedure under UV excitation. Nano Hexagonal NaYF4:Ln3+(Ln=Sm, Dy) exhibit excellent PL properties under VUV or UV excitation.
引文
[1]H. Gleiter, Nanocrystalline Materials, Prog. Mater. Sci.,1989 33, 223-315.
    [2]H. Gleiter, Nanostructured materials:State of the art and perspectives, Nanostructured Mater,1995,6,3-14
    [3]H. Gleiter, Nanostructured Materials:Basic Concepts and Microstructure, Acta Mater.2000,48,1-29.
    [4]Y. Wang, N. Herron, Nanometer-Sized Semiconductor Clusters:Materials Synthesis, Quantum Size Effects, and Photophysical Properties, J. Phys. Chem.,1991,95,525-532.
    [5]W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton & P. J. F. Harris, Condensed-phase nanotubes, Nature,1995,377,687-687.
    [6]Akiyoshi Hoshino, Kouki Fujioka, Taisuke Oku, Masakazu Suga, Yu F. Sasaki, Toshihiro Ohta, Masato Yasuhara, Kazuo Suzuki, and Kenji Yamamoto, Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification, Nano Letters,2004,4,2163-2169.
    [7]Igor L.Medintz, H. Tetsuo Uyeda, Ellen R. Goldman, Hedi Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials,2005,4,435-446.
    [8]Ute Resch-Genger, Markus Grabolle, Sara Cavaliere-Jaricot, Roland Nitschke & Thomas Nann, Quantum dots versus organic dyes as fluorescent labels, Nature Methods 2008,5,763-775.
    [9]Alf Mews, Jialong Zhao, Light-emitting diodes:A bright outlook for quantum dots, Nature Photonics,2007,1,683-684.
    [10]M. H. Frey, D. A. Payne, Grain-size effect on structure and phase transformations for barium titanate, Phys. Rev. B 1996,54,3158-3168.
    [11]Ranjani Viswanatha, Sameer Sapra, B. Satpati, P. V. Satyam, B. N. Dev and D. D. Sarma, Understanding the quantum size effects in ZnO nanocrystals, J. Mater. Chem.,2004,14,661-668.
    [12]P. Sharma, S. Ganti, and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett., 2003,82,535-538.
    [13]P. A. R. D. Jayathilaka, M. A. K. L. Dissanayake, I. Albinsson, B.E. Mellander, Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9 LiTFSI polymer electrolyte system, Electrochimica Acta,2002,47,3257-3268.
    [14]Ivan H. El-Sayed, Xiaohua Huang, and Mostafa A. El-Sayed, Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics:Applications in Oral Cancer, Nano Lett.,2005,5,829-834.
    [15]Johannes Lehmann, Biqing Liang, Dawit Solomon, Mirna Lerotic, Flavio Luizao, James Kinyangi, Thorsten Schafer, Sue Wirick, Chris Jacobsen, Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles, Global Biogeochemical Cycles, 200519, GB1013 1-12.
    [16]Prashant K. Jain, Kyeong Seok Lee, Ivan H. El-Sayed, and Mostafa A. El-Sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:Applications in Biological Imaging and Biomedicine, J. Phys. Chem. B,2006,110, 7238-7248.
    [17]孙家跃,稀士发光材料,化学工业出版社,2003.
    [18]Link, MB Mohamed, MA El-Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant, J. Phys. Chem. B,1999,103, 3073-3077.
    [19]M. V. Wolkin, J.Jorne, P.M. Fauchet, G. Allan, C.Delerue, Electronic States and Luminescence in Porous Silicon Quantum Dots:The Role of Oxygen, Phys. Rev. Lett.,1999,82,197-200.
    [20]D. J. Lockwood, Quantum confined luminescence in Si/SiO2 superlattices, Phase Transitions,1999,68,151-168.
    [21]Yoshihiko Kanemitsu, Hiroshi Uto, and Yasuaki Masumoto, Yoshihito Maeda, On the origin of visible photoluminescence in nanometer-size Ge crystallites, Appl. Phys. Lett.,1992,61,2187-2189.
    [22]Shigeo Shionoya, Picosecond spectroscopy of highly excited direct-gap semiconductors, J. Lumin.1979,18-19,917-923.
    [23]D.Williams, H. Yuan, B.M.Tissue, J Lumin.,1999,297,83-84.
    [24]Marcel Bruchez Jr., Mario Moronne, Peter Gin, Shimon Weiss, A. Paul Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels Sicence,1998,281,2013-2016.
    [25]L Robindro Singh, R S Ningthoujam, V Sudarsan, Iti Srivastava, S Dorendrajit Singh, G K Dey and S K Kulshreshtha, Luminescence study on Eu3+ doped Y2O3 nanoparticles:particle size, concentration and core-shell formation effects, Nanotechnology,2008,19,055201.
    [26]Menglei Chang and Shaolong Tie, Fabrication of novel luminor Y2O3:Eu3+@SiO2@YVO4:Eu3+ with core/shell heteronanostructure,2008 Nanotechnology,19,075711.
    [27]Jacobs, Ralph R.; Krupke, William F.; Weber,Marvin J., Measurement of excited-state-absorption loss for Ce3+in Y3Al5O12 and implications for tunable 5d-->4f rare-earth lasers, Applied Physics Letters,1978,33,410.
    [28]T. Tahagahara and K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. B 1992, 46,15578.
    [29]Xian-geng Meng, Jian-rong Qiu, Ming-ying Peng, Dan-ping Chen, Quan-zhong Zhao, Xiong-wei Jiang, and Cong-shan Zhu, Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses, Optics Express,2005,13,1635-1642.
    [30]C He, Y Guan, L Yao, W Cai, X Li, Z Yao, Synthesis and photoluminescence of nano-Y2O3:Eu3+ phosphors, Materials Research Bulletin,2003,38,973-979.
    [31]Mingna Xiong, Guangxin Gu, Bo You, Limin Wu, Preparation and characterization of poly (styrene butylacrylate) latex/nano-ZnO nanocomposites, Journal of Applied Polymer Science,2003,90, 1923-1931.
    [32]Erjun Tang, Guoxiang Cheng, Xingshou Pang, Xiaolu Ma and Fubao Xing, Synthesis of nano-ZnO/polymethyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property, Colloid & Polymer Science,2006,284,422-428.
    [33]Zhou S., Wu L., Sun J., Shen W., The change of the properties of acrylic-based polyurethane via addition of nano-silica, Progress in Organic Coatings,2002,45,33.-42.
    [34]Yanqiang Yang, Shufeng Wang, Zhaoyong Sun, Dana D. Dlott, Near-Infrared and Visible Absorption Spectroscopy of Nano-Energetic Materials Containing Aluminum and Boron, Propellants, Explosives, Pyrotechnics,2005,30,171-177.
    [35]R. N. Bhargave, D. Gallagher, X. Hong, A. Nurmikko, Optical Properties of Manganese Doped Nanocrystals of ZnS, Phys. Rev. Lett.,1994,72, 416.
    [36]R. N. Bhargava, D. Gallagher, T. Welker, Doped nanocrystals of semiconductors-a new class of luminescent materials J. Lumin.,1994, 60&61,275-280.
    [37]R. Selomulya, S. Ski, K. Pita, C. H. Kam, Q. Y. Zhang and S. Buddhudu, Luminescence properties of Zn2SiO4:Mn2+ thin-films by a sol-gel process, Materials Science and Engineering B,2003,100,136-141.
    [38]V. Sudarsan, Frank C. J. M. van Veggel, Rodney A. Herring and Mati Raudsepp, Surface Eu3+ ions are different than "bulk" Eu3+ ions in crystalline doped LaF3 nanoparticles, Journal of Materials Chemistry, 2005,15,1332-1342.
    [39]S. Bhaskar, P. S. Dobal, B. K. Rai, R. S. Katiyar, H. D. Bist, J.-O. Ndap, and A. Burger Photoluminescence study of deep levels in Cr-doped ZnSe, J. Appl. Phys.1999,85,369404.
    [40]Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability, Xinhua Zhong, Mingyong Han, Zhili Dong, Timothy J. White, and Wolfgang Knoll, J. AM. CHEM. SOC.2003,125,8589-8594
    [41]Peter Reiss,Joel Bleuse, and Adam Pron, Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion, Nano Letters,2002,2, 781-784
    [42]C. M. Mo, Y. H. Li, Y. S. Liu, Y. Zhang, and L. D. Zhang, Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels, J. Appl. Phys.1998,83,4389.
    [43]Dmitri V. Talapin, Andrey L. Rogach, Andreas Kornowski, Markus Haase, and Horst Weller, Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine Trioctylphosphine Oxide Trioctylphospine Mixture, Nano Letters,2001,1, 207-211.
    [44]R.Schmechel, Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments,Scripta Materialia,2001,44,1213-1217.
    [45]MG Kwak, JH Park, SH Shon, Synthesis and properties of luminescent Y2O3:Eu (15-25 wt%) nanocrystals, Solid State Communications,2004, 130,199-201.
    [46]Pramod K. Sharma, M. H. Jilavi, R. Nass and H. Schmid, Tailoring the particle size from μm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria, Journal of Luminescence 1999,82,187-193
    [47]J A Nelson, EL Brant, MJ Wagner Nanocrystalline Y2O3:Eu phosphor prepared by alkalide reduction, Chem. Mater,2003,15,688-693.
    [48]T Ye, Z Guiwen, Z Weiping, X Shangda Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu Phosphor, Materials Research Bulletin,1997,501-506
    [49]Honghua Huang and Bing Yan, In situ sol-gel composition of multicomponent hybrid precursors to luminescent novel unexpected microrod of Y2SiO5:Eu3+ employing different silicate sources, Solid State Communications,2004,132,773-777.
    [50]Cuikun Lin, Huan Wang, Deyan Kong, Min Yu, Xiaoming Liu, Zhenling Wang, Jun Lin, Silica Supported Submicron SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ Spherical Particles with a Core-Shell Structure: Sol-Gel Synthesis and Characterization European Journal of Inorganic Chemistry,2006,18,3667-3675
    [51]Doo-hyoung Lee, Wei Wang, Timothy Gutu, Clayton Jeffryes, Gregory L. Rorrer, Jun. Jiao and Chih-hung Chang, Biogenic silica based Zn2Si04:Mn2+ and Y2SiO5:Eu3+ phosphor layers patterned by inkjet printing process, J. Mater. Chem.,2008,18,3633-3635,
    [52]Junxi Wan, Zhenghua Wang, Xiangying Chen, Li Mu and Yitai Qian, Shape-tailored photoluminescent intensity of red phosphor Y2O3:Eu3+, Journal of Crystal Growth,2005,284,538-543
    [53]Zhai Yongqing,, Yao Zihua, Ding Shiwen, Qiu Mande and Zhai Jian, Synthesis and characterization of Y2O3:Eu nanopowder via EDTA complexing sol-gel process, Materials Letters,2003,57,2901-2906
    [54]W. Chen, Ramaswami Sammynaiken and Yining Huang, Jan-Olle Malm, Reine Wallenberg, and Jan-Olov Bovin, Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles, J. Appl. Phys.2001, 89,1120-1129.
    [55]Wei Chen, Jan-Olle Malm,Valery Zwiller, Yining Huang, Shuman Liu, Reine Wallenberg and Jan-Olov Bovin, Lars Samuelson,Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles, Phys. Rev.B 2002,61, 11021-11024.
    [56]Justin C. Johnson, Kelly P. Knutsen, Haoquan Yan, Matt Law, Yanfeng Zhang, Peidong Yang, and Richard J. Saykally, Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers, Nano Letters, 2004,4197-204.
    [57]M.G Bawendi, W. L. Wilson, L. Rothberg, T.M. Jedju, M. L. Steigerwald, L.E. Brus, Electronic Structure and Photoexcited-Carrier Dynamics in Nanometer-Size CdSe Clusters, Phys. Rev. Lett.1990,65 1623.
    [58]V. Jungnickel, F. Henneberger, Luminescence related processes in semiconductor nanocrystals-The strong confinement regime, J. Lumin., 1996,70,238-252.
    [59]Christopher Ma, Yong Ding, Daniel Moore, Xudong Wang, and Zhong Lin Wang, Single-Crystal CdSe Nanosaws, J. Am. Chem.Soc.2004,126 708-709.
    [60]Lixin Cao, Jiahua Zhang, Shanling Ren, and Shihua Huang, Luminescence enhancement of core-shell ZnS:Mn/ZnS nanoparticles, Appl. Phys. Lett.,2002,80,4300-4302.
    [61]A. Konrada, T. Fries and A. Gahn, F. Kummer, U. Herr, R. Tidecks, and K. Samwer, Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu, J. Appl. Phys.,1999,86,3129-3133.
    [62]Kai Zhang, A. K. Pradhan, George B. Loutts, Utpal N. Roy, Yunlong Cui, and Arnold Burger, Enhanced luminescence and size effects of Y2O3:Eu3+ nanoparticles and ceramics revealed by x rays and Raman scattering, J. Opt. Soc. Am. B,2004,21,1804.
    [63]Junxi Wan, Zhenghua Wang, Xiangying Chen, Li Mu and Yitai Qian,
    Shape-tailored photoluminescent intensity of red phosphor Y2O3:Eu3+, Journal of Crystal Growth,2005,284,538-543,.
    [64]Adosh Mehta, Thomas Thundat, Michael D. Barnes, Vishal Chhabra, Ramesh Bhargava, Andrew P. Bartko, and Robert M. Dickson, Size-correlated spectroscopy and imaging of rare-earth-doped nanocrystals, APPLIED OPTICS 2003,42,2132-2139.
    [65]Pramod K. Sharma, M.H. Jilavi, R. Nass, H. Schmidt, Tailoring the particle size from μm-nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria, Journal of Luminescence 1999,82,187-193.
    [66]R.N. Bhargava, "Quantum-confined atoms":novel luminescent centers forfuture Ⅱ-Ⅵ devices, Journal of Crystal Growth 2000,214-215 926-930.
    [67]E.T. Goldburt, B. Kulkami, R.N. Bhargava, J. Taylor, M. Liberab, Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor, Journal of Luminescence 1997,72-74,190-192.
    [68]Jiwei Wang, Hongwei Song, Baojuan Sun, Xinguang Ren, Baojiu Chen, Wu Xu, Light-induced luminescent enhancement and structural change in cubic nanocrystalline Y2O3:Tb, Chemical Physics Letters 2003,379 507-511.
    [69]J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, M. Bettinelli, Optical Spectroscopy and Upconversion Studies of Ho3+-Doped Bulk and Nanocrystalline Y2O3, Chem. Mater.2002,14,2915-2921.
    [70]Weiping Zhang, Pingbo Xie, Changkui Duan, Kuo Yan, Min Yin, Liren Lou, Shangd Xia, Jean-Claude Krupa, Preparation and size effect on concentration quenching of nanocrystalline Y2SiOs:Eu, Chemical Physics Letters 1998,292,133-136.
    [71]Arnaud Huignard, Thierry Gacoin, and Jean-Pierre Boilot, Synthesis and Luminescence Properties of Colloidal YVO4:Eu Phosphors, Chem. Mater. 2000,12,1090-1094.
    [72]Xianmin Zhang, Jiahua Zhang, Zhaogang Nie, Meiyuan Wang, and Xinguang Ren, Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors, Appl. Phys. Lett.2007,90,151911.
    [73]Xiao-jun Wanga, Z.Y. He, D. Jia, W. Strek, R. Pazik, D. Hreniak, W.M. Yen, Crystal size dependence of the persistent phosphorescence in Sr2ZnSi207:Eu2+, Dy3+, Microelectronics Journal 2005,36546-548.
    [74]Junxi Wan, Zhenghua Wang, Xiangying Chefi, Li Mu, Yitai Qian, Shape-Induced Enhanced Luminescent Properties of Red Phosphors: Sr2MgSi2O7:Eu3+ Nanotubes, Eur J Inorg. Chem.,2005,20,4031-4034.
    [75]Justin C. Johnson, Heon-Jin Choi, Kelly P. Knutsen, Richard D. Schaller, Peidong Yang, Richard J. Saykally, Single gallium nitride nanowire lasers, Nature,2002,1,106-110.
    [76]Kangjian Tang, Jianan Zhang, Wenfu Yan, Zhonghua Li, Yangdong Wang, Weimin Yang, Zaiku Xie, Taolei Sun, and Harald Fuchs, One-Step Controllable Synthesis for High-Quality Ultrafine Metal Oxide Semiconductor Nanocrystals via a Separated Two-Phase Hydrolysis Reaction, J. AM. CHEM. SOC.2008,130,2676-2680.
    [77]邱关明,耿秀娟,陈永杰,孙彦彬,田一光,张明,纳米稀土发光材料的光学特性及软化学制备,中国稀土学报,2003,21,109-114.
    [78]孙曰圣,屈芸,肖监谋,陈达,草酸沉淀法制备细颗粒红色荧光粉Y2O3:Eu3+的发光特性,发光学报,2004,25,359-364.
    [79]Myung-Han Lee, Seong-Geun Oh, Sung-Chul Yi, Preparation of Eu-Doped Y2O3 Luminescent Nanoparticles in Nonionic Reverse Microemulsions, Journal of Colloid and Interface Science 2000,226, 65-70.
    [80]Li Yanhong, Zhang Yongming, Hong guangyan, Yu Yingning, Upconversion luminescence of Y2O3:Er3+, Yb3+ nanoparticles prepared by a homogeneous precipitation method, Journal of Rare Earth,2008,26, 450-454.
    [81]Ying Tian, Wang-He Cao, Xi-Xian Luo, Yao Fu, Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method, Journal of Alloys and Compounds,2007, 433,313-317.
    [82]Juan Wang, Yunhua Xu, Mirabbos Hojamberdiev, Yaru Cui, Huan Liu, Gangqiang Zhu, Optical properties of porous YVO4:Ln (Ln=Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method, Journal of Alloys and Compounds 2009,479,772-776.
    [83]Kyeong YoulJung, YunChanKang, Luminescence comparison of YAG:Ce phosphors prepared by microwave heating and precipitation methods, Physica B 2010,405,1615-1618.
    [84]Maria Luisa Saladino, Eugenio Caponetti, Co-precipitation synthesis of Nd:YAG nanopowders II:The effect of Nd dopant addition on luminescence properties, Optical Materials 2009,32,89-93
    [85]Fang Miao, Hong-Wei Sun, Wei-ping Ma, Song Wang, Jing Zhang, Co-precipitation synthesis and photo-luminescence of Y1-xAlO:Eux3+ and (GdyY1-y)0.93AlO3:Eu0.073+ powder phosphors, Journal of Alloys and Compounds 2008,465,324-327.
    [86]David B. Bolstad and Anthony L. Diaz, Synthesis and Characterization of Nanocrystalline Y2O3:Eu3+ Phosphor. An Upper-Division Inorganic Chemistry Laboratory, J. Chem. Educ,2002,79,1101
    [87]Wei-Wei Zhang, Wei-Ping Zhang, Ping-Bo Xie, Min Yina, Hou-Tong Chen, Long Jing, Yun-Sheng Zhang, Li-Ren Lou, Shang-Da Xia, Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure, Journal of Colloid and Interface Science,2003,262,588-593.
    [88]Nguyen Vu, Tran Kim Anh, Gyu-Chul Yi and W. Strek, Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis, Journal of Luminescence 2007,122-123,776-779
    [89]Yi-Zhi Huang, Ling Chen, Li-Ming Wu, Crystalline Nanowires of Ln2O2S, Ln2O2S2, LnS2 (Ln=La, Nd), and La2O2S:Eu3+. Conversions via the Boron-Sulfur Method That Preserve Shape, Cryst. Growth Des.,2008,8, 739-743
    [90]Peng, T, Yang, H, Pu, X,Hu, B, Jiang, Z,Yan, C, Combustion Synthesis and Photoluminescence of SrAl2O4:Eu,Dy Phosphor Nanoparticles, Mater.Lett.2004,58,352-356.
    [91]P. Psuja, D. Hreniak, W. Strek, Rare-earth doped nanocrystalline phosphors for field emission displays, Journal of Nanomaterials,2007,1 81350-81357
    [92]L. M. Gan, B. Liu, C. H. Chew, S. J. Xu, S. J. Chua, G L. Loy, G. Q. Xu, Enhanced Photoluminescence and Characterization of Mn-Doped ZnS Nanocrystallites Synthesized in Microemulsion, Langmuir,1997,13, 6427-6431.
    [93]Atsushi Ishizumi, Yoshihiko Kanemitsu, Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method, Appl. Phys. Lett.2005,86,253106-1-253106-3,
    [94]Bing Liu, G. Q. Xu, L. M. Gan, C. H. Chew, W. S. Li, Z. X. Shen, Photoluminescence and structural characteristics of CdS nanoclusters synthesized by hydrothermal microemulsion, J. Appl. Phys.,2001,89, 1059-1063.
    [95]Peter Reiss, Joel Bleuse, and Adam Pron, Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion, Nano Letters,2002,2,781-784.
    [96]X.G. Xu, Jun Chen, S. Z. Deng, N. S. Xu, J.Lin, Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application, J. Vac. Sci. Technol.B,2010,28,490-494.
    [97]Di Chen, Guozhen Shen, Kaibin Tang, Zhenhua Liang, and Huagui Zheng, AOT-Microemulsions-Based Formation and Evolution of PbWO4 Crystals, J. Phys. Chem. B,2004,108,11280-11284.
    [98]Qi Pang, Jianxin Shi, Yu Liu, Desong Xing, Menglian Gong, Ningsheng Xu, A novel approach for preparation of Y2O3:Eu3+ nanoparticles by microemulsion-microwave heating, Materials Science and Engineering B,2003,103,57-61.
    [99]Mingqian Tan, Zhiqiang Ye, Guilan Wang, and Jingli Yuan, Preparation and Time-Resolved Fluorometric Application of Luminescent Europium Nanoparticles, Chem. Mater.,2004,16,2494-2498.
    [100]Hai Huang, Guo Qin Xu, Wee Shong Chin, Leong Ming Gan and Chwee Har Chew, Synthesis and characterization of Eu:Y2O3 nanoparticles, Nanotechnology 2002,13,318-323.
    [101]Lowell Matthews R., Edward T. Knobbe, Luminescence behavior of europium complexes in sol-gel derived host materials, Chem. Mater., 1993,5,1697-1700
    [102]S. Tamil Selvan, Craig Bullen, Muthupandian Ashokkumar, and Paul Mulvaney, Synthesis of Tunable, Highly Luminescent QD-Glasses Through Sol-Gel Processing, Adv. Mater.2001,13,985-988.
    [103]M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. J. Zhang, Y. C. Han, Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol-Gel Soft Lithography, Chem. Mater.,2002,14,2224-2231
    [104]M. Yu, J. Lin, and J. Fang, Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process:A Simple Method To Obtain Spherical Core-Shell Phosphors, Chem. Mater.,2005,17,1783-1791
    [105]Chung-Hsin Lu and R. Jagannathan, Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting, Appl. Phys. Lett.2002,80,3608-3610.
    [106]M. L. Pang, J. Lin, J. Fu, R. B. Xing, C. X. Luo and Y. C. Han, Preparation, patterning and luminescent properties of nanocrystalline Gd2O3:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Pechini sol-gel soft lithograph, Optical Materials 2003,23,547-558.
    [107]苏勉曾,谢高阳,申泮文等译,固体化学及其应用,复旦大学出版社,1989.
    [108]Seokwoo Jeon, Paul V. Braun, Hydrothermal Synthesis of Er-Doped Luminescent TiO2 Nanoparticles, Chem. Mater.2003,15,1256-1263.
    [109]Hong-Wei Liao, Yan-Fei Wang, Xian-Min Liu, Ya-Dong Li, and Yi-Tai Qian, Hydrothermal Preparation and Characterization of Luminescent CdWO4 Nanorods, Chem. Mater.2000,12,2819-2821.
    [110]Fang Lei and Bing Yan, Hydrothermal synthesis and luminescence of CaMO4:RE3+(M=W, Mo; RE=Eu, Tb) submicro-phosphors, Journal of Solid State Chemistry,2008,181,855-862.
    [111]Shu-Jian Chen, Jian-Hao Zhou, Xue-Tai Chen, Jing Li, Li-Hong Li, Jian-Ming Hong, Ziling Xue and Xiao-Zeng You, Fabrication of nanocrystalline ZnW04 with different morphologies and sizes via hydrothermal route, Chemical Physics Letters,2003,375,185-190.
    [112]Xiao-Cheng Jiang, Chun-Hua Yan,, Ling-Dong Sun, Zheng-Gui Wei and Chun-Sheng Liao, Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties, Journal of Solid State Chemistry,2003,175,245-251
    [113]Mengying Li, Yingxin Ge, Qifan Chen, Shukun Xu, Naizhi Wangand Xiujuan Zhang, Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors'concentration and their conjunction with BSA as biological fluorescent probes, Talanta,2007,72,89-94.
    [114]Chun-Jiang Jia, Ling-Dong Sun, Feng Luo, Xiao-Cheng Jiang, Liu-He Wei, and Chun-Hua Yan, Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals, Appl. Phys. Lett.2004, 84,5305-5307.
    [115]Guang Jia, Yanhua Song, Mei Yang, Yeju Huang, Lihui Zhang, Hongpeng You, Uniform YVO4:Ln3+(Ln=Eu, Dy, and Sm) nanocrystals: Solvothermal synthesisand luminescence properties, Optical Materials 2009,31,1032-1037.
    [116]Marian Rosaly Davolos,, Sergio Feliciano, Ana M. Pires, Rodrigo F. C. Marques and Miguel Jafelicci, Jr., Solvothermal method to obtain europium-doped yttrium oxide, Journal of Solid State Chemistry 2003, 171,268-272.
    [117]Xia Lia, Hong Liu, Jiyang Wang, Hongmei Cui, Shunliang Yang and I.R. Boughton, Solvothermal synthesis and luminescent properties of YAG:Tb nano-sized phosphors, Journal of Physics and Chemistry of Solids 2005, 66,201-205.
    [118]Zhihua Li, Jinghui Zeng, Yadong Li, Solvothermal Route to Synthesize Well-Dispersed YBO3:Eu Nanocrystals, Small,2007,3,438-443.
    [119]Chuanwei Cheng,, Guoyue Xu, Haiqian Zhang, Han Wang, Jieming Cao and Hongmei Ji., Solvothermal synthesis and photoluminescence properties of single-crystal Mn2+ doped CdS nanowires, Materials Chemistry and Physics,2006,97,448-451
    [120]Qiang Wang, Daocheng Pan, Shichun Jiang, Xiangling Ji, Lijia An, and Bingzheng Jiang, Luminescent CdSe and CdSe/CdS core-shell nanocrystals synthesized via a combination of solvothermal and two-phase thermal routes, Journal of Luminescence2006,118,91-98.
    [121]Yan Li, Fuzhi Huang, Qingmin Zhang and Zhennan Gu, Solvothermal synthesis of nanocrystalline cadmium sulfide, Journal of Materials Science,2000,35,5933-5937.
    [122]Soumen Das, Soumitra Kar, and Subhadra Chaudhuri, Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process, J. Appl. Phys.2006,99,114303-114309.
    [123]J. E. Van Haecke, P. F. Smet, K. De Keyser, and D. Poelman, Crystal CaS:Eu and SrS:Eu Luminescent Particles Obtained by Solvothermal Synthesis, J. Electrochem. Soc,2007,154, J278-J282.
    [124]Subhajit Biswas, Soumitra Kar, and Subhadra Chaudhuri, Optical and Magnetic Properties of Manganese-Incorporated Zinc Sulfide Nanorods Synthesized by a Solvothermal Process, J. Phys. Chem. B,2005,109, 17526-17530.
    [125]R.E. Morris, S.J. Weigel, The synthesis of molecular sieves from non-aqueous solvents, Chem. Soc.Rev.1997,26,309-317.
    [126]R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic Materials, Chem. Soc Rev.2002,31,230-238.
    [127]Liya Zhou, Wallace C.H. Choy, Jianxin Shi, Menglian Gong, Hongbin Liang, T.I. Yuk, Synthesis, vacuum ultraviolet and near ultraviolet-excited luminescent properties of GdCaAl3O7:RE3+(RE=Eu, Tb), Journal of Solid State Chemistry 2005,178,3004-3009.
    [128]Amurisana Bao, Chunyan Tao, Hua Yang, Synthesis and luminescent properties of nanoparticles GdCaAl3O7:RE3+(RE=Eu, Tb) via the sol-gel method, Journal of Luminescence 2007,126,859-865.
    [129]J.G. Mahakhode, S.J. Dhoble, C.P. Joshi, S.V. Moharil, Combustion synthesis of phosphors for plasma display panels, Journal of Alloys and Compounds 2007,438,293-297.
    [130]Amurisana Bao, Hua Yang, Chunyan Tao, Synthesis and luminescent properties of nanoparticles LaSrAl3O7:Eu, Tb, Current Applied Physics 2009,9,1252-1256.
    [131]Zuoling Fu, Hyun Kyoung Yang, ByungKee Moon,ByungChun Choi, JungHyun Jeong, Synthesis and luminescent properties of europium activated Ca2SnO4 phosphors by sol-gel method, Journal of Luminescence 2009,129,1669-1672
    [132]R.P. Rao, Tm3+ activated lanthanum phosphate:a blue PDP phosphor, Journal of Luminescence 2005,113,271-278.
    [133]T.H. Cho, H.J. Chang, Preparation and characterizations of Zn2SiO4:Mn green phosphors, Ceram. Int.2003,29,611-618.
    [134]Y. Wang, Y. Hao, L. Yuwen, Synthesis process dependent photoluminescent properties of Zn2Si04:Mn2+ upon VUV region, J.
    Alloys Compd.2006,425,339-342.
    [135]Y. Hao, Y. Wang, Luminescent properties of Zn2Si04:Mn2+phosphor under UV, VUV and CR excitation J. Lumin.2007,122-123,1006-1008.
    [136]T. Xiao, A.H. Kitai, G.Liu, A.Nakua, J.Barbier, Thin film electroluminescence in highly anisotropic oxide materials, Applied Physics Letters,1998,72,3356-3358.
    [137]Enrico Cavali, Luminescence of Fe doped willemite single crystals, Journal of solid state chemistry,1995,117,16-20.
    [138]Shigefumi Onodera, Whisker crystal growth of zinc silicate, Materials Research Bulletin,1996,31,793-798.
    [139]L. Reynaud, A new solution route to silicates Part 3:Aqueous solgel synthesis of willemite and potassium antimony silicate, Materials Research Bulletin,1996,31,1133-1139.
    [140]Thomas C. Brunold, Absorption and luminescence spectroscopy of Zn2Si04 willemite crystals doped with Co2+, Chemical Physics Letters 1996,252,112-120.
    [141]Thomas C. Brunold, Optical spectroscopy of Ni2+ doped crystals of Zn2Si04, Chemical Physics Letters 1997,268,413-420.
    [142]G. T. Chandrappa, Synthesis and Properties of Willemite, Zn2SiO4, and M2+:Zn2Si04 M=Co and Ni) solution combustion and sol-gel Methods, Journal of Materials Synthesis and Processing,1999,7,273-279.
    [143]H.X. Zhang, Deposition and photoluminescence of sol±gel derived Tb3+: Zn2SiO4@lms on SiO2/Si, Thin Solid Films 2000,370,50-53.
    [144]H.X. Zhang, Luminescence of Eu3+ and Tb3+ doped Zn2Si04 nanometer powder phosphors, Materials Chemistry and Physics 2001,68,31-35.
    [145]P.T. Chao, Thermal cycle etching of willemite (0001):effects of surface premelting, dislocation outcrops and polygonization, Materials Science and Engineering A 2002,335,191-197.
    [146]Q.Y. Zhang, Influence of annealing atmosphere and temperature on photoluminescence of Tb3+ or Eu3+-activated zinc silicate thin film phosphors via sol-gel method, Chemical Physics Letters 2002,351, 163-170.
    [147]Q.Y. Zhang, Sol-gel derived zinc silicate phosphor films for full-color display applications, Journal of Physics and Chemistry of Solids 2003,64, 333-338.
    [148]A. Patra, Synthesis and luminescence study of Eu3+ in Zn2SiO4 nanocrystals, Optical Materials 2004,27,15-20.
    [149]C. Sun, On the nucleation, growth and impingement of plate-like a-Zn2SiO4 spherulites in glaze layer:a confocal and electron microscopic study, Materials Science and Engineering A 2004,379,327-333.
    [150]V. Natarajan, Photoluminescence investigations of Zn2SiO4 co-doped with Eu3+ and Tb3+ ions, Solid State Communications 2005,134, 261-264.
    [151]R. Pozas, Hydrothermal synthesis of Co-doped willemite powders with controlled particle size and shape, Journal of the European Ceramic Society 2005,25,3165-3172.
    [152]CM. Lin, The microstructure and cathodoluminescence characteristics of sputtered Zn2Si04:Ti phosphor thin films, Thin Solid Films 2007,515, 7994-7999.
    [153]H.X. Zhang, Deposition and photoluminescence of sol±gel derived Tb3+: Zn2SiO4@1ms on SiO2/Si, Thin Solid Films 2000,370,50-53.
    [154]H.X. Zhang, Luminescence of Eu3+ and Tb3+ doped Zn2SiO4 nanometer powder phosphors, Materials Chemistry and Physics 2001,68,31-35.
    [155]A. Patra, G. A. Baker, and S. N. Baker, Effects of dopant concentration and annealing temperature on the phosphorescence from Zn2SiO4i Mn2+ nanocrystals J. Lumin.,2005,111,105-111.
    [156]Temer S.Ahmadi, Markus Haase, Horst Weller, Low-temperature synthesis of pure and Mn-doped willemite phosphor(Zn2SiO4:Mn) in aqueous medium. Mat. Res. Bull.2000,35,1869-1879.
    [157]S. W. Lu, T. Copeland, B.I. Lee, W. Tong, B. K. Wagner, W. Park, F. Zhang, Synthesis and luminescent properties of Mn2+ doped Zn2SiO4 phosphors by a hydrothermal method. J. Phys. Chem. Solids 2001,62, 777-781.
    [158]J. X.. Wan, Z. H. Wang, X. Y. Chen, L. Mu, W. C. Yu andY. T. Qian, Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2Si04:MN2+ phosphor, J. Lumin.,2006,121, 32-38.
    [159]T. J. Lou, J. H. Zeng, X. D. Lou, H. L. Fu, Y.F. Wang, R. L. Ma, L. J. Tong and Y. L. Chen, A facile synthesis to Zn2SiO4:Mn2+ phosphor with controllable size and morphology at low temperature, J. Colloid Interf. Sci,2007,314,510-513.
    [160]Yan Hao, Yu-HuaWang, Enhancement UV and VUV photoluminescence of Zn2Si04:Mn2+with the incorporation of Ga3+, Journal of Alloys and Compounds,2009,470,565-567.
    [161]Kang Y.C. and Park S.B., Zn2SiO4:Mn phosphor particles prepared by spray pyrolysis using a filter wxpansion aerosol generator, Mat. Res. Bull.2000,35,1143-1151.
    [162]Y. C. Kang, H.D. Park, Brightness and decay time of Zn2Si04:Mn phosphor particles with spherical shape and fine size. Appl. Phys. A 2003,77529-532.
    [163]C. H. Lee, Y. C. Kang, K. Y. Jung and J. G Choi, Phosphor layer formed from the Zn2SiO4 Mn phosphor particles with spherical shape and fine size, Mater. Sci. Eng., B 2005,117,210-215.
    [164]D. Y. Kong, M. Yu, C. K. Lin, X. M. Liu, J, Lin and J. Fang, Sol-gel Synthesis and Characterization of Zn2SiO4:Mn@SiO2 Spherical Core-Shell Particles, J. Electrochem. Soc,2005,152, H146-H151.
    [165]Shanshan Yao, Yuanyuan Li, Lihong Xue, and Youwei Yan, Synthesis and Luminescent Properties of a Novel Red-Emitting Phosphor Ba2ZnSi207:Eu3+, B3+ for Ultraviolet Light-Emitting Diodes, Int. J. Appl. Ceram. Technol.,2009,1-8,
    [166]YUANHUA LIN, ZILONG TANG, ZHONGTAI ZHANG, XIAOXIN WANG, JUNYING ZHANG, Preparation of a new long afterglow blue-emitting Sr2MgSi207-based photoluminescent phosphor, JOURNAL OF MATERIALS SCIENCE LETTERS 20,2001,1505-1506.
    [167]Comparison study of the luminescent properties of the white-light long afterglow phosphors:CaxMgSi205+x:Dy3+(x=1,2,3), Yonghu Chen, Xuerui Cheng, Miao Liu, Zeming Qi, Chaoshu Shi, Journal ofLuminescence,2009,129,531-535.
    [168]D.W. He, Y.N. Shi, D. Zhou, T. Hou, Photoluminescence properties of M2MgSi2O7:Re2+(M=Ba, Sr, Ca), Journal of Luminescence,2007, 122-123,158-161.
    [169]Yan Hao, Yu-Hua Wang, Synthesis and photoluminescence of new
    phosphors M2(Mg, Zn)Si2O7:Mn2+(M=Ca, Sr, Ba), Materials Research Bulletin 2007,42,2219-2223.
    [170]Yong Li, Bao-gui You, Wei Zhao, Wei-ping Zhang and Min Yin, Synthesis and Luminescent Properties of Nano-scale Y2Si2O7:Re3+ (Re=Eu, Tb) Phosphors via Sol-Gel Method, Chinese Journal of Chemical Physics,2008,21,376
    [171]Zhihua Li, Jinghui Zeng, Chen Chen, and Yadong Li,Hydrothermal synthesis and luminescent properties of YBO3:Tb3+uniform ultrafine phosphor, Journal of Crystal Growth,2006,286,487-493.
    [172]L. Wang, L. Shi, N. Liao, H. Jia, P. Du, Z. Xi, L. Wang and D. Jin, Photoluminescence properties of Y2O3:Tb3+and YBO3:Tb3+ green phosphors synthesized by hydrothermal method, Materials Chemistry and Physics,2010,119,490-494.
    [173]Jia Chi Zhang, Yu Hua Wang, and Xuan Guo, Vuv-excited photoluminescence dependent on thermal treatment of YBO3:Tb3+ derived by hydrothermal process, Journal of Luminescence,2007,122-123, 980-983.
    [174]Jeannette Dexpert-Ghys, Robert Mauricot, Bruno Caillier, Philippe Guillot, Tristan Beaudette, Guohua Jia, Peter A. Tanner and Bing-Ming Cheng, VUV Excitation of YBO3 and (Y,Gd)BO3 Phosphors Doped with Eu3+or Tb3+:Comparison of Efficiencies and Effect of Site-Selectivity, J. Phys. Chem. C,2010,114,6681-6689.
    [175]Bing Yan, Chong Wang, Synthesis and luminescence properties of REAl3(BO3)4:Eu3+/Tb3+(RE=Y, Gd) phosphors from sol-gel composition of hybrid precursors, Solid State Sciences,2008,10,82-89.
    [176]Xiao Xia Li and Yu Hua Wang, Synthesis and photoluminescence properties of (Y,Gd)Al3(BO3)4:Tb3+ under VUV excitation, Materials Chemistry and Physics,2007,101,191-194.
    [177]Hyoung Sun Yoo, Won Bin Im, Jong Hyuk Kang and Duk Young Jeon, Preparation and photoluminescence properties of YAl3(BO3)4:Tb3+, Bi3+ phosphor under VUV/UV excitation, Optical Materials,2008,31, 131-135.
    [178]D. Y. Lee, Y. C. Kang, H. D. Park and S. K. Ryu, VUV characteristics of BaAl12O19:Mn2+ phosphor particles prepared from aluminum polycation solutions by spray pyrolysis, Journal of Alloys and Compounds,2003, 353,252-256.
    [179]Yu Hua Wang, Feng Li, Synthesis of BaAl12O19:Mn2+ nanophosphors by a reverse microemulsion method and its photoluminescence properties under VUV excitation, Journal of Luminescence,2007,122-123, 866-868
    [180]Weihua Di, Baojiu Chen, Xiaojun Wang, Investigations of Phase Structure Transformation and VUV Excitation of YPO4:Tb Synthesized by Solution Precipitation Route,2004,33,1448-1449.
    [181]Weihua Di, Xiaojun Wang, Baojiu Chen, Huasheng Lai and Xiaoxia Zhao, Preparation, characterization and VUV luminescence property of YPO4:Tb phosphor for a PDP, Optical Materials,2005,27,1386-1390.
    [182]Zifeng Tian, Hongbin Liang, Lan Li, Qiang Su, Guobin Zhang, Yibing Fu, Vacuum ultraviolet-visible spectroscopic properties of green phosphor NaGd0.3Y0.5Tb0.2FPO4 for application in plasma display panels, Journal of Materials Research,2008,23,1537-1542.
    [183]Zifeng Tian, Hongbin Liang, Wanping Chen, Qiang Su, Guobin Zhang, and Guangtao Yang, Efficient emission-tunable VUV phosphors Na2GdF2PO4:Tb3+, Opt. Express 2009,17,956-962.
    [184]Kyung Nam Kim, Ha-Kyun Jung, Hee Dong Park and Dojin Kim, High luminance of new green emitting phosphor, Mg2SnO4:Mn, Journal of Luminescence,2002,99,169-173.
    [185]Y. C. Kang, M. A. Lim, H. D. Park, and M. Han, Ba2+ Co-doped Zn2SiO4:Mn Phosphor Particles Prepared by Spray Pyrolysis Process, Journal of The Electrochemical Society,2003,150, H7-H11.
    [186]T. Justel, H. Nikol, Optimization of Luminescent Materials for Plasma Display Panels, Adv. Mater.2000,12,527-530.
    [1]Y. C. Kang, H.D. Park, Brightness and decay time of Zn2SiO4:Mn phosphor particles with spherical shape and fine size. Appl. Phys. A 2003,77, 529-532.
    [2]Q.Y. Zhang, K. Pita, C.H. Kam, Sol-gel derived zinc silicate phosphor films for full-color display applications, Journal of Physics and Chemistry of Solids 2003,64,333-338.
    [3]L. Xiong, J. Shi, J. Gu, L. Li, W. Huang, J. Gao, and M. Ruan, A Mesoporous Template Route to the Low-Temperature Preparation of Efficient Green Light Emitting Zn2SiO4:Mn Phosphors, J. Phys. Chem. B,2005,109, 731-735.
    [4]Liangming Xiong, Jianlin Shi, Jinlou Gu, Weihua Shen, Xiaoping Dong, Hangrong Chen, Lingxia Zhang, Jianhua Gao, and Meiling Ruan, Directed Growth of Well-Aligned Zinc Silicate Nanowires along the Channels of Surfactant-Assembled Mesoporous Silica, Small,2005,11,1044-1047
    [5]D.-H. Lee, T. Gutu, C. Jeffryes, G. L. Rorrer, J. Jiao and C.-H. Chang, Nanofabrication of Green Luminescent Zn2SiO4:Mn Using Biogenic Silica, J. Electrochem. Soc,2007,10,13-16.
    [6]Ana Maria Pires and Marian Rosaly Davolos, Luminescence of Europium (Ⅲ) and Manganese (Ⅱ) in Barium and Zinc Orthosilicate, Chem. Mater. 2001,13,21-27.
    [7]Jun Zhou, Jin Liu, Xudong Wang, Jinhui Song, Rao Tummala, Ning Sheng Xu, and Zhong Lin Wang, Vertically Aligned Zn2SiO4 Nanotube/ZnO Nanowire Heterojunction Arrays, Small,2007,4,622-627
    [8]Masafumi Takesue, Hiromichi Hayashi, Richard L. Smith Jr., Thermal and chemical methods for producing zinc silicate (willemite):A review, Progress in Crystal Growth and Characterization of Materials 2009,55,98-124
    [9]J. ElGhoul, C.Barthou, M.Saadoun, L.ElMir, Synthesis and optical characterization of SiO2/Zn2SiO4:Mn nanocomposite, Physica B 2010,405 597-601.
    [10]H.S. Roh, E.J. Kim, H.S. Kang, Y.C. Kang, H.D. Park and S.B. Park, Vacuum ultraviolet characteristics of nano-sized Gd2O3:Eu phosphor particles, Jpn. J.
    Appl. Phys.2003,42,2741-2745.
    [11]Xun Wang, Jing Zhuang, Qing Peng, Yadong Li, A general strategy for nanocrystal synthesis, Nature,2005,437,121-124.
    [12]Chan Woong Na, Doo Suk Han, Jeunghee Park, Younghun Jo and Myung-Hwa Jung, Ferrimagnetic Mn2SnO4 nanowires, Chem. Commun., 2006,2251-2253
    [13]Leyu Wang, Yadong Li, Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals, Chem. Mater.2007,19,727-734
    [14]Feng Wang, Yu Han, Chin Seong Lim, Yunhao Lu, Juan Wang, Jun Xu, Hongyu Chen, Chun Zhang, Minghui Hong, Xiaogang Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, Nature,2010,463,1061-1065.
    [15]S. W. Lu, T. Copeland, B.I. Lee, W. Tong, B. K. Wagner, W. Park, F. Zhang, Synthesis and luminescent properties of Mn2+ doped Zn2SiO4 phosphors by a hydrothermal method. J. Phys. Chem. Solids,2001,62,777-781.
    [16]Y. Wang, Y. Hao and L. H. Yuwen, Synthesis process dependent photolumihescent properties of Zn2SiO4:Mn upon VUV region, J Alloy Compd.2006,425,339-342.
    [17]Masafumi Takesue, Kenji Shimoyama, Sachiko Murakami, Yukiya Hakuta, Hiromichi Hayashi, Richard L. Smith Jr., Phase formation of Mn-doped zinc silicate in water at high-temperatures and high-pressures, J. of Supercritical Fluids,2007,43,214-221.
    [18]Masafumi Takesue, Atsuko Suinc, Yukiya Hakut, Hiromichi Hayashi, Richard Lee Smith Jr., Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water, Journal of Solid State Chemistry 2008,181,1307-1313.
    [19]Kohei Kodaira, Shigeru Ito, Toru Matsushita, Hydrothermal growth of willemite single crystals in acidic solutions, Journal of Crystal Growth 1975, 29,123-124.
    [20]Temer S. Ahmadi, Markus Haase, Horst Weller, Low-temperature synthesis of pure and Mn-doped willemite phosphor (Zn2SiO4:Mn) in aqueous medium, Materials Research Bulletin 2000,35,1869-1879.
    [21]Haifeng Wang, Yunqi Ma, Guangshun Yi, Depu Chen, Synthesis of Mn-doped Zn2SiO4 rodlike nanoparticles through hydrothermal method,
    Materials Chemistry and Physics 2003,82,414-418.
    [22]Junxi Wan, Xiangying Chen, Zhenghua Wang, Li Mu, Yitai Qian, One-dimensional rice-like Mn-doped Zn2SiO4:Preparation, characterization, luminescent properties and its stability, Journal of Crystal Growth 2005,280, 239-243.
    [23]Junxi Wan, Zhenghua Wang, Xiangying Chen, Li Mu, Weichao Yu, Yitai Qian, Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:MN2+ phosphor, Journal of Luminescence 2006,121,32-38.
    [24]T. J. Lou, J. H. Zeng, X. D. Lou, H. L. Fu, Y.F. Wang, R. L. Ma, L. J. Tong and Y. L. Chen, A facile synthesis to Zn2SiO4:Mn2+ phosphor with controllable size and morphology at low temperature, J. Colloid Interf. Sci, 2007,314,510-513.
    [25]Jing Hui Zeng, Hai Li Fu, Tian Jun Lou, Yan Yu, Yuan Hui Sun, Dong Yang Li, Precursor, base concentration and solvent behavior on the formation of zinc silicate, Materials Research Bulletin 2009,44,1106-1110.
    [26]Yaqi Jiang, Jie Chen, Zhaoxiong Xie, Lansun Zheng, Syntheses and optical properties of a-and β-Zn2SiO4:Mn nanoparticles by solvothermal method in ethylene glycol-water system, Materials Chemistry and Physics 2010,120, 313-318.
    [27]Roger A. Assink and Bruce D. Kay, Sol-gel kinetics I. Functional group kinetics, Journal of Non-Crystalline Solids,1988,99,359-370.
    [28]Poonam Sharma, H.S. Bhatti, Laser induced down conversion optical characterizations of synthesized Zn2-xMnxSiO4 (0.5=x=5 mol%) nanophosphors, Journal of Alloys and Compounds 2009,473,483-489.
    [29]Kai Su, Don T. Tilley, and Michael J.Sailor. Molecular and Polymer Precursor Routes to Manganese-doped Zinc Orthosilicate Phosphors. J.Am.Chem.Soc,1996,118,3459-3468.
    [30]K. S. Sohn, B. Cho, H.D. Park, Effect of heat treatment on photoluminescence behavior of Zn2SiO4:Mn phosphors, J. Eur. Ceram. Soc. 2000,20,1043-1051.
    [31]R. P. Sreekanth Chakradhar, B. M. Nagabhushana and G. T. Chandrappa, K. P. Ramesh, J. L. Rao, Solution combustion derived nanocrystalline :Mn phosphors:A spectroscopic view, Journal of Chemical Physics,
    2004,121,10250-10259.
    [32]S. J. Im, S. Y. Choi, and O. Y. Manashirov, in Euro-Display'99:The 19th International Display Research Conference, Proceedings, p.61, Sept 6-9, Berlin, Germany 1999
    [33]Y. Hao and Y. H. Wang, Vacuum Ultraviolet Characteristics of Zn1.92-xMgxSi1-2yAlyPyO4:0.08Mn2+(0=x=0.5,0=y=0.02) Phosphors, Electrochem. Solid-State Lett.2006,9,100-102.
    [34]K. C. Mishra, K. H. Johnson, B. G. Deboer, J.K. Berkowitz, J.Olsen, E.A.Dale, First principles investigation of electronic structure and associated properties of zinc orthosilicate phosphors, J. Lumin.1991,47,197-206.
    [35]M. Tamatani, Fluorescence in B-Al2O3-Like Materials of K, Ba and La Activated with Eu2+ and Mn2+, Jpn. J. Appl. Phys:1974,13,950-953
    [36]N.C. Chang, John B. Gruber, Richard P. Leavitt, and Clyde A. Morrison, Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites, J. Chem. Phys.1982,76, 3877-3849.
    [37]Qiang Li, Lian Gao, Dongsheng Yan, The crystal structure and spectra of nano-scale YAG:Ce3+, Materials Chemistry and Physics 2000,64,41-44.
    [38]H. F. Wang, Y. Q. Ma, G. S. Yi, D.P. Chen, Synthesis of Mn-doped rodlike nanoparticles through hydrothermal method, Mater Chem. Phys.,2003,82, 414-418.
    [39]Tae Hwan Cho, Ho Jung Chang, Preparation and characterizations of Zn2SiO4:Mn green phosphors, Ceramics International 2003,29,611-618.
    [40]P. Thiyagarajan, M. Kottaisamy and M. S:Ramachandra Rao, Improved Luminescence of Zn2SiO4: Mn Green Phosphor Prepared by Gel Combustion Synthesis of ZnO:Mn-SiO2, J. Electrochem. Soc.2007,154, 297-303.
    [41]A. Patra, G. A. Baker, and S. N. Baker, Effects of dopant concentration and annealing temperature on the phosphorescence from Zn2Si04:Mn2+ nanocrystals J. Lumin.,2005,111,105-111.
    [42]Marco de Lucas, M. C, Rodriguez, F. and Moreno, M., Zero-phonon transition and the Stokes shift of Mn2+-doped perovskites:dependence on the metal±ligand distance. Phys. Rev.,1994,50,2760-2765.
    [43]Elena V. Shevchenko, Dmitri V. Talapin, Andrey L. Rogach, Andreas Kornowski, Markus Haase, and Horst Weller, Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals, J. AM. CHEM. SOC.2002,124, 11480-11485.
    [44]Robert I. Nooney, Dhanasekaran Thirunavukkarasu, Yimei Chen, Robert Josephs, and Agnes E. Ostafin, Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size, Chem. Mater.2002,14,4721-4728.
    [45]Chang Hoon Lee, Minsik Kim, Taekhoon Kim, Ansoon Kim, Jungsun Paek, Ju Wook Lee, Sung-Yool Choi, Kyuwon Kim, Jong-Bong Park, and Kwangyeol Lee, Ambient Pressure Syntheses of Size-Controlled Corundum-type In2O3 Nanocubes, J. AM. CHEM. SOC.2006,128, 9326-9327.
    [46]Kangjian Tang, Jianan Zhang, Wenfu Yan, Zhonghua Li, Yangdong Wang, Weimin Yang, Zaiku Xie, Taolei Sun, and Harald Fuchs, One-Step Controllable Synthesis for High-Quality Ultrafine Metal Oxide Semiconductor Nanocrystals via a Separated Two-Phase Hydrolysis Reaction, J. AM. CHEM. SOC.2008,130,2676-2680.
    [47]Pramod K. Sharma, M.H. Jilavi, R. Nab, H.Schmidt, Seeding effect in hydrothermal synthesis of nanosize yttria, Journal of Materials Science Letters,1998,17,823-825
    [48]M. Habib Ullah, Won-Sub Chung, Il Kim, and Chang-Sik Ha, PH-Selective Synthesis of Monodisperse Nanoparticles and 3D Dendritic Nanoclusters of CTAB-Stabilized Platinumfor Electrocatalytic O2 Reduction, small 2006,2, 870-873.
    [49]Gang Wei, Li Wang, Hualan Zhou, Zhiguo Liu, Yonghai Song, Zhuang Li, Electrostatic assembly of CTAB-capped silver nanoparticles along predefined λ-DNA template, Applied Surface Science 252 (2005) 1189-1196
    [50]H. Gleiter, Nanostructured Materials:Basic Concepts and Microstructure, Acta Mater.2000,48,1-29.
    [51]R.N. Bhargava, "Quantum-confined atoms":novel luminescent centers for future Ⅱ-Ⅵ devices, Journal of Crystal Growth 2000,214-215,926-930.
    [52]Weiping Zhang, Pingbo Xie, Changkui Duan, Kuo Yan, Min Yin, Liren Lou, Shangda Xia, Jean-Claude Krupa, Preparation and size effect on concentration quenching of nanocrystalline Y2SiO5:Eu2+, Chemical Physics Letters,1998,292,133-136
    [53]C. Barthou, J. Benoit, P. Benalloul, A. Morell, Mn2+ Concentration Effect on the Optical Properties of Zn2SiO4:Mn Phosphors, J. Electrochem.Soc.1994, 141,524-528.
    [54]A. Morell, N. Elkhiati, J. Electrochem. Soc. Green Phosphors for Large Plasma TV Screens,1993,140,2019-2022.
    [55]S. J. Weston, M. O'Neill, J. E. Nicholls, J. Miao, W. E. Hagston, and T. Stirner, Mn ion clustering in Ⅱ-Ⅵ semimagnetic semiconductor heterostructures, Physics Review B,1998,58,7040-7045.
    [56]C. R. Ronda, T. Amrein, Evidence for exchange-induced luminescence in Zn2Si04:Mn, Journal of Luminescence,1996,69,245-246.
    [57]E. van der Kolk, P, Dorenbos, C.W. E. van Eijk etal, Optimised Co-activated willemite Phosphors for Application in Plasma Display Panels, Journal of Luminescence,2000,68,1246-1249.
    [58]V.B. Bhatkar, S.K. Omanwar and S.V. Moharil, Combustion synthesis of silicate phosphors, Optical Materials,2007,29,1066-1070.
    [1]Zhan Hui Zhang, Yu Hua Wang, Xiao Xia Li, Yun Kun Du, Wen Jing Liu, Photoluminescence degradation and color shift studies of annealed BaMgAl10O17:Eu2+ phosphor, Journal of Luminescence,2007,122-123, 1003-1005
    [2]J. Pisarska, R. Lisiecki, W. Ryba-Romanowski, T. Goryczka, W.A. Pisarski, Unusual luminescence behavior of Dy3+-doped lead borate glass after heat treatment, Chemical Physics Letters,2010,489,198-201
    [3]Weihua Di, Xiaoxia Zhao, Zhaogang Nie, Xiaojun Wang, Shaozhe Lu, Haifeng Zhao, Xinguang Ren, Heat-treatment-induced luminescence degradation in Tb3+-doped CePO4 nanorods, Journal of Luminescence,2010, 130,728-732
    [4]Thanut Jintakosol, Pisith Singjal, Effect of annealing treatment on luminescence property of MgO nanowires, Current Applied Physics,2009, 9,1288-1292
    [5]C. Barthou, J. Benoit, P. Benalloul, A. Morell, Mn2+ Concentration Effect on the Optical Properties of Zn2SiO4:Mn Phosphors, J. Electrochem.Soc.1994, 141,524-528.
    [6]E. van der Kolk, P. Dorenbos, C.W.E. van Eijk,, H. Bechtel,T. Justel, H. Nikol, C.R. Ronda, D.U. Wiechert, Optimised co-activated willemite phosphors for application in plasma display panels, Journal of Luminescence 2000,87-89,1246-1249.
    [7]I.F. Chang and M.W.Shafer, Efficiency Enhancement in Manganese-doped Zinc Silicate Phosphor with AlPO4 Substitution, Appl. Phys. Lett.,1979, 35,229-231.
    [8]E. S. Yang, D. B. Dove, M. Shafer, and I. F. Chang, Electron Traps in AlPO4 Substituted Zinc Silicate Phosphors, Journal o f Electronic Materials,1981, 10,423-432.
    [9]Kee-Sun Sohn,z Bonghyun Cho, Hyunju Chang, and Hee Dong Park, Effect of Co-doping on the Photoluminescence Behavior of Zn2SiO4:Mn Phosphors, Journal of The Electrochemical Society,1999,146,2353-2356.
    [10]Y. C. Kang, M. A. Lim, H. D. Park, and M. Han, Ba2+ Co-doped Phosphor Particles Prepared by Spray Pyrolysis Process,
    Journal of The Electrochemical Society,2003,150, H7-H11.
    [11]S.F.Wang, M.K. Lu, F. Gu, Y.X. Qi, D.Xu, D.R. Yuan, D.X. Cao, Effect of Pb2+ ions on the photoluminescence characteristics of Mn2+-doped Zn2SiO4, Appl. Phys. A 2005,80,871-874.
    [12]Yan Hao, Yu-HuaWang, Vacuum Ultraviolet Characteristics of Zn1.92-xMgxSi1-2yAlyPyO4:0.08Mn2+(O=x=0.5,O=y=0.02) Phosphors, Electrochemical and Solid-State Letters,2006,9, H100-H102.
    [13]Yan Hao, Yu-HuaWang, Enhancement UV and VUV photoluminescence of Zn2SiO4:Mn2+ with the incorporation of Ga3+, Journal of Alloys and Compounds 2009,470,565-567.
    [14]Elena V. Shevchenko, Dmitri V. Talapin, Andrey L. Rogach, Andreas Kornowski, Markus Haase, and Horst Weller, Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals, J. AM. CHEM. SOC.2002,124, 11480-11485.
    [15]Robert I. Nooney, Dhanasekaran Thirunavukkarasu, Yimei Chen, Robert Josephs, and Agnes E. Ostafin, Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size, Chem. Mater.2002,14,4721-4728.
    [16]Chang Hoon Lee, Minsik Kim, Taekhoon Kim, Ansoon Kim, Jungsun Paek, Ju Wook Lee, Sung-Yool Choi, Kyuwon Kim, Jong-Bong Park, and Kwangyeol Lee, Ambient Pressure Syntheses of Size-Controlled Corundum-type In2O3 Nanocubes, J. AM. CHEM. SOC.2006,128, 9326-9327.
    [17]Kangjian Tang, Jianan Zhang, Wenfu Yan, Zhonghua Li, Yangdong Wang, Weimin Yang, Zaiku Xie, Taolei Sun, and Harald Fuchs, One-Step Controllable Synthesis for High-Quality Ultrafine Metal Oxide Semiconductor Nanocrystals via a Separated Two-Phase Hydrolysis Reaction, J. AM. CHEM. SOC.2008,130,2676-2680.
    [18]H. Y. Hwang, S-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Lattice Effects on the Magnetoresistance in Doped LaMnO3, Phys. Rev. Lett. 1995,75,914-917.
    [19]R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A Crystal Physics, Diffraction, Theoretical and General Crystallography,1976,32,751-767.
    [20]Yong-Ji Lee, Tae-Geun Kim and Yun-Mo Sung, Lattice distortion and luminescence of CdSe/ZnSe nanocrystals, Nanotechnology 2006,17, 3539-3542.
    [21]Zhan Hui Zhang, Yu HuaWang, Xiao Xia Li, Effects of Si4+ and B3+ doping on the photoluminescence of BaMgAl10O17:Eu2+ phosphor under UV and VUV excitation, Journal of Alloys and Compounds,2009,478,801-804.
    [22]Gwan-Hyoung Lee and Shinhoo Kang, Effect of pH and Lattice Distortion on the Luminescence of (Y,Gd)BO3:Eu3+ Phosphor Prepared by the Coprecipitation Method, Journal of The Electrochemical Society,2006,153 H105-H109.
    [23]N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, Effect of strain-compensation in stacked 1.3 μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition, APPLIED PHYSICS LETTERS,2004,85,3050-3052.
    [24]Qiang Li, Lian Gao, Dongsheng Yan, The crystal structure and spectra of nano-scale YAG:Ce3+, Materials Chemistry and Physics 2000,64,41-44.
    [25]A. Morell, N. Elkhiati, J. Electrochem. Soc. Green Phosphors for Large Plasma TV Screens,1993,140,2019-2022.
    [26]Masafumi Takesue, Kenji Shimoyama, Sachiko Murakami, Yukiya Hakuta, Hiromichi Hayashi, Richard L. Smith Jr., Phase formation of Mn-doped zinc silicate in water at high-temperatures and high-pressures, J. of Supercritical Fluids 2007,43,214-221.
    [27]YC Kang, HD Park, Brightness and decay time of Zn2SiO4:Mn phosphor particles with spherical shape and fine sizeApplied Physics A:Materials Science & Processing,2003,77,529-532.
    [28]A. Vandie, A.C.H.I. Leenaers, G. Blasse, W.F. Vanderweg, Germanate glasses as hosts for luminescence of Mn2+ and Cr3+, J. Non-cryst. Solids, 1988,99,32
    [29]Shyi-Ming Yeh, Ching-Shen Su, Materials Science and Engineering B 1996, 38,245-249.
    [30]Jun Yeol Cho, Young Rag Do, Young-Duk Huh, APPLIED PHYSICS LETTERS 2006,89,131915-131917.
    [31]Soung Soo Yi, Jong Seong Bae, Byung Kee Moon and Jung Hyun Jeong, Jung Hwan Kim, APPLIED PHYSICS LETTERS 2005,86,071921-071923.
    [32]S. H. Sohn, D. G. Hyun,a) A. Yamada, and Y. Hamakawa, Appl. Phys. Lett. 1993,62,991-993.
    [33]S. H. Sohn and Y. Hamakaw, Appl. Phys. Lett.1993,62,2242-2245.
    [34]Soung-soo Yi, Jong Seong Bae, Kyoo Sung Shim and Jung Hyun Jeong, Jung-Chul Park, P. H. Holloway, Appl. Phys. Lett.2004,84,353-355.
    [35]Soung-soo Yi, Jong Seong Bae, Byung Kee Moon, and Jung Hyun Jeong, Jung-Chul Park,Ill Won Kim, Appl. Phys. Lett.2002,81,3344-3348.
    [36]M. L. Pang, W. Y. Shen, and J. Lin, JOURNAL OF APPLIED PHYSICS, 2005,97,033511
    [37]Jung-Chul Park, Hye-Kyung Moon, Dong-Kuk Kim, Song-Ho Byeon, Bong-Chul Kim, Kyung-Soo Suh, Appl. Phys. Lett.2000,77,2162-2165.
    [1]Competitive Excitation Mechanisms for the Blue Fluorescence in CdF2:l%Er3+, E. Chicklis and L. EsterowitzPhys. Rev. Lett.1968,21,1149.
    [2]K. Wei, D.P. Machewirth, J. Wenzel, E. Snitzer, G.H. Sigel Jr., Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3-μm fiber-optical amplifier applications, Opt. Lett.1994,19,904.
    [3]T. Schweizer, D.W. Hewak, B.N. Samson, D.N. Payne, Spectroscopic data of the 1.8-,2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass, Opt. Lett.1996,21,1594.
    [4]P. Nemec, B. Frumarova, M. Frumar, J. Oswald, Optical properties of low-phonon-energy Ge3oGa5Se65:Dy2Se3 chalcogenide glasses Journal of Physics and Chemistry of Solids 2000,61,1583-1589.
    [5]WANG X, L I Y D. Fullerene-like rare-earth nanoparticles, Angew Chem Int Ed, 2003,42,3497-3500.
    [6]Patra, A.; Friend, C. S.; Kapoor, R.; Prasad, P. N., Upconversion in Er3+:ZrO2 Nanocrystals, J. Phys. Chem.B 2002,106,1909-1912.
    [7]Lifang Liang, Huifang Xu, Qiang Su, Hiromi Konishi, Yingbin Jiang, Mingmei Wu,,Yifeng Wang, and Deying Xia, Hydrothermal Synthesis of Prismatic NaHoF4 Microtubes and NaSmF4 Nanotubes, Inorg. Chem.2004,43, 1594-1596.
    [8]L.Esterowitz, R. Allen, M. Kruer, F. Bartoli, L.S. Goldberg, H.P. Jenssen, A. Linz, V.O.Nicolai, Blue light emission by a Pr:LiYF4-laser operated at room temperature, Journal of Applied Physics,1977,48,650-652.
    [9]A. Mech, M. Karbowiak, L. K,epinski, A. Bednarkiewicz, W. Strek, Structural and luminescent properties of nano-sized NaGdF4:Eu3+ synthesised by wet-chemistry route, Journal of Alloys and Compounds 2004,380,315-320.
    [10]Francesco Cornacchia, Andre Richter, Ernst Heumann, Gunther Huber, Daniela Parisi, and Mauro Tonelli, V isible laser emission of solid state pumped LiLuF4:Pr3+ Optics Express,2007,15,992-1002.
    [11]Hao-Xin Mai, Ya-Wen Zhang, Rui Si, Zheng-Guang Yan,Ling-dong Sun, Li-Ping You, and Chun-Hua Yan, High-Quality Sodium Rare-Earth Fluoride Nanocrystals:Controlled Synthesis and Optical Properties, J. AM. CHEM. SOC. 2006,128,6426-6436.
    [12]V. Venkatramu, P. Babu, I. R. Martin, V. Lavin, Juan E. Munoz-Santiuste, Th. Troster, W. Sievers, G. Wortmann, C. K. Jayasankar, Role of the local structure and the energy trap centers in the quenching of luminescence of the Tb3+ ions in fluoroborate glasses:A high pressure study, Chem. Phys.2010,132,114505.
    [13]Laercio Gomes, Andre Felipe Henriques Librantz, Stuart D. Jackson, Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass, J. Appl. Phys.2010,107,053103.
    [14]STOUWDAM J W. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett,2002,2,733-735.
    [15]Hongtao Sun, Shixun Dai, Shiqing Xu, LeiWen, Lili Hu, Zhonghong Jiang, Optical transitions and frequency upconversion fluorescence of Er3+/Yb3+ codoped strontium lead bismuth glasses, Materials Letters,2004,58 3948-3951.
    [16]Zhigang Chen, Huili Chen, He Hu, Mengxiao Yu, Fuyou Li, Qiang Zhang, Zhiguo Zhou, Tao Yi, and Chunhui Huang, Versatile Synthesis Strategy for Carboxylic Acid functionalized Upconverting Nanophosphors as Biological Labels, J. AM. CHEM. SOC,2008,130,3023-3029.
    [17]S. Q. Man, E. Y. B. Pun, and P. S. Chung, Upconversion luminescence of Er3+ in alkali bismuth gallate glasses, Appl. Phys. Lett.2000,77,483-485.
    [18]Hongtao Sun, Shixun Dai, Shiqing Xu, LeiWen, Lili Hu, Zhonghong Jiang, Optical transitions and frequency upconversion fluorescence of Er3+/Yb3+-codoped strontium-lead-bismuth glasses, Materials Letters,2004,58, 3948-3951.
    [19]STOUWDAM J W. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles, Nano Lett,2002,2,733-735.
    [20]CHEN Z G, CHEN H L, HU H, et al. A Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels. J Am Chem Soc,2008,130,3023-3029.
    [21]Lanjun Luo, Feng Song, Xiaochen Yu, Wentao Wang, Chengguo Ming, Lin Han, Yin Yu, Hao Wu, and Jianguo Tian, Intense 1.54μm fluorescence of Er3+/Yb3+ codoped phosphate glass and the three-photon phenomenon of near infrared upconversion luminescence, J. Appl. Phys.2010,107,033110-033115.
    [22]Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals, Rufaihah Abdul Jalil, Yong Zhang, Biomaterials 2008,29,4122-4128.
    [23]Dev K. Chatterjee, Abdul J. Rufaihah, Yong Zhang, Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals, Biomaterials 2008,29,937-943.
    [24]Manoj Kumar, Yanyan Guo, Peng Zhan, Highly sensitive and selective oligonucleotide sensor for sickle cell disease gene using photon upconverting nanoparticles, Biosensors and Bioelectronics 2009,24,1522-1526.
    [25]J. L. Sommerdijk, A. Bril and A. W. de Jager, Two photon luminescence with ultraviolet excitation of trivalent praseodymium Journal of Luminescence,1974, 8,341-343
    [26]L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, Energy levels and line intensities of Pr3+ in LiYF4, Phys. Rev. B 1979, 19,6442.
    [27]J. L. Sommerdijk, A. Bril and A. W. de Jager, Luminescence of Pr3+-Activated fluorides, Journal of Luminescence,1974,9,288-296.
    [28]K. D. Oskam,, R. T. Wegh, H. Donker, E. V. D. van Loef and A. Meijerink, Downconversion:a new route to visible quantum cutting, Journal of Alloys and Compounds 2000,300-301,421-425.
    [29]A Meijerink Downconversion:a new route to visible quantum cutting Quantum cutting through downconversion, in rare-earth compounds Journal of Luminescence 2000,87-89,1017-1019.
    [30]RT Wegh, H Donker, KD Oskam, A Meijerink, Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion, Journal of Luminescence 1999,82,93-104.
    [31]RT Wegh, EVD Van Loef, A Meijerink, Visible quantum cutting via downconversion in LiGdF4:Er3+, Tb3+ upon Er3+ 4f11-4f105d excitation Er3+, Journal of Luminescence 2000,90,111-122.
    [32]RT Wegh, EVD Van Loef, GW Burdick, A Meijerink, Luminescence spectroscopy of high-energy 4f11 levels of Er3+ in fluorides, MOLECULAR PHYSICS,2003,101,1047-1056.
    [33]RT Wegh, H Donker, A Meijerink, RJ Lamminmaki, J. Holsa, Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4 PHYSICAL REVIEW B, 1997,56,13841-13848.
    [34]RT Wegh, H.Donker, A. Meijerink, Spin-allowed and spin-forbidden fd emission from Er3+ and LiYF4, PHYSICAL REVIEW B 1998,57,2025-2028.
    [35]RT Wegh, A. Meijerink, Spin-allowed and spin-forbidden 4fn-4fn-15d transitions
    for heavy lanthanides in fluoride hosts PHYSICAL REVIEW B1999,60, 10820-10830.
    [36]MF Reid, L Van Pieterson, RT Wegh, A Meijerink, Spectroscopy and calculations for 4f-4fn-1 5d d transitions of lanthanide ions in LiYF4, PHYSICAL REVIEW B 2000,62,14744-14749.
    [37]L. van Pieterson, M. F. Reid, R. T. Wegh, S. Soverna, and A. Meijerink, 4fn→4fn-1 5d transitions of the light lanthanides:Experiment and theory, PHYSICAL REVIEW B 2002,65,045113-1-045113-16.
    [38]L van Pieterson, M Heeroma, E de Heer, A Meijerink, Charge transfer luminescence of Yb3-LiYF4, Journal of Luminescence 2000,91,177-193
    [39]ZL Wang, ZW Quan, PY Jia, CK Lin, Y Luo, Y Chen, A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (Core/Shell) Nanoparticles, Chem. Mater.2006,18,2030-2037
    [40]E. van der Kolk and P. Dorenbos, K. Kramer, D. Biner, and H. U. Giidel, High-resolution luminescence spectroscopy study of down-conversion routes in NaGdF4:Nd3+ and NaGdF4:Tm3+ using synchrotron radiation, PHYSICAL REVIEW B 2008,77,125110-1-125110-7
    [41]Lena Beauzamy and Bernard Moine, Richard S. Meltzer and Yi Zho, Patrick Gredin, Anis Jouini, Kyoung Jin Kim, Quantum cutting effect in KY3F10:Tm3+, PHYSICAL REVIEW B 78,2008 184302-1-184302-11
    [42]R. T. Wegh, H. Donker, and A. Meijerink, R. J. Lamminmaki and J. Hols,Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4, PHYSICAL REVIEW B,1997,56,13841-13848
    [43]Wegh, R. T.; Donker, H.; Oskam, K. D.;Meijerink, A. Visible Quantum Cutting in LiGdF4:Eu3+ Through Downconversion, Science 1999,283,663-666.
    [44]Dawei Wang, Shihua Huang, Fangtian You, Shiqun Qi, Yibing Fu, Guobin Zhang, Jianhua Xu, Yan Huang, Vacuum ultraviolet spectroscopic properties of Pr3+ in MYF4 (M=Li, Na, and K) and LiLuF4, Journal of Luminescence 2007,122-123, 450-452.
    [45]N. Martin, P. Boutinaud, M. Malinowski, R. Mahiou, J.C. Cousseins. Optical spectra and analysis of Pr3+ in β-NaYF4, Journal of Alloys and Compounds 1998, 275-277,304-306.
    [46]K. W.; Biner, D.; Frei, G.; Gudel, H. U.; Hehlen, M. P.;Luthi, S. R. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion PhosphorsKramer, Chem. Mater.2004,16,1244-1251.
    [47]Zeng, J. H.; Su,J.; Li, Z. H.; Yan, R. X.; Li, Y. D., Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+, Er3+ Phosphor of Controlled Size and Morphology, AdV. Mater.2005,17,2119-2123.
    [48]Feng Liu, En Ma, Daqin Chen, Yunlong Yu, and Yuansheng Wang,Tunable Red-Green Upconversion Luminescence in Novel Transparent Glass Ceramics Containing Er:NaYF4 Nanocrystals, J. Phys. Chem. B 2006,110,20843-20846
    [49]Guang Shun Yi and Gan Moog Chow, Synthesis of Hexagonal-Phase NaYF4:Yb, Er and NaYF4:Yb, Tm Nanocrystals with Efficient Up-Conversion Fluorescence, Adv. Funct. Mater.2006,16,2324-2329
    [50]Zhengquan Li and Yong Zhang, Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission, Angew. Chem.2006,118,7896-7899
    [51]FengWang, Dev K Chatterjee, Zhengquan Li, Yong Zhang, Xianping Fan, and MinquanWang, Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence, Nanotechnology 2006,17,5786-5791.
    [52]Leyu Wang and Yadong Li, Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials, NANO LETTERS,2006,6,1645-1649,
    [53]Zeng, J. H.; Li, Z. H.; Su, J.; Wang, L. Y.; Yan, R. O.; Li, Y. D.,Synthesis of complex rare earth fluoride nanocrystal phosphors, Nanotechnology 2006,17, 3549-3555.
    [54]Selected synthesis of cubic and hexagonal NaYF4 crystals via a complex-assisted hydrothermal route, Zhijun Wang, Feng Tao, Lianzeng Yao, Weili Cai, Xiaoguang Li, Journal of Crystal Growth 2006,290,296-300.
    [55]Highly Uniform and Monodisperse B-NaYF4:Ln3+(Ln=Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals:Hydrothermal Synthesis and Luminescent Properties, Chunxia Li, Zewei Quan, Jun Yang, Piaoping Yang, and Jun Lin, Inorganic Chemistry,2007,46,6329-6337.
    [56]Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals, Leyu Wang, and Yadong Li, Chem. Mater.2007,19,727-734.
    [57]Controlled Hydrothermal Growth and Up-Conversion Emission ofNaLnF4 (Ln =Y, Dy-Yb), Jianle Zhuang, Lifang Liang, Herman H. Y. Sung, Xianfeng Yang, Mingmei Wu, Ian D. Williams, Shouhua Feng, and Qiang Su, Inorg. Chem.2007, 46,5404-5410.
    [58]Branched NaYF4 Nanocrystals with Luminescent Properties, Xin Liang, Xun Wang, Jing Zhuang, Qing Peng, and Yadong Li, Inorg. Chem.2007,46, 6050-6055.
    [59]Upconversion Multicolor Fine-Tuning:Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles, Feng Wang and Xiaogang Liu, J. AM. CHEM. SOC.2008,130,5642-5643.
    [60]Influence of Crystal Phase and Excitation Wavelength on Luminescence Properties of Eu3+-Doped Sodium Yttrium Fluoride Nanocrystals, Pushpal Ghosh and Amitava Patra, J. Phys. Chem. C 2008,112,19283-19292.
    [61]Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles, Zhengquan Li, Yong Zhang, and Shan Jiang, Adv. Mater.2008,20,4765-4769.
    [62]Transparent colloid containing upconverting nanocrystals:an alternative medium for three-dimensional volumetric display, Xiaofeng Liu, Guoping Dong, Yanbo Qiao, and Jianrong Qiu, APPLIED OPTICS,2008,47,6414-6421.
    [63]Synthesis of Hexagonal-Phase Core-Shell NaYF4 Nanocrystals withTunable Upconversion Fluorescence,Hai-Sheng Qian and Yong Zhang, Langmuir 2008, 24,12123-12125.
    [64]Tunable Thickness and Photoluminescence of Bipyramidal Hexagonal β-NaYF4 Microdisks, Jianle Zhuang, Jing Wang, Xianfeng Yang, Ian D. Williams, Wei Zhang,Qinyuan Zhang, Zhouming Feng, Zhongmin Yang, Chaolun Liang, Mingmei Wu, and Qiang Su, Chem. Mater.,2009,21,160-168.
    [65]NaYF4:Eu2+ Microcrystals:Synthesis and Intense Blue Luminescence, Yiguo Su, Liping Li, and Guangshe Li, Crystal Growth & Design,2008,8,2679-2683.
    [66]Avidin conjugation to up-conversion phosphor NaYF4:Yb3+, Er3+ by the oxidation of the oligosaccharide chains, Deyan Kong, Zewei Quan, Jun Yang, Piaoping Yang, Chunxia Li, Jun Lin, J Nanopart Res 2009,11,821-829
    [67]Thoma, R. E.; Hebert, G. M.; Insley, H.; Weaver, C. F. Inorg. Chem.1963,2, 1005-1012.
    [68]Thoma, R. E.; Insley, H.; Hebert, G M. Inorg. Chem.1966,5,1222-1229.
    [69]Zifeng Tian, Hongbin Liang, Huihong Lin, Qiang Su, Bei Guo, Guobin Zhang, Yibing Fu, Luminescence of NaGdFPO4:Ln3+ after VUV excitation:A comparison with GdPO4:Ln3+(Ln=Ce, Tb), Journal of Solid State Chemistry, 179,2006,1356-1362.
    [70]D. Jia, W. Jia, X. J. Wang, and W. M. Ren, Solid State Commun.,2004,129,1.
    [71]M. T. Jose and A. R. Lakshmanan, Ce3+ to Tb3+ energy transfer in alkaline earth (Ba, Sr or Ca) sulphate phosphors Opt. Mater.,2004,24,651-659.
    [72]C. K. Lin, H. Wang, D. Y. Kong, M. Yu, X. M. Liu, Z. L. Wang, and J. Lin, Euro. J. Inorg. Chem.,2006,18,3667.
    [73]J. Lin, Q. Su, H. J. Zhang, and S. B. Wang, Crystal structure dependence of the luminescence of rare earth ions (Ce3+, Tb3+, Sm3+) in Y2SiO5, Mater Res Bull.,1996,31,189.
    [74]M. Yu, H. Wang, C. K. Lin, G Z. Li, and J. Lin, Sol-gel synthesis and photoluminescence properties of spherical SiO2@ LaPO4:Ce3+/Tb3+ particles with a core-shell structure, Nanotechnology,2006,17,3245.
    [75]M. Yu, J. Lin, J. Fu, H. J. Zhang and Y. C. Han, Sol-gel synthesis and photoluminescent properties of LaPO4: A (A=Eu3+, Ce3+, Tb3+) nanocrystalline thin films J. Mater.Chem.,2003,13,1413.
    [76]J. Holsa, M. Leskela, and L. Niinisto, J. Solid State Chem.,1981,37,267.
    [77]D. L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys.,1953, 21,836-850.
    [78]X. Liu, C. Lin, and J. Lin, White light emission from Eu3+in CaIn2O4 host lattices, Appl. Phys. Lett.,2007,90,081904-081907.
    [79]N.S. Sokolov, N.N.Faleev, S.V.Gastev, N.L.Yakovlev, A.Lzumi, K. Tsutsui, Characterization of molecular beam epitaxy grown CdF2 layers by x-ray diffraction and CaF2:Sm photoluminescence probe, J. Vac. Sci. Technol.1995, 13,2703-2708.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700