树突状细胞抗原负载及MAGE-3 DNA瘤苗研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树突状细胞(DCs)是目前已知功能最强的专职性抗原提呈细胞,可以通过多种作用方式行使其抗肿瘤免疫作用。研究表明,DCs是连接抗原与免疫应答细胞以激发有效的抗肿瘤免疫应答反应的桥梁。人类MAGE(melanoma antigen)基因家族编码的肿瘤排斥抗原(tumor rejection antigen)在细胞内经加工产生抗原肽,并与HLA-Ⅰ类分子结合形成复合物,被自体细胞毒性T细胞(CTL)识别,诱导其对相应肿瘤细胞的特异性杀伤。MAGE基因在许多肿瘤组织中有较高的表达,但是在正常组织(除了睾丸和胚胎外)均不表达,因而MAGE基因是一种CTL介导的肿瘤特异性免疫治疗的理想靶位。
    1. 鼠骨髓来源的树突状细胞体外扩增及诱导成熟
    我们应用GM-CSF及IL-4体外诱导扩增了小鼠骨髓来源的树突状细胞。小鼠骨髓细胞与细胞因子IL-4(500 U/ml)及GM-CSF(1000U/ml)共同培养第2d可见部分悬浮细胞;第3d悬浮细胞增多且细胞有短的毛刺状突起;第5d,绝大部分细胞悬浮,毛刺状突起拉长,培养瓶底部大圆形及梭形细胞减少。观察结果显示,此细胞为典型树突状细胞形态特征。
    应用TNF-α刺激或冻融抗原负载,诱导DCs成熟,各组DCs表面标志CD83、CD86与空白对照组相比均具有显著差异(P<0.05);IL-4+GM-CSF+TNF-α组、IL-4+GM-CSF+肿瘤抗原组与IL-4+GM-CSF组比差异显著(P<0.05);而IL-4+GM-CSF+TNF-α组与IL-4+GM-CSF+肿瘤抗原组比无差异。结果表明,树突状细胞经抗原负载或TNF-α刺
    
    
    激后,CD83及CD86表达上调。
    应用上述成熟DCs进行混合淋巴细胞培养,以刺激T细胞增殖。结果表明,IL-4+GM-CS+TNF-α组及IL-4+GM-CS+冻融抗原组DCs与T细胞混合培养,可以明显刺激T细胞的增殖,cpm值显著高于空白对照组及IL-4+GM-CSF组(P<0.001);IL-4+GM-CS+冻融抗原组DCs与T细胞混合培养,cpm值亦明显高于IL-4+GM-CS+TNF-α组(P<0.001);按1∶5混合各组明显高于1∶10混合培养各组,但无统计学意义。
    2. 肿瘤总RNA装载DC
    我们诱导扩增了肺癌患者外周血单核细胞来源的DCs,形态学鉴定发现,PBMC培养3d后,倒置显微镜下观察细胞呈集簇生长,部分细胞的细胞膜有突起;培养至第6d时,大部分悬浮生长,可见较多细胞胞体大且外形不规则,细胞膜呈树枝状突起,胞浆丰富,具有典型的树突状细胞形态。透射电镜下可见,细胞膜有大量皱褶和突起,核大、偏位,胞内线粒体丰富。流式细胞仪检测诱导前后DCs表面标志的变化,结果显示,PBMC经GM-CSF和IL-4诱导,培养第5 d时,CD1a的阳性率为11.10±1.08(%),CD83的阳性率为7.24±2.25(%),同时伴有人类主要组织相容性抗原HLA-ABC和协同刺激分子CD86(B7-2)的上调表达,HLA-DR的水平基本不变,代表单核细胞的表面标志CD14下降(P<0.05),诱导第7 d时,上述结果变化更明显,与5 d时的结果相比差异显著(P<0.05),表明PBMC在GM-CSF和IL-4的作用下已向DCs转化。
    用肺癌细胞的总RNA装载上述DCs,以检验DCs的抗原提呈能力。我们提取了肺癌细胞的总RNA,变性凝胶电泳显示完整的28S和18S两条带,证实RNA完整未降解。紫外分光光度计测RNA浓度为1.69μg/μl,OD260/OD280>1.8。参照基因?-actin的RT-PCR电泳结果可见1000bp处的条带,亦证明总RNA中有翻译必需的mRNA存在。将此肺癌细胞总RNA经脂质体包裹,负载肺癌患者外周血单核细胞诱导扩增的DCs,流式细胞仪分析结果显示,转染总RNA 3d后,DCs的特
    
    
    异性表面标志如CD83表达上调,其它功能相关的表面标志如HLA-ABC、HLA-DR和共刺激分子CD86(B7-2)表达也上调(P<0.05),而代表单核细胞的CD14表达则下调(P<0.05);混合淋巴细胞培养结果显示,未转染RNA的DCs与转染RNA后的DCs都能刺激自身T淋巴细胞增殖活性(P<0.05),对同种异体T淋巴细胞则无此作用;转染RNA的DCs比未转染的DCs刺激自身淋巴细胞增殖的能力增强(P<0.05)。
    3. MAGE-3基因的提取及转染LA795细胞
    为进一步研制肿瘤疫苗,MAGE-3基因转染LA795细胞。首先,利用TRIzol Reagent提取Mel526细胞株总RNA,应用MAGE-3特异引物进行RT-PCR,获得MAGE-3基因;1%琼脂糖凝胶电泳分析,出现一1000bp的DNA条带,与预想的长度相符。以TA克隆方式将此产物克隆入pMD18-T载体,经酶切鉴定插入片段存在,长度约1000bp。将此重组质粒命名为pMD-MAGE3。对此基因进行测序,测序结果与MAGE-3 RNA参考序列(U03735)进行同源性比较,发现第162位碱基突变T→C,但并未引起氨基酸残基突变(CCT → CCC,均编码脯氨酸)。再将此基因亚克隆入荧光载体pEGFP-C1,经SacⅠ和SalⅠ双酶切,1%琼脂糖凝胶电泳显示一1000 bp左右的DNA条带,表明插入片段存在,命名pEGFP-MAGE3。
    载体pEGFP-C1上的EGFP与其下游的外源基因融合表达,为确保此融合基因正确表达,对重组质粒pEGFP-MAGE3进行测序,结果显示阅读框正确。质粒pEGFP-C1含有荧光蛋白基因EGFP,此基因表达可以使转染细胞发出绿色荧光,便于观察转染效果;为此,pEGFP-MAGE3质粒转染LA795细胞24、48和72h,荧光显微镜下,可见绿色荧光的细胞。镜下随机计数10个视野的细胞,计算出转染效率(绿色荧光细胞所占的比例)为20%~30%。将1(2×105个LA795细胞种植于6?
Dendritic cells (DCs) have the strong function of specific duty antigen presenting cells (APC) in now. It can be achieve immunofunction of antigen by some ways. Some study showed that DCs is a bridge linked antigen and immune response cells to activate the immuneresponse of effective antitumor. Tumor rejection antigen codded by MAGE family produces antigen peptided proceseed in cells. Tumor rejection antigen combined with HLA-I formed a compplex and it distinguished by self-cytotoxic T lymphocytes (CTL), induce it specially killing relevant tumor cells. MAGE more highly expresses in many tumor tissues but can’t expresss in normal tissues (except testis and fetal tissue), it is a kind of ideal target to special immune mediated by CTL.
    1. The expansion and maturation of inducing dendritic cells derived from mouse bone marrow in vitro
    The expansion and maturation of inducing dendritic cells derived from mouse bone marrow in vitro. The dendritic cells derived from mouse bone marrow were proliferated by using GM-CSF and IL-4 in vitro. A part of suspension cells were abserved on 2 days after mouse bone marrow cells were cocultured with IL-4 (500u/ml) and GM-CSF (1000u/ml), the suspension cells increased with short process with burr 3 days later, and most of cells were floated with long process with burr, at the same time large round and fusiform cells decreased on the bottom of bottles 5 days later. The results showed that these cells have the characteristic of typical morphology of dentritic cells. The expressions of surface marker CD83 and CD86 of CD maturation induced by TNF-α stimulating or freezing and thawing antigen increased significantly as
    
    
    compared with that in blank control group (P<0.05). There was significantly different between IL-4+GM-CSF+TNF-α group, IL-4+GM-CSF+carcinoma antigen group and IL-4+GM-CSF group, while there was not different between IL-4+GM-CSF+TNF-α and IL-4+GM-CSF+caicinoma antigen groups. The results showed that the expressions of CD83 and CD86 increased after dentritic cells were loaded with antigen and stimulated with TNF-α. Then the above mentioned mature DCs were used to perform mixture lymphocyte culture to stimulate T cells proliferation. The results showed that the proliferation of T cells was stimulated after DCs in IL-4+GM-CSF+TM-α group, IL-4+GM-CSF+freezing and thawing antigen group were cultured with T cells, CPM in which were significantly higher than that in blank control group and IL-4+GM-CSF group (P<0.001). The cpm of DCs cultured with T cells in IL-4+GM-CSF+freezing and thawing antigen group was significantly higher than that in IL-4+GM-CSF+TNF-α group (P<0.001). And the cpm in all the groups of mixture ratio of 1 to 5 was higher than that in ratio of 1:10 groups, but there was not significantly different.
    2. DCs loaded with total RNA of tumor
    The induction of DCsorigined from mononuclear leukocytes of periphery blood of lung cancer patient increased, DCs morphologically grew in a cluster of clony under invereted microscope, for 3 days in the culture of cells, the membrane in a part of them processed; for 6 days in culture, most of them grew in suspension, cell body was biger and irregular, cell membrane processed with branch tower, cytoplasm enriched, the cells present a typical DCs in morphology. There were a lot of microfolds and processes in the cell membrane, cell nucleus was biger and inclined to one side, mitochondria enriched in cells. After PBMC inducted with GM-CSF and IL-4 for 5 days in the culture, the positive rates of surface maker CD1a and CD83 detected with FCM were 11.10±1.08(%) and 7.24±2.25(%). Respectively, accompanied with the up-regulting expressions of HLA-ABC and CD86 (B7-2), down-regulating expression of CD14 and unclchange of HLA-DR. The results suggest that PBMC differentiated into DCs in the effecfs of GM-CSF and IL-4.
    The above-mentioned DCs loaded with total RNA of lung cancer cells to detect antigen presenting ability of DCs. We extracted the total RNA with two bands of 28 S and 18 S detected with dematured gel electr
引文
Rescigno M, Granucci F, Ricciardi Castagnoli P. Dendritic cells at the end of the millennium. Immunol Cell Biol,1999,77(5): 404-410.
    Shurin MR. Dendritic cells presenting tumor antigen. Cancer Immunol Immunother,1996, 43(3): 158-164.
    Kiertscher SM,Roth MD. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. J Leukoc Biol, 1996,59(2): 208-218.
    Bender A, Sapp M, Schuler G, et al. Improved methods for the generation of dendritic cells from non-proliferating progenitors in human blood. J Immunol Methods,1996,196(2):121-135.
    Caux C, Vanbervliet B, Massacrier C, et al. Interleukin-3 cooperates with tumor necrosis factor alpha for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells. Blood , 1996,87(6): 2376-2385.
    Rosenzwajg M, Camus S, Guigon M, et al. The influence of interleukin (IL)-4, IL-13, and Flt3 ligand on human dedritic cell differentiation from cord blood CD34+ progenitor cells. Exp Haematol.,1998,26(1): 63-72.
    Mailliard RB, Dallal RM, Son Yi, et al. Dendritic cells promote T-cell surmival of death depending upon their maturation state and presentation of antigen[J]. Immunol Invest, 2000, 29(2): 177-185.
    Mukherji B, chakraborty NG, Yamasaki S, et al. Induction of antigen-specific cytolytic T cells in situ in numan melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc Natl Acad Sci USA,1995,92(17): 8078-8082.
    van der Bruggen P,Traversari C,Chomez P, et al. A Gene encoding an antigen recognize by cytolytic T lymphocytes on a human melanoma.
    
    
    Science, 1991,254(5038): 1643-1647.
    Taback B,Chan AD,Kuoct, et al. Detection of occult metastatic breast cancer cells in blood by a multimolecular marker assay: correlation with clinical stage of disease. Cancer Res,2001,61(24): 8845-8850.
    Kufer P,Zippelius A, Lutterbuse R, et al. Heterogeous expression of MAGE-A genes in occult disseminated tumor cells: a novel multimarker reverse transcription-polymerase chain reaction for diagnosis of micrometastatic isease. Cancer Res,2002,62(1): 251-261.
    Mou DCs,Cai SL,Peng JR,et al. Evaluation of MAGE-1 and MAGE-3 as tumor-specific markers to detect blood dissemination of hepatocllular carcinoma cells. Br J Cancer,2002,86(1): 110-116.
    Reynolds SR,Oratz R,Shapiro RL,et al. Stimulation of CD8 T cell responses to MAGE-3 and Melan A/MART-1 by immunization to a polyvalent melanoma vaccine. Int J Can cer,1997,72(6): 972-976.
    Van pel A,Deplaen E,duffour MT,et al. Induction of cytolytic T lymphocytes by immunizatio of mice with an adnovirus containing a mouse bomolog of the human MAGE-A genes. Cancer Immunol Immunother,2001,49(11): 593-602.
    Andersen MH,Kerkavoussi P,Brocker EB,et al. Induction of systemic CTL responses in melanoma patients by dendritic cell vaccination: cessation of CTL responses is associated with disease progression. Int J Cancer,2001,94(6): 820-824.
    Russo V,Tanzarella S,Dalerba P,et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a classⅠ-restricted T cell response. Proc Natl Acad Sci USA,2000,97(5): 2185-2190.
    Steinman RM,Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med,1973,137(5): 1142-1162.
    
    Inaba K,Inaba M,Romani N,et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macroph-age colony-stimulating factor. J Exp Med,1992,176(6): 1693-1702.
    Sallusto F,Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med,1994,179(4): 1109-1118.
    Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood,1997,90(9): 3245-3287.
    Bancherean J and steinma RM. Dendritic cells and the control of immunity. Nature,1998,392(6673): 245-252.
    Cella M,Sallusto F,Lanzavecchia A. Origin,maturation and antigen presenting function of dendritic cells. Curr Opin Immunol,1997,9(1): 10-16.
    Fields RC,Osterholzer JJ,Fuller JA,et al. Comparative analysis of murine dendritic cells derived from spleen and bone marrow. J Immunother,1998,21(5): 323-339.
    Petty RE,Hunt DW. Neonatal dendritic cells. Vaccine,1998,16(14-15): 1378-1 382.
    Steinman RM,Inaba K,Turley S,et al. Antigen capture,processing,and presentation by dendritic cells: recent cell biological studies. Hum Immunol, 1999,60(7): 562-567.
    Gallucci S,Lolkema M,Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med,1999,5(11): 1249-1255.
    Colaco CA. DCs-based cancer immunotherapy: the sequel. Immunol Today, 1999,20(4): 197-198.
    Schoenberger SP,Jonges LE,Mooifaart RJ,et al. Efficient direct priming of tumor-specific cytotoxic T lymphocyte in vivo by an engineered APC.
    
    
    Cancer Res,1998,58(14): 3094-3100.
    Bennett SR, Carbone FR, Karamalis F, et al. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med,1997,186(1): 65-70.
    Bottomly K. T cells and dendritic cells get intimate. Science, 1999, 283(5405): 1124-1124.
    Tang HL,Cyster JG. Chemokine Up-regulation and actived T cell attraction by maturing dendritic cells. Science,1999,284(5415): 819-822.
    Numasaki M,Lotze MT,Tahara H. Interleukin17 gene transfection into murine fibrosarcoma cell line MCA205 increase tumorigenicity correlated with enhanced tumor microvascularity. J Immunother,1997,20(6): 399-406.
    Strobl H,Bello-Fernandez C,Ried E,et al. Flt3 ligand in cooperation with transforming growth factor betal potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood,1997,90(4): 1425-11434.
    Thurnher M,Papesh C,Ramoner R,et al. In vitro generation of CD83+ human blood dendritic cells for active tumor immunotherapy. Exp Hematol,1997,25(3): 232-237.
    张煊,曹雪涛.肿瘤免疫逃避机制研究新进展[J].中国肿瘤生物治疗杂志,2001,8(1):72-74.
    Byrne SN,Halliday GM. Dendritic cells: Making Progress with tumor regression[J].Immunol Cel Biol,2002,80(6): 520-530.
    Kono K,Takahashi A,Subai H,et al. Dendritic Cells Pulsed with HER-2/neu-drived Peptides Can Induce Specific T-Cell Responses in Patients with Gastric Cancer. Clin Cancer Res,2002,8(11): 3 394-3 400.
    Murphy GP,Tjoa BA,Simmons SJ,et al. PhaseⅡprostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence
    
    
    following primary treatment. Prostat,1999,39(1): 54-59.
    Tjoa BA,Simmons SJ,Elgamal A,et al. Follow-up evaluation of a phaseⅡprostate cancer vaccine trial. Prostate,1999,49(2): 1256-1269.
    Murphy GP,Snow P,Simmons SJ,et al. Ues of artificial neural networks in evaluating prognostic factors determining the response to dendritic cells pulsed with PSMA peptides in prostate cancer patients. Prostate,2000, 42(1): 67-72.
    Thurner B,Haendle I,Roder C,et al. Vaccination with mage-3A1 peptide-pulsed mature,monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med,1999,190(11): 1669-1678.
    Schuler-Thurner B,Dieckmann D,Kerka-voussi P,et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol,2000,165(6): 3 492-3 496.
    De Bruijn ML,Schuurhuis DH,Vierboom MP,et al. Immunization with human papillomavirus type16(HPV16) oncoprotein-loaded dendritic cells as well as protein in adjuvant induces MHC classⅠ-restricted protection to HPV16-indeuced tumor cells. Cancer Res,1998,58(4): 724-731.
    El-Shami K,Tirosh B,Bar-Haim E,et al. MHC classⅠ-restricted vaccination with a single immunodominant CTL epitope. Eur J Immunol,1999,29(10): 3295-3301.
    Fanger NA,Voigtlaender D,Liu C,et al. Charaterization of expression, cytokine regulation,and effector function of the high affinity IgG receptor Fc gamma RI(CD64) expressed on human blood dendritic cells. J Immunol,1997, 158(7): 3090-3098.
    Rafiq K,Bergtold A,Clynes R. Immune complex-mediate antigen presentation induces tumor immunity. J Clin Ivest,2002,110(1): 71-79.
    Zitvogel L,Mayordomo JI,Tjandrawan T,et al. Therapy of murine
    
    
    tumors with tumor peptide-pulsed dendritic cells: dependence on T cells,B7 costimulation,and T helper cell 1-associated cytokines. J Exp Med,1996,183(1): 87-97.
    DeMatos P,Abdel-Wahab Z,Vervaert C,et al. Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol. 1998,185(1): 65-74.
    Nair SK,Snyder D,Rouse BT,et al. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer,1997,70(6): 706-715.
    Coveney E,Wheatley GH,Lyerly HK. Active immunization using dendritic cells mixed with tumor cells inhibits the growth of primary breast cancer. Surgery,1997,122(2): 228-234.
    Wang J,Saffold S,Cao X,et al. Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol,1998,161(10): 5516-5524.
    Ashley DM,Faiola B,Nair S,et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med,1997,186(7): 1177-1182.
    Nair SK,Boczkowski D,Morse M,et al. Induction of primary carcinoembryonic antigen(CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol,1998,16(4): 364-369.
    Zhang W,He L,Yuan Z,et al. Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum Gene Ther,1999,10(7): 1151-1161.
    Van Tendeloo VF, Ponsaerts P, Lardon F, et al. Highly efficient gene delivery by mRNA electroporation in human he matopoietic cells: Superiority to lipofection and passive pulsing of mRNA and dendritic
    
    
    cells. Blood,2001,98(1): 49-56.
    Heiser A,Coleman D,Dannull J,et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest,2002,109(3): 409-417.
    Zhou Y,Bosch ML,Salgaller ML. Current methods for loading dendritic cells with tumor antigen the induction of antutumor immunity. J Immunother,2002,25(4): 289-303.
    Pecher G,Haring A,Kaiser L,et al. Mucin gene(MUC1) transfected dendritic cells as vaccine: Results of phaseⅠ/Ⅱclinicaltrial. Cancer Immunol Immunother,2002,51(11-12): 669-673.
    Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med,2001,7(3): 297-303.
    Arthur JF,Butterfield LH,Roth MD,et al. A comparision of gene transfer methods in human dendritic cells. Cancer Gene Ther,1997,4(1): 17-25.
    Ardeshna KM,Pizzey AR,Thomas NS,et al. Monocyte-derived dendritic cells do not proliferate and are not susceptible to retroviral transduction. Br J Haematol,2000,108(4): 817-824.
    Zhong L,Granelli-Piperno A,Choi Y,et al, Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol,1999,29(3): 964-972.
    Zhang WW,Josephs SF,Zhou J,et al. Development and application of a minimal-adenoviral vector system for gene therapy of hemophilia A. Thromb Haemost,1999,82(2): 562-571.
    赵峰,周清华,覃扬,等.突变K-ras基因重组腺病毒的构建.中国肺癌杂志,2002,5(1):14-17.
    Dietz AB,Vuk-Pavlovic S. High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood,1998,91(2): 392-398.
    Brown M,Davies DH,Skinner MA,et al. Antigen gene transfer to
    
    
    cultured human dendritic cells using recombinant avipoxvius vectors. Cancer Gene Ther, 1999,6(3): 238-245.
    Larsson M,Fonteneau JF,Somersan S,et al. Efficiency of cross presentation of vaccina virus-derived antigens by human dendritic cells. Eur J Immunol,2001,31(12): 3432-3442.
    周清华,赵峰,陆燕蓉,等.突变K-ras基因修饰的肺癌树突状细胞疫苗的体内实验研究.中国肺癌杂志,2001,4(6):475-478.
    Yang S,Kittlesen D,Slingluff CL Jr,et al. Dendritic cells infected with a vaccinia vector carrying the human gp100 gene simultaneously present multiple specificities and elicit high-afinity T cells reactive to multiple epitopes and restricted by HLA-A2 and –A3. J Immunol,2000. 164(8): 4204-4211.
    Ishida T,Chada S,Stipanov M,et al. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumor immune responses. Clin Exp Immunol,1999,117(2): 244-251.
    Cao X, Zhang W, Wang J, et al. Therapy of established tumor with a hybrid cellular vaccine generated by using granuocyte-macrophage colony-stimulating factor genetically modified dendritic cells. Immunology,1999,97(4): 616-625.
    Westermann J,Aicher A,Qin Z,et al. Retroviral interleukin-7 gene transfer into human dendritic cells enhances T cell activation. Gene Ther,1998,5(2): 264-271.
    Nishioka Y,Hirao M,Robbins PD,et al. Induction of systemic and therapeutic antirumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res,1999,59(16): 4035-4041.
    Miller PW,Sharma S,Stolina M,et al. Intratumoral administration of adenoviral interleukin-7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther,
    
    
    2000,11(1): 53-65.
    Hsu FJ,Benike C,Fagnoni F,et al. Vaccination of patients with B-cell lymphoma using autologous angtigen-pulsed dendritic cells. Nat Med,1996,2(1): 52-58.
    Zitvogel L,Regnault A,Lozier A,et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med,1998,4(5):594-600.
    Ludewig B,Barchiesi F,Percin M,et al. in vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumor immunity. Vaccine,2001,19(1): 23-32
    Chattergoon MA,Kim JJ,Yang JS,et al. Targeted antigen delivery to antigen-prsenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol,2000,18(9): 974-979.
    Merad M,Sugie T,Engleman EG,et al. In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood,2002,99(5): 1676-1682.
    Tjoa BA,Murphy GP. Development of dendritic cell based prostate cancer vaccine. Immunol Lett,2000,74(1): 87-93.
    Morse MA,Nair S,Fernandez-Casal M,et al. Preoperative mobilization of circulating dendritic cells by Flt3 ligand administration to patients with metastatic colon cancer. J Clin Oncol,2000,18(23): 3883-3893.
    Ranieri E,Kierstead LS,Zarour H,et al. Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest,2000,29(2): 121-125.
    Mule JJ. Tumor vaccine strategies that employ dendritic cells and tumor lysates: experimental and clinical studies. Immunol Invest,2000,29(2): 127-129.
    Kugler A,stuhler G,Walden P,et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med,2000, 6(3): 332-336.
    
    Zhang JK,Li J,Chen HB,et al. Antitumor activities of human dendritic cells derived from periparal and cord blood. World J Gastroenterol,2002,8(1): 87-90.
    Bharahvaj N. Processing and presentation of antigens by dendritic cells: implication for vaccines. Trends Mol Med,2001,71(9): 388-394.
    Terheyden P, Straten P, Brocker EB, Kampgen E, Becker JC. CD40-ligated dendritic cells effectively expand melanoma-specific CD8+ CTL and CD4+ IFN-gamma-producing T cells from tumor-infiltrating lymphocytes. J Immunol Jun. 2000, 164(12): 6 633-6 639.
    Lutz MB,Kukutsch N, Ogilvie AL,et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods, 1999, 223(1): 77-92.
    Gaugler B,van den Eynde B,van der Bruggen P,et al.Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J.Exp. Med, 1994, 179(3): 921-930.
    Chaux P,Luiten R,Demotte N,et al. Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1. J Immunol,1999,163(5):2928-2936.
    Fujie T,Tahara K,Tanaka F,et al. A MAGE-1-encoded HLA-A24-
    inding synthetic peptide induces specific anti-tumorcytotoxic T lymphocytes. Int J Cancer,1999,80(2): 169-172.
    Oiso M,Eura M,Katsura F,et al. A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted cytotoxic T lymphocytes. Int J Cancer,1999,81(3): 387-394.
    Gillesspie AM,Coleman RE. The potential of melanoma antigen expression in cancer therapy[J].Cancer Treatment Reviews,1999,25(4): 219-227.
    Manici S,Sturniolo T,Imro MA,et al. Melanoma cells present a
    
    
    MAGE-3 epitope to CD4+ cytotoxic T cells in association with histocompatibility leukocyte antigen DR11.J Exp Med,1999,189(5):871-876.
    Chaux P,Vantomme V,Stroobant V,et al. Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4+ T lymphocytes. J Exp Med,1999,189(5): 767-778.
    Xu Y,Szoka FC Jr . Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry,1996 ; 35(18): 5616-5623.
    San Kurai F ,Inoue R,Nishino Y,et al. Effect of DNA/Liposome mixing ratio on the physicochemical characteristics ,cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression. Controlled Release,2000; 66(2-3): 255-269.
    Caplen NJ,Alton EW,Middleton PG,et al. Liposome-mediated CFTR gene transfer to the nasal epithelium ofpatients with cystic fibrosis. Nat Med,1995, 1(39): 272-284.
    Qin Z, Blankenstein T. CD4+T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity Jun, 2000, 12(6): 677-688.
    Fernandez NC, Loxier A, Flament C, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor or immune responses in vivo. Nat Med Apr, 1999, 5(4): 405-411.
    van der Bruggen P,Traversari C,Chomez P,et al. A Gene encoding an antigen recognize by cytolytic T lymphocytes on a human melanoma. Science,1991,254: 1643-1647.
    Karin Ohman Forslund,Katarina Nordqvist. The melanoma antigen genes-Any clues to their functions in normal tissues. Exp Cell Res, 2001,265(2): 185-194.
    
    Kawano Y,Sasaki M,Nakahira K,et al. Structural characterization and chromosomal localization of the MAGE-E1 gene. Gene,2001,277(1-2): 129-137.
    Itoh K,Hayashi A,Nakao M.,et al. Human tumor rejection antigens MAGE. J Biochem Tokyo,1996,119(3): 385-390.
    Desmet C,Lurquin C,Lethe B,et al. DNA methylation is the primary silencing mechanism for a set of germ line-and tumor specific genes with a CpG-rich promoter. Mol Cell Biol, 1999,19(11): 7327-7335.
    Lucas S, De Smet C, Arden KC, et al. Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res,1998,58(4): 743-752.
    Gaugler B,Vanden Eynde B,Vander Bruggen P,et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic Tlymphocytes. Exp Med,1994,179(3): 921-930.
    Gillespie AM,Coleman RE. The potential of melanoma antigen expression in cancer therapy. Cancer Treat Rev,1999,25(4): 219-227.
    Taback B,Chan AD,Kuoct,et al. Detection of occult metastatic breast cancer cells in blood by a multimolecular marker assay: correlation with clinical stage of disease. Cancer Res,2001,61(24): 8845-8850.
    Kufer P,Zippelius A,Lutterbuse R,et al. Heterogeous expression of MAGE-A genes in occult disseminated tumor cells: a novel multimarker reverse transcription-polymerase chain reaction for diagnosis of micrometastatic disease. Cancer Res,2002,62(1): 251-261.
    MouDCs,CaiSL,PengJR,et al. Evaluation of MAGE-1 and MAGE-3 as tumor-specific markers to detect blood dissemination of hepatocllular carcinoma cells. Br J Cancer,2002,86(1): 110-116.
    Salgaller ML,WeberJS,KoeningS,et al. Generation of specific anti-melanoma reactivity by stimulation of human tumor-infiltrating lymphocytes with MAGE-1 synthetic peptide. Cancer Immunol
    
    
    Immunother,1994,39(2): 105-116.
    Visseren MJ,Vander BurgSH,VanderVoort EI,et al. Identification of HLA-A0201-restricted CTL epitopes encoded by the tumor-specfic MAGE-2 gene product. Int J Cancer,1997,73(1): 125-130.
    Schultz ES,Zhang Y,Knoules R,et al. A MAGE-3 peptide recognized on HLA-B35 and HLA-A1 by cytolytic T lymphocytes. Tissue Antigens,2001,57(2): 103-109.
    Schultz ES, Chapiro J. Lurquin C, et al. The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J Exp Med,2002,195(4): 391-399.
    Duffour MT,Chaux P,Lurquin C,et al. AMAGE-A4 peptide presented by HLA-A2 is recognized by cytolytic T lymphocytes. Eur J Immunol,1999,29(10): 3329-3337.
    Huang LQ,Brasseur F,Serrano A,et al. Cytolytic T lymphocytes recognize an antigen encoded by MAGE-A10 on a human melanoma. J Immunol, 1999, 162(11): 6849-6854.
    Reynolds SR,Oratz R,Shapiro RL,et al. Stimulation of CD8 T cell responses to MAGE-3 and Melan A/MART-1 by immunization to a polyvalent melanoma vaccine. Int J Can cer,1997,72(6): 972-976.
    Vanpel A,Deplaen E,duffour MT,et al. Induction of cytolytic T lymphocytes by immunizatio of mice with an adnovirus containing a mouse bomolog of the human MAGE-A genes. Cancer Immunol Immunother,2001,49(11): 593-602.
    Andersen MH,Kerkavoussi P,Brocker EB,et al. Induction of systemic CTL responses in melanoma patients by dendritic cell vaccination: cessation of CTL responses is associated with disease progression. Int J Cancer,2001,94(6): 820-824.
    Marchand M,van Baren N,Weynants P,et al. Tumor regressions observed in patients with metastatic melanoma treaed with an antigenic
    
    
    peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer,1999,80(2): 219-230.
    Coulie PG,Karanikas V,Colau D,et al. A monoclonal cytolytic T-lymphocyte response observed in melanoma patient vaccined with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci USA,2001,98(18): 10290-10 295.
    Sun X, Hodge LM,Jones HP,et al. Co-expression of gramulocyte
    -macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine,2002,20(9-10): 1466-1474.
    Tanzarella S,Russo V,Lionello I,et al. Identification of a promiscuous T-cell epitope encoded by multiple members of the MAGE family. Cancer Res, 1999,59(11): 2668-2674.
    Serrano A,Tanzarella S,Lionello I,et al. Repression of HLA classⅠantigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2-deoxycytidine treatment. Int J Cancer,2001,94(2): 243-251.
    Russo V,Tanzarella S,Dalerba P,et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a classⅠ-restricted T cell response. Proc Natl Acad SciUSA,2000,97(5): 2185-2190.
    127. Lanzavecchia A,Sallusto F. Regulation of cell immunity by dendritic cells. Cell,2001,106(3): 263-266.
    128 Morse MA,Mosca PJ,Clay TM,et al. Dendritic cell maturation in active immunotherapy strategies. Expert Opin Biol Ther,2002,2(1): 35-43.
    129 古涛,朱一蓓,李敏,等.肿瘤细胞冻融裂解物上清对凋亡细胞负
     载的树突状细胞生物学特性的作用研究[J].中国病理生理杂志,2003,19(3):301-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700