基于信号放大核酸适配体和G-四链体探针的生化分析新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器具有灵敏度高、操作简便、选择性好、分析速度快、检测成本低等特点,在生化分析、环境监测、临床诊断和药物筛选领域有着广阔的应用前景。同时,由于核酸具有合成容易、稳定性好、设计简单、生物相容性好、信号机制灵活等诸多优势,它是构建生物传感器的重要素材。另外,它还可以借助各种信号放大方法实现对目标物高效快速的高灵敏度检测。本论文借助核酸适配体、分子信标、G-四链体、金纳米粒子和脱氧核酶的优良的特性和全新的设计思路,依据不同的分析物的检测建立了各种高效的检测方法。和传统的检测方法相比,本论文所建立的检测方法具有灵敏度高、操作简便、分析成本低廉的特点,这为生物传感技术的快速发展提供了一定程度的借鉴意义。
     免疫球蛋白E (IgE)的测定在过敏性鼻炎和过敏性哮喘等相关疾病的临床诊断中具有重要作用。在第2章中,搭建了基于电子通道开关核酸适配体电化学传感器用于IgE的检测。在该传感检测中,免疫球蛋白E绑定到核酸适配体上导致覆盖碱性磷酸酶(ALP)。同时,由于IgE是非传导性介质,使得ALP不能催化1-萘基磷酸酯水解产物-萘酚生成电活性物质。因此,IgE与核酸适配体结合阻碍电子转移,导致电流强度下降。该电化学传感器的信号产生不依赖于核酸适配体探针的构象变化,它克服传统的电化学核酸适配体传感器遇到的困难。并且该方法具有较高的灵敏度,其检测下限达至4.44×10-6μg·mL-1(22.7fM)。在复杂环境中,该检测方法同样表现出了良好的分析性能,血清样品中的回收实验结果令人满意。
     赭曲霉素A(OTA)是对人类和动物的健康有极大危害的元素,包括肾脏损害、致畸性、致癌性、细胞毒性和遗传毒性等。第3章中,针对核酸适配体电化学传感器检测小分子性能有待提高的情况,将核酸适配体序列在恰当的部位剪切成两段,构建电信号增强型核酸适配体传感探针。该方法灵敏度较高、选择性好、操作简单和低成本,同时为基于核酸适配体探针检测其它生物分子提供了一条有效的途径。
     三磷酸腺苷(ATP)是生物体内细胞一切生命活动所需能量的直接来源,参与体内脂肪、糖、蛋白质和核苷酸的合成。迅速而准确地检测ATP,对于研究生物体的新陈代谢过程和疾病的临床诊断等方面都有非常重要的意义。第4章中,以ATP为模型分析物,将ATP核酸适配体剪切成合适的两部分,同时结合杂交连锁反应(hybridization chain reaction,HCR)信号放大技术,构建了一种基于核酸适配体-HCR的电化学传感器用于ATP的检测。两条剪切的核酸适配体片段中的一条巯基标记,另一条核酸适配体片段延长核苷酸序列,且延长的核酸序列能引发后续的HCR,从而使得大量的碱性磷酸酶通过生物素-亲和素作用存在于电极表面,实现对ATP的高灵敏检测,其检测下限为0.2nM。
     较多文献指出传统的分离式信号读出方式在链置换扩增信号放大检测方法中存在“信号耗损”现象。针对该现象我们提出了一种集成式信号读出生化分析传感技术。第5章中,在同一条核酸序列上将信号传导探针与目标识别探针通过适当的剪切而揉和成一体,同时借助核酸外切酶Ⅲ信号放大方式,提高了G-四链体-血红素脱氧核酶催化H2O2氧化2,2'-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)检测p53基因的效率,实现对p53基因定量比色分析。把G-四链体核酶的核苷酸序列与目标识别序列揉和成一体,并且设计成分子信标,这种模式具有极大的优越性。此外,分子信标对G-四链体的形成有协助功能,该方案目标物响应信号的生成更快,检测范围更宽,检测灵敏度更好,其检测下限达到1pM。第6章中,同样基于集成式信号读出方式,当检测物p53基因与未形成G-四链体的分子信标杂交时,富G碱基序列被释放,生成G-四链体,同时形成新的分子信标,使得聚合酶链置换扩增反应发生,生成大量的G-四链体-血红素脱氧核酶催化H202氧化ABTS,完成对p53基因超灵敏检测,其检测下限达到25fM。
     第7章中,基于纳米金团聚策略,提出了一种G-四链体为传导媒介可视化分析方法用于肿瘤突变p53基因测定。在该比色传感器中,与靶DNA的杂交使得富G碱基发夹结构的核酸链被强制打开,促进高级结构的同向平行G-四链体的形成。由于设计的巧妙,导致生成一维或多维的G-四链体分子器件。当捕获探针修饰的金纳米颗粒加入时,由于捕获探针DNA与G-四链体的末端DNA片段杂交,从而使得金纳米颗粒彼此靠近而发生团聚现象。本论文提出的比色传感器不仅能提供纳摩尔水平的检测能力,也可以可视化判断突变的p53基因。所建立的检测方法为肿瘤相关的临床检测、药物筛选和DNA分子器件设计提供了潜在的应用价值。
Biosensors have wide application in biochemical analysis, environmental monitoring, clinical diagnostics and drug screening, because of their high sensitivity, easy operation, excellent selectivity, short analysis time and low-cost. Meanwhile, with the advantages of easy to synthesize, good stability, simple design, good biocompatibility, flexibility and signaling mechanisms, nucleic acid has important significance in the construction of biosensors. In addition, biosensors can realize the detection of targets rapidly, efficiently and high sensitively depending on a variety of signal amplification methods. In this thesis, using excellent features of aptamers, molecular beacons, G-quadruplex, gold nanoparticles and deoxyribozymes, new design ideas have been deconstructed for detection of different analysis objects. Compared with the traditional detection methods, the proposed detection methods are highly sensitive, easy to operate, low cost, and high speed of analysis.
     Immunoglobulin E (IgE) detection of allergic rhinitis, allergic asthma and other related diseases is important in clinical diagnosis. In chapter2, an electronic channel switching-based (ECS) aptasensor was developed for ultra-sensitive protein detection. In the detection mechanism of sensor, the hairpin structure of aptamer was designed to pull electroactive species towards electrode surface and use the surface-immobilized IgE to serve as a barrier that separated enzyme from its substrate. As a result, the IgE binding to the aptamer has been shown capable of causing the decrease in peak current intensity. In the presence of target IgE, the aptamer could specifically "capture" its taget ligand that served as separator between ALP and1-NP, inhibiting the enzymatic reaction. Moreover, the formation of dielectric layer of IgE could impede the subsequent oxidation of naphthol. For this biosensor, the achievement of electrochemical signal did not depend on the conformational change of aptamer probe, and no other oligonucleotide probes were involved, these features can overcome the difficulties encountered by the conventional electrochemical aptasensors. The method had high sensitivity, the detection limit reached4.44×10-6μg·mL-1(22.7fM). It also exhibited good recoveries in diluted serum samples.
     Ochratoxin A (OTA) is a hazard element for human and animal health, including nephrotoxicity, teratogenicity, carcinogenicity, cytotoxicity, genotoxicity and so on. In chapter3, combination of the high specificity of aptamer, using OTA as a model analyte, an electrochemical biological detection method was designed based on the reconstructive aptamer platform. Two parts of split aptamer can specifically recognize adenosine together, alkaline phosphatase (ALP) could then stained in the electrode by affinity of biotin and avidin. ALP plays enzymatic role which enzymatic conversion of1-Naphthyl phosphate (1-NP) into an electroactive naphthol, leading to the electrochemical signal generation. This method possesses high sensitivity, good selectivity and simplicity in operation. It also provides an efficient way for the detection of other biomolecules using the methods of cleft aptamers.
     Adenosine triphosphate (ATP) is the direct source of energy with which all biological cells in vivo participate in the life activities, including the synthesis of adipose, sugar, protein and nucleotide synthesis. Detecting ATP rapidly and accurately has very important significance in researching metabolic processes and clinical diagnosis. In chapter4, using ATP as the model analyte, aptamer is split into two parts. Simultaneously, hybridization chain reaction (HCR) is combined with the above platform to accomplish the goal of signal amplification technology. It can be said that the procedure is easy. Aptamer is split two fragments, with one part to mark with mercapto and other part to extend with bases. Lots of ALP attached the electrode for HCR which contribute to high sensitivity for ATP detection, and the detection limit of0.2nM.
     Literature reports demonstrate that there is a "signal misreading" behavior in existing machines where the target recognition process and signal transduction is separated from each other. In chapter5, we established an integrated signal transduction-based autonomous machine, in which the recognition element and signal reporter are integrated into the same DNA strand. This new biosensing machine can execute the amplification of target-induced signal. Using exonuclease III to execute signal amplification method, which generated a large number of G-quadruplex-heme as catalyzer in the system of H2O2and ABTS. The machine was employed to detect the p53gene in a more ascendant fashion, and improved assay characteristics are achieved, including dynamic response range and sensitivity. The proposed strategy is also selective and sensitive with a detection limit of1pM. However, we hope that the proposed platform of the p53gene detection is more sensitive. Thus, in chapter6, strand displacement amplification (SDA) was executed signal amplification based on the integrated signal readout mode. The present strategy is highly selective, possessing wide dynamic range and sensitive for p53gene detection with a detection limit of25fM. Moreover, the evaluation of p53gene using this colorimetric method was also successfully demonstrated.
     In chapter7, multidimensional devices of G-rich oligonucleotides were designed and applied in gold nanoparticle aggregation-based colorimetric sensor for cancer diagnosis. When p53genes hybridize with molecular beacons embedded G-rich strand, multidimensional devices of G-quadruplex form for particular DNA. Simultaneously, when multidimensional devices were added in solution, it happened aggregation of gold nanoparticles (AuNPs) modified with capture probe. And the colorimetric system exhibited an obvious red-to-purple color change within10-min hybridization. The colorimetric sensor can not only provide nanomolar level of detection capability but also visualize the mutant p53gene. The method provides potential application for the detection of tumor clinical diagnosis, drug screening and DNA nanodevice design.
引文
[1]Naylor S. Genomic and proteomic sample preparation:higher throughput solutions.26-27th April,2004, World Trade Center, Boston, MA, USA. Expert review of proteomics,2004,1(1):11-6
    [2]陈玲.生物传感器的研究进展综述.传感器与微系统,2006,25(9):4-7
    [3]张先恩,生物传感技术原理与应用.长春:吉林科学技术出版社:1990;pp6-8.
    [4]田昭武,苏文煅.电化学基础研究的进展.电化学,1995,1(4):375-383
    [5]马丽,白燕,刘仲明.电化学DNA传感器研究进展.传感器技术,2002,21(3):58-64
    [6]邹小勇,陈汇勇,李荫.电化学DNA传感器的研制及其医学应用.分析测试学报,2005,24(1):123-128
    [7]王锋,樊先平,王民权.光学生物传感器的研究进展.材料导报,2004,18(7):1-4
    [8]Fan X, White I M, Shopova S I, et al. Sensitive optical biosensors for unlabeled targets:A review. Analytica Chimica Acta,2008,620(1-2):8-26
    [9]Jhaveri S D, Kirby R, Conrad R, et al. Designed Signaling Aptamers that Transduce Molecular Recognition to Changes in Fluorescence Intensity. Journal of the American Chemical Society,2000,122(11):2469-2473
    [10]Potyrailo R A, Conrad R C, Ellington A D, et al. Adapting Selected Nucleic Acid Ligands (Aptamers) to Biosensors. Analytical Chemistry,1998,70(16): 3419-3425
    [11]Pavlov V, Xiao Y, Gill R, et al. Amplified Chemiluminescence Surface Detection of DNA and Telomerase Activity Using Catalytic Nucleic Acid Labels. Analytical Chemistry,2004,76(7):2152-2156
    [12]Cao Y W C, Jin R, Mirkin C A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science,2002,297(5586): 1536-1540
    [13]Scarano S, Ermini M L, Spiriti M M, et al. Simultaneous Detection of Transgenic DNA by Surface Plasmon Resonance Imaging with Potential Application to Gene Doping Detection. Analytical Chemistry,2011,83(16): 6245-6253
    [14]Leary J J, Brigati D J, Ward D C. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose:Bio-blots. Proceedings of the National Academy of Sciences of the United States of America,1983,80(13): 4045-4049
    [15]Lee J S, Han M S, Mirkin C A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angewandte Chemie,2007,119(22):4171-4174
    [16]Biju V, Itoh T, Anas A, et al. Semiconductor quantum dots and metal nanoparticles:syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry,2008,391(7):2469-2495
    [17]Zeng S, Yong K T, Roy I, et al. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics,2011,6(3):491-506
    [18]Faulk W P, Taylor G M. An immunocolloid method for the electron microscope. Immunochemistry,1971,8(11):1081-1083
    [19]Saha K, Agasti S S, Kim C, et al. Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews,2012,112(5):2739-2779
    [20]Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications:recent advances and perspectives. Chemical Society Reviews,2012,41(6):2256-2282
    [21]Jain P K, Lee K S, El-Sayed I H, et al. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B,2006,110(14):7238-7248
    [22]Lisa M, Chouhan R S, Vinayaka A C, et al. Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane:An organochlorine pesticide. Biosensors and Bioelectronics,2009,25(1):224-227
    [23]Glynou K, Ioannou P C, Christopoulos T K, et al. Oligonucleotide-Functi onalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for DNA Analysis by Hybridization. Analytical Chemistry,2003,75(16): 4155-4160
    [24]Liu G, Mao X, Phillips J A, et al. Aptamer-Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells. Analytical Chemistry,2009,81(24): 10013-10018
    [25]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detection of Thrombin. Journal of the American Chemical Society,2004,126(38):11768-11769
    [26]Zayats M, Baron R, Popov I, et al. Biocatalytic Growth of Au Nanoparticles: From Mechanistic Aspects to Biosensors Design. Nano Letters,2004,5(1): 21-25
    [27]Baron R, Zayats M, Willner I. Dopamine-,1-DOPA-, Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles:Assays for the Detection of Neurotransmitters and of Tyrosinase Activity. Analytical Chemistry,2005, 77(6):1566-1571
    [28]Zhao W, Brook M A, Li Y. Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays. ChemBioChem,2008,9(15):2363-2371
    [29]Song Y, Wei W, Qu X. Colorimetric Biosensing Using Smart Materials. Advanced Materials,2011,23(37):4215-4236
    [30]Leuvering J H W, Thal P J H M, Van der Waart M, et al. A sol particle agglutination assay for human chorionic gonadotrophin. Journal of Immunological Methods,1981,45(2):183-194
    [31]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996, 382(6592):607-609
    [32]Storhoff J J, Elghanian R, Mucic R C, et al. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. Journal of the American Chemical Society,1998,120(9): 1959-1964
    [33]Li J, Chu X, Liu Y, et al. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Research,2005,33(19):e168
    [34]Li J, Deng T, Chu X, et al. Rolling Circle Amplification Combined with Gold Nanoparticle Aggregates for Highly Sensitive Identification of Single-Nucleotide Polymorphisms. Analytical Chemistry,2010,82(7): 2811-2816
    [35]Song G, Chen C, Ren J, et al. A Simple, Universal Colorimetric Assay for Endonuclease/Methyltransferase Activity and Inhibition Based on an Enzyme-Responsive Nanoparticle System. ACS Nano,2009,3(5):1183-1189
    [36]Wang Z, Levy R, Fernig D G, et al. Kinase-Catalyzed Modification of Gold Nanoparticles:A New Approach to Colorimetric Kinase Activity Screening. Journal of the American Chemical Society,2006,128(7):2214-2215
    [37]Bera R K, Anoop A, Raj C R. Enzyme-free colorimetric assay of serum uric acid. Chemical Communications,2011,47(41):11498-11500
    [38]Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(39):14036-14039
    [39]Xin A, Dong Q, Xiong C, et al. Colorimetric recognition of DNA intercalators with unmodified gold nanoparticles. Chemical Communications,2009, (13): 1658-1660
    [40]Shen Q, Nie Z, Guo M, et al. Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator. Chemical Communications,2009, (8):929-931
    [41]Du J, Shao Q, Yin S, et al. Colorimetric Chemodosimeter Based on Diazonium-Gold-Nanoparticle Complexes for Sulfite Ion Detection in Solution. Small,2012,8(22):3412-3416
    [42]Xu X, Han M S, Mirkin C A. A Gold-Nanoparticle-Based Real-Time Colorimetric Screening Method for Endonuclease Activity and Inhibition. Angewandte Chemie,2007,119(19):3538-3540
    [43]Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles:Radiative and Nonradiative Effects. Physical Review Letters,2002,89(20):203002
    [44]Maxwell D J, Taylor J R, Nie S. Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules. Journal of the American Chemical Society,2002,124(32):9606-9612
    [45]Song S, Liang Z, Zhang J, et al. Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. Angewandte Chemie International Edition,2009,48(46):8670-8674
    [46]Seferos D S, Giljohann D A, Hill H D, et al. Nano-Flares:Probes for Transfection and mRNA Detection in Living Cells. Journal of the American Chemical Society,2007,129(50):15477-15479
    [47]Zheng D, Seferos D S, Giljohann D A, et al. Aptamer Nano-flares for Molecular Detection in Living Cells. Nano Letters,2009,9(9):3258-3261
    [48]Wang L, Yan R, Huo Z, et al. Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles. Angewandte Chemie International Edition,2005,44(37):6054-6057
    [49]Lyon L A, Musick M D, Natan M J. Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing. Analytical Chemistry,1998,70(24):5177-5183
    [50]He L, Musick M D, Nicewarner S R, et al. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Journal of the American Chemical Society,2000,122(38):9071-9077
    [51]Xia Y, Gao P, Qiu X, et al. Aptasensor based on triplex switch for SERS detection of cytochrome c. Analyst,2012,137(24):5705-5709
    [52]Wang G, Lipert R J, Jain M, et al. Detection of the Potential Pancreatic Cancer Marker MUC4 in Serum Using Surface-Enhanced Raman Scattering. Analytical Chemistry,2011,83(7):2554-2561
    [53]Wang Y, Zhang C H, Tang L J, et al. Enzymatic Control of Plasmonic Coupling and Surface Enhanced Raman Scattering Transduction for Sensitive Detection of DNA Demethylation. Analytical Chemistry,2012,84(20):8602-8606
    [54]Tang H, Chen J, Nie L, et al. A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film. Biosensors and Bioelectronics,2007,22(6): 1061-1067
    [55]Li B, Wang Y, Wei H, et al. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosensors and Bioelectronics,2008,23(7):965-970
    [56]Kong R M, Zhang X B, Zhang L L, et al. An ultrasensitive electrochemical "turn-on" label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier. Chemical Communications,2009, (37):5633-5635
    [57]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules. Angewandte Chemie (International ed. in English),2009,48(26): 4785-4787
    [58]Song Y, Qu K, Zhao C, et al. Graphene Oxide:Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Advanced Materials,2010, 22(19):2206-2210
    [59]Skrabalak S E, Au L, Lu X, et al. Gold nanocages for cancer detection and treatment. Nanomedicine,2007,2(5):657-668
    [60]Xie J, Zheng Y, Ying J Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. Journal of the American Chemical Society,2009,131(3): 888-889
    [61]Tao Y, Lin Y, Ren J, et al. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Aunanoclusters. Biosensors and Bioelectronics,2013,42:41-46
    [62]Petty J T, Zheng J, Hud N V, et al. DNA-Templated Ag Nanocluster Formation. Journal of the American Chemical Society,2004,126(16):5207-5212
    [63]Li J, Zhong X, Zhang H, et al. Binding-Induced Fluorescence Turn-On Assay Using Aptamer-Functionalized Silver Nanocluster DNA Probes. Analytical Chemistry,2012,84(12):5170-5174
    [64]Hu L, Yuan Y, Zhang L, et al. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Analytica Chimica Acta,2013, 762:83-86
    [65]Rotaru A, Dutta S, Jentzsch E, et al. Selective dsDNA-Templated Formation of Copper Nanoparticles in Solution. Angewandte Chemie International Edition, 2010,49(33):5665-5667
    [66]Tanaka S I, Miyazaki J, Tiwari D K, et al. Fluorescent Platinum Nanoclusters: Synthesis, Purification, Characterization, and Application to Bioimaging. Angewandte Chemie International Edition,2011,50(2):431-435
    [67]Kuang H, Zhao Y, Ma W, et al. Recent developments in analytical applications of quantum dots. TrAC Trends in Analytical Chemistry,2011,30(10): 1620-1636
    [68]Bonacchi S, Genovese D, Juris R, et al. Luminescent Silica Nanoparticles: Extending the Frontiers of Brightness. Angewandte Chemie International Edition,2011,50(18):4056-4066
    [69]Yang R, Jin J, Chen Y, et al. Carbon Nanotube-Quenched Fluorescent Oligonucleotides:Probes that Fluoresce upon Hybridization. Journal of the American Chemical Society,2008,130(26):8351-8358
    [70]Li P H, Lin J Y, Chen C T, et al. Using Gold Nanoclusters As Selective Luminescent Probes for Phosphate-Containing Metabolites. Analytical Chemistry,2012,84(13):5484-5488
    [71]Liu Y Q, Zhang M, Yin B C, et al. Attomolar Ultrasensitive MicroRNA Detection by DNA-Scaffolded Silver-Nanocluster Probe Based on Isothermal Amplification. Analytical Chemistry,2012,84(12):5165-5169
    [72]Medintz I L, Clapp A R, Brunel F M, et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater,2006,5(7):581-589
    [73]Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA Detection Using Highly Fluorescent Bioconjugated Nanoparticles. Journal of the American Chemical Society,2003,125(38):11474-11475
    [74]Song Y, Wang X, Zhao C, et al. Label-Free Colorimetric Detection of Single Nucleotide Polymorphism by Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-Like Activity. Chemistry - A European Journal,2010,16(12): 3617-3621
    [75]Jiang Y, Zhu C, Ling L, et al. Specific Aptamer-Protein Interaction Studied by Atomic Force Microscopy. Analytical Chemistry,2003,75(9):2112-2116
    [76]White R R, Sullenger B A, Rusconi C P. Developing aptamers into therapeutics. The Journal of Clinical Investigation,2000,106(8):929-934
    [77]Clark S L, Remcho V T. Aptamers as analytical reagents. Electrophoresis,2002, 23(9):1335-1340
    [78]Liss M, Petersen B, Wolf H, et al. An Aptamer-Based Quartz Crystal Protein Biosensor. Analytical Chemistry,2002,74(17):4488-4495
    [79]Hwang K S, Lee S M, Eom K, et al. Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase. Biosensors and Bioelectronics,2007, 23(4):459-465
    [80]Jung A, Gronewold T M A, Tewes M, et al. Biofunctional structural design of SAW sensor chip surfaces in a microfluidic sensor system. Sensors and Actuators B:Chemical,2007,124(1):46-52
    [81]Luzi E, Minunni M, Tombelli S, et al. New trends in affinity sensing:aptamers for ligand binding. TrAC Trends in Analytical Chemistry,2003,22(11): 810-818
    [82]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society,1993,115(19): 8706-8715
    [83]Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science,1996,271(5251):933-937
    [84]Levy M, Cater S F, Ellington A D. Quantum-Dot Aptamer Beacons for the Detection of Proteins. ChemBioChem,2005,6(12):2163-2166
    [85]Hamaguchi N, Ellington A, Stanton M. Aptamer Beacons for the Direct Detection of Proteins. Analytical Biochemistry,2001,294(2):126-131
    [86]Li J J, Fang X, Tan W. Molecular Aptamer Beacons for Real-Time Protein Recognition. Biochemical and Biophysical Research Communications,2002, 292(1):31-40
    [87]Ho H A, Leclerc M. Optical Sensors Based on Hybrid Aptamer/Conjugated Polymer Complexes. Journal of the American Chemical Society,2004,126(5): 1384-1387
    [88]Wang J, Jiang Y, Zhou C, et al. Aptamer-Based ATP Assay Using a Luminescent Light Switching Complex. Analytical Chemistry,2005,77(11): 3542-3546
    [89]Li B, Qin C, Li T, et al. Flourescent Switch Constructed Based on Hemin-Sensitive Anionic Conjugated Polymer and Its Applications in DNA-Related Sensors. Analytical Chemistry,2009,81(9):3544-3550
    [90]Xu W, Lu Y. Label-Free Fluorescent Aptamer Sensor Based on Regulation of Malachite Green Fluorescence. Analytical Chemistry,2009,82(2):574-578
    [91]Zhang X, Li Y, Su H, et al. Highly sensitive and selective detection of Hg2+ using mismatched DNA and a molecular light switch complex in aqueous solution. Biosensors and Bioelectronics,2010,25(6):1338-1343
    [92]Stojanovic M N, Landry D W. Aptamer-Based Colorimetric Probe for Cocaine. Journal of the American Chemical Society,2002,124(33):9678-9679
    [93]Huang C C, Huang Y F, Cao Z, et al. Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors. Analytical Chemistry,2005,77(17):5735-5741
    [94]Radi A E, Acero Sanchez J L, Baldrich E, et al. Reagentless, Reusable, Ultrasensitive Electrochemical Molecular Beacon Aptasensor. Journal of the American Chemical Society,2005,128(1):117-124
    [95]Golub E, Pelossof G, Freeman R, et al. Electrochemical, Photoelectrochemical, and Surface Plasmon Resonance Detection of Cocaine Using Supramolecular Aptamer Complexes and Metallic or Semiconductor Nanoparticles. Analytical Chemistry,2009,81(22):9291-9298
    [96]Mir M, Vreeke M, Katakis I. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications,2006,8(3):505-511
    [97]Li X, Shen L, Zhang D, et al. Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions. Biosensors and Bioelectronics,2008,23(11):1624-1630
    [98]Zhang S, Xia J, Li X. Electrochemical Biosensor for Detection of Adenosine Based on Structure-Switching Aptamer and Amplification with Reporter Probe DNA Modified Au Nanoparticles. Analytical Chemistry,2008,80(22): 8382-8388
    [99]Le Floch F, Ho H A, Leclerc M. Label-Free Electrochemical Detection of Protein Based on a Ferrocene-Bearing Cationic Polythiophene and Aptamer. Analytical Chemistry,2006,78(13):4727-4731
    [100]Bini A, Minunni M, Tombelli S, et al. Analytical Performances of Aptamer-Based Sensing for Thrombin Detection. Analytical Chemistry,2007, 79(7):3016-3019
    [101]Hu J, Zheng P C, Jiang J H, et al. Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry,2008,81(1):87-93
    [102]McClintock B. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics,1941,26(2):234-282
    [103]Gellert M, Lipsett M N, Davies D R. Helix formation by guanylic acid. Proceedings of the National Academy of Sciences of the United States of America,1962,48:2013-2018
    [104]Zahler A M, Williamson J R, Cech T R, et al. Inhibition of telomerase by G-quartet DMA structures. Nature,1991,350(6320):718-720
    [105]Forman S L, Fettinger J C, Pieraccini S, et al. Toward Artificial Ion Channels: A Lipophilic G-Quadruplex. Journal of the American Chemical Society,2000, 122(17):4060-4067
    [106]Burge S, Parkinson G N, Hazel P, et al. Quadruplex DNA:sequence, topology and structure. Nucleic Acids Research,2006,34(19):5402-5415
    [107]Laughlan G, Murchie A, Norman D, et al. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science,1994,265(5171):520-524
    [108]Henderson E, Hardin C C, Walk S K, et al. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell,1987,51(6):899-908
    [109]Zhu H, Lewis F D. Pyrene Excimer Fluorescence as a Probe for Parallel G-Quadruplex Formation. Bioconjugate Chemistry,2007,18(4):1213-1217
    [110]Smith F W. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature,1992,356(6365):164-168
    [111]Parkinson G N, Lee M P H, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature,2002,417(6891):876-880
    [112]Phillips K, Dauter Z, Murchie A I H, et al. The crystal structure of a parallel-stranded guanine tetraplex at 0.95A resolution. Journal of Molecular Biology,1997,273(1):171-182
    [113]Neidle S. The structures of quadruplex nucleic acids and their drug complexes. Current Opinion in Structural Biology,2009,19(3):239-250
    [114]Kang C, Zhang X, Ratliff R, et al. Crystal structure of four-stranded Oxytricha telomeric DNA. Nature,1992,356(6365):126-131
    [115]Monchaud D, Teulade-Fichou M-P. A hitchhiker's guide to G-quadruplex ligands. Organic & Biomolecular Chemistry,2008,6(4):627-636
    [116]Kettani A, Gorin A, Majumdar A, et al. A dimeric DNA interface stabilized by stacked A · (G · G · G · G) · A hexads and coordinated monovalent cations. Journal of Molecular Biology,2000,297(3):627-644
    [117]Smirnov I V, Shafer R H. Electrostatics dominate quadruplex stability. Biopolymers,2007,85(1):91-101
    [118]Guedin A, Alberti P, Mergny J-L. Stability of intramolecular quadruplexes: sequence effects in the central loop. Nucleic Acids Research,2009,37(16): 5559-5567
    [119]Rachwal P A, Findlow I S, Werner J M, et al. Intramolecular DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids Research,2007,35(12):4214-4222
    [120]Wang Y, Patel D J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure,1993,1(4):263-282
    [121]Ambrus A, Chen D, Dai J, et al. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Research, 2006,34(9):2723-2735
    [122]Haider S M, Parkinson G N, Neidle S. Structure of a G-quadruplex-Ligand Complex. Journal of Molecular Biology,2003,326(1):117-125
    [123]Miyoshi D, Nakao A, Sugimoto N. Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca+. Nucleic Acids Research, 2003,31(4):1156-1163
    [124]Miyoshi D, Nakao A, Sugimoto N. Molecular Crowding Regulates the Structural Switch of the DNA G-Quadruplexf. Biochemistry,2002,41(50): 15017-15024
    [125]Sun D, Thompson B, Cathers B E, et al. Inhibition of Human Telomerase by a G-Quadruplex-Interactive Compound. Journal of Medicinal Chemistry,1997, 40(14):2113-2116
    [126]Ou T M, Lu Y J Tan J H, et al. G-Quadruplexes:Targets in Anticancer Drug Design. ChemMedChem,2008,3(5):690-713
    [127]Perry P J, Read M A, Davies R T, et al.2,7-Disubstituted Amidofluorenone Derivatives as Inhibitors of Human Telomerase. Journal of Medicinal Chemistry,1999,42(14):2679-2684
    [128]Han H, Langley D R, Rangan A, et al. Selective Interactions of Cationic Porphyrins with G-Quadruplex Structures. Journal of the American Chemical Society,2001,123(37):8902-8913
    [129]Read M, Harrison R J, Romagnoli B, et al. Structure-based design of selective and potent G-quadruplex-mediated telomerase inhibitors. Proceedings of the National Academy of Sciences,2001,98(9):4844-4849
    [130]Han H, Cliff C L, Hurley L H. Accelerated Assembly of G-Quadruplex Structures by a Small Molecule. Biochemistry,1999,38(22):6981-6986
    [131]Jantos K, Rodriguez R, Ladame S, et al. Oxazole-Based Peptide Macrocycles: A New Class of G-Quadruplex Binding Ligands. Journal of the American Chemical Society,2006,128(42):13662-13663
    [132]Rossetti L, Franceschin M, Bianco A, et al. Perylene diimides with different side chains are selective in inducing different G-Quadruplex DNA structures and in inhibiting telomerase. Bioorganic & Medicinal Chemistry Letters,2002, 12(18):2527-2533
    [133]Izbicka E, Wheelhouse R T, Raymond E, et al. Effects of Cationic Porphyrins as G-Quadruplex Interactive Agents in Human Tumor Cells. Cancer Research, 1999,59(3):639-644
    [134]Rezler E M, Seenisamy J, Bashyam S, et al. Telomestatin and Diseleno Sapphyrin Bind Selectively to Two Different Forms of the Human Telomeric G-Quadruplex Structure. Journal of the American Chemical Society,2005, 127(26):9439-9447
    [135]Wang H, Chen T, Wu S, et al. A novel biosensing strategy for screening G-quadruplex ligands based on graphene oxide sheets. Biosensors and Bioelectronics,2012,34(1):88-93
    [136]Wang K, You M, Chen Y, et al. Self-Assembly of a Bifunctional DNA Carrier for Drug Delivery. Angewandte Chemie International Edition,2011,50(27): 6098-6101
    [137]Kong D M, Wu J, Ma Y E, et al. A new method for the study of G-quadruplex ligands. Analyst,2008,133(9):1158-1160
    [138]Marsh T C, Henderson E. G-Wires:Self-Assembly of a Telomeric Oligonucleotide, d(GGGGTTGGGG), into Large Superstructures. Biochemistry,1994,33(35):10718-10724
    [139]Marsh T C, Vesenka J, Henderson E. A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Research,1995,23(4): 696-700
    [140]Kotlyar A B, Borovok N, Molotsky T, et al. Long, Monomolecular Guanine-Based Nanowires. Advanced Materials,2005,17(15):1901-1905
    [141]Miyoshi D, Karimata H, Wang Z-M, et al. Artificial G-Wire Switch with 2,2'-Bipyridine Units Responsive to Divalent Metal Ions. Journal of the American Chemical Society,2007,129(18):5919-5925
    [142]Protozanova E, Macgregor R B. Frayed Wires:A Thermally Stable Form of DNA with Two Distinct Structural Domains. Biochemistry,1996,35(51): 16638-16645
    [143]Batalia M A, Protozanova E, Macgregor R B, et al. Self-Assembly of Frayed Wires and Frayed-Wire Networks:Nanoconstruction with Multistranded DNA. Nano Letters,2002,2(4):269-274
    [144]Biyani M, Nishigaki K. Structural characterization of ultra-stable higher-ordered aggregates generated by novel guanine-rich DNA sequences. Gene,2005,364:130-138
    [145]Lin J, Yan Y Y, Ou T M, et al. Effective Detection and Separation Method for G-Quadruplex DNA Based on Its Specific Precipitation with Mg2+. Biomacromolecules,2010,11(12):3384-3389
    [146]Lubitz I, Kotlyar A. Self-Assembled G4-DNA-Silver Nanoparticle Structures. Bioconjugate Chemistry,2011,22(3):482-487
    [147]Li Z, Mirkin C A. G-Quartet-Induced Nanoparticle Assembly. Journal of the American Chemical Society,2005,127(33):11568-11569
    [148]Berti L, Alessandrini A, Bellesia M, et al. Fine-Tuning Nanoparticle Size by Oligo(guanine)n Templated Synthesis of CdS:An AFM Study. Langmuir, 2007,23(22):10891-10892
    [149]Zhang J, Zheng L, Wang X, et al. Branched silica nano structures oriented by dynamic G-quadruplex transformation. Materials Research Bulletin,2010, 45(12):1954-1959
    [150]Padmanabhan K, Padmanabhan K P, Ferrara J D, et al. The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. Journal of Biological Chemistry,1993,268(24):17651-17654
    [151]Chou S H, Chin K H, Wang A H J. DNA aptamers as potential anti-HIV agents. Trends in Biochemical Sciences,2005,30(5):231-234
    [152]Wang X L, Li F, Su Y H, et al. Ultrasensitive Detection of Protein Using an Aptamer-Based Exonuclease Protection Assay. Analytical Chemistry,2004, 76(19):5605-5610
    [153]Deng C, Chen J, Nie Z, et al. Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles. Analytical Chemistry,2009,81(2):739-745
    [154]Di Giusto D A, Wlassoff W A, Gooding J J, et al. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Research,2005,33(6):64-70
    [155]Li T, Shi L, Wang E, et al. Multifunctional G-Quadruplex Aptamers and Their Application to Protein Detection. Chemistry-A European Journal,2009,15(4): 1036-1042
    [156]Li T, Wang E, Dong S. G-Quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection. Chemical Communications, 2009, (5):580-582
    [157]Cheng X, Liu X, Bing T, et al. General Peroxidase Activity of G-Quadruplex-Hemin Complexes and Its Application in Ligand Screening. Biochemistry,2009,48(33):7817-7823
    [158]Li T, Dong S, Wang E. G-Quadruplex Aptamers with Peroxidase-Like DNAzyme Functions:Which Is the Best and How Does it Work? Chemistry An Asian Journal,2009,4(6):918-922
    [159]Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chemistry & Biology,1998,5(9):505-517
    [160]Majhi P R, Shafer R H. Characterization of an unusual folding pattern in a catalytically active guanine quadruplex structure. Biopolymers,2006,82(6): 558-569
    [161]Nakayama S, Sintim H O. Colorimetric Split G-Quadruplex Probes for Nucleic Acid Sensing:Improving Reconstituted DNAzyme's Catalytic Efficiency via Probe Remodeling. Journal of the American Chemical Society,2009,131(29): 10320-10333
    [162]Kong D M, Xu J, Shen H X. Positive Effects of ATP on G-Quadruplex-Hemin DNAzyme-Mediated Reactions. Analytical Chemistry,2010,82(14): 6148-6153
    [163]Li D, Shlyahovsky B, Elbaz J, et al. Amplified Analysis of Low-Molecular-Weight Substrates or Proteins by the Self-Assembly of DNAzyme-Aptamer Conjugates. Journal of the American Chemical Society, 2007,129(18):5804-5805
    [164]Teller C, Shimron S, Willner I. Aptamer-DNAzyme Hairpins for Amplified Biosensing. Analytical Chemistry,2009,81(21):9114-9119
    [165]Zhang L, Zhu J, Li T, et al. Bifunctional Colorimetric Oligonucleotide Probe Based on a G-Quadruplex DNAzyme Molecular Beacon. Analytical Chemistry, 2011,83(23):8871-8876
    [166]Poon L C H, Methot S P, Morabi-Pazooki W, et al. Guanine-Rich RNAs and DNAs That Bind Heme Robustly Catalyze Oxygen Transfer Reactions. Journal of the American Chemical Society,2011,133(6):1877-1884
    [167]Shimron S, Wang F, Orbach R, et al. Amplified Detection of DNA through the Enzyme-Free Autonomous Assembly of Hemin/G-Quadruplex DNAzyme Nanowires. Analytical Chemistry,2012,84(2):1042-1048
    [168]Cheglakov Z, Weizmann Y, Basnar B, et al. Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes. Organic & Biomolecular Chemistry, 2007,5(2):223-225
    [169]Wang H Q, Liu W Y, Wu Z, et al. Homogeneous Label-Free Genotyping of Single Nucleotide Polymorphism Using Ligation-Mediated Strand Displacement Amplification with DNAzyme-Based Chemiluminescence Detection. Analytical Chemistry,2011,83(6):1883-1889
    [170]Nakayama S, Sintim H O. Biomolecule detection with peroxidase-mimicking DNAzymes; expanding detection modality with fluorogenic compounds. Molecular BioSystems,2010,6(1):95-97
    [171]Zhang S B, Wu Z S, Qiu L P, et al. G-quadruplex signaling probe for highly sensitive DNA detection. Chemical Communications,2010,46(19):3381-3383
    [172]Hou X, Guo W, Xia F, et al. A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. Journal of the American Chemical Society,2009,131(22):7800-7805
    [173]Schweitzer B, Wiltshire S, Lambert J, et al. Immunoassays with rolling circle DNA amplification:A versatile platform for ultrasensitive antigen detection. Proceedings of the National Academy of Sciences,2000,97(18):10113-10119
    [174]He P, Shen L, Cao Y, et al. Ultrasensitive Electrochemical Detection of Proteins by Amplification of Aptamer-Nanoparticle Bio Bar Codes. Analytical Chemistry,2007,79(21):8024-8029
    [175]Xiao Y, Piorek B D, Plaxco K W, et al. A Reagentless Signal-On Architecture for Electronic, Aptamer-Based Sensors via Target-Induced Strand Displacement. Journal of the American Chemical Society,2005,127(51): 17990-17991
    [176]Lai R Y, Plaxco K W, Heeger A J. Aptamer-Based Electrochemical Detection of Picomolar Platelet-Derived Growth Factor Directly in Blood Serum. Analytical Chemistry,2007,79(1):229-233
    [177]Numnuam A, Chumbimuni-Torres K Y, Xiang Y, et al. Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes. Analytical Chemistry,2008,80(3):707-712
    [178]Polsky R, Gill R, Kaganovsky L, et al. Nucleic Acid-Functionalized Pt Nanoparticles:Catalytic Labels for the Amplified Electrochemical Detection of Biomolecules. Analytical Chemistry,2006,78(7):2268-2271
    [179]Zhou L, Ou L J, Chu X, et al. Aptamer-Based Rolling Circle Amplification:A Platform for Electrochemical Detection of Protein. Analytical Chemistry,2007, 79(19):7492-7500
    [180]Cheng A K H, Ge B, Yu H Z. Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme. Analytical Chemistry,2007,79(14): 5158-5164
    [181]Radi A E, Acero Sanchez J L, Baldrich E, et al. Reusable Impedimetric Aptasensor. Analytical Chemistry,2005,77(19):6320-6323
    [182]Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotech,2002,20(5):473-477
    [183]Xiang Y, Xie M, Bash R, et al. Ultrasensitive Label-Free Aptamer-Based Electronic Detection. Angewandte Chemie International Edition,2007,46(47): 9054-9056
    [184]Cho E J, Yang L, Levy M, et al. Using a Deoxyribozyme Ligase and Rolling Circle Amplification To Detect a Non-nucleic Acid Analyte, ATP. Journal of the American Chemical Society,2005,127(7):2022-2023
    [185]Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics, 2005,20(10):2168-2172
    [186]Xiang Y, Zhang Y, Qian X, et al. Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy. Biosensors and Bioelectronics,2010,25(11):2539-2542
    [187]Gill R, Polsky R, Willner I. Pt Nanoparticles Functionalized with Nucleic Acid Act as Catalytic Labels for the Chemiluminescent Detection of DNA and Proteins. Small,2006,2(8-9):1037-1041
    [188]Hansen J A, Wang J, Kawde A-N, et al. Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor. Journal of the American Chemical Society,2006,128(7):2228-2229
    [189]Sutton B J, Gould H J. The human IgE network. Nature,1993,366(6454): 421-428
    [190]Rancinan C, Morlat P, Chene G, et al. IgE serum level:A prognostic marker for AIDS in HIV-infected adults? Journal of Allergy and Clinical Immunology, 1998,102(2):329-330
    [191]Maehashi K, Katsura T, Kerman K, et al. Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors. Analytical Chemistry,2006,79(2):782-787
    [192]Xu D, Xu D, Yu X, et al. Label-Free Electrochemical Detection for Aptamer-Based Array Electrodes. Analytical Chemistry,2005,77(16): 5107-5113
    [193]Bockisch B, Grunwald T, Spillner E, et al. Immobilized stem-loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA. Nucleic Acids Research,2005,33(11):e101
    [194]Centi S, Tombelli S, Minunni M, et al. Aptamer-Based Detection of Plasma Proteins by an Electrochemical Assay Coupled to Magnetic Beads. Analytical Chemistry,2007,79(4):1466-1473
    [195]Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research,2003,31(13):3406-3415
    [196]SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences,1998,95(4):1460-1465
    [197]Wu Z S, Chen C R, Shen G L, et al. Reversible electronic nanoswitch based on DNA G-quadruplex conformation:A platform for single-step, reagentless potassium detection. Biomaterials,2008,29(17):2689-2696
    [198]Tremiliosi-Filho G, Dall'Antonia L H, Jerkiewicz G. Limit to extent of formation of the quasi-two-dimensional oxide state on Au electrodes. Journal of Electroanalytical Chemistry,1997,422(1-2):149-159
    [199]Katilius E, Flores C, Woodbury N W. Exploring the sequence space of a DNA aptamer using microarrays. Nucleic Acids Research,2007,35(22):7626-7635
    [200]Wu Z S, Zheng F, Shen G L, et al. A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins. Biomaterials,2009, 30(15):2950-2955
    [201]Meijer M, Karimi-Busheri F, Huang T Y, et al. Pnkl, a DNA Kinase/Phosphatase Required for Normal Response to DNA Damage by y-Radiation or Camptothecin inSchizosaccharomyces pombe. Journal of Biological Chemistry,2002,277(6):4050-4055
    [202]Del Giallo M L, Lucarelli F, Cosulich E, et al. Steric Factors Controlling the Surface Hybridization of PCR Amplified Sequences. Analytical Chemistry, 2005,77(19):6324-6330
    [203]Wu Z, Zhen Z, Jiang J H, et al. Terminal Protection of Small-Molecule-Linked DNA for Sensitive Electrochemical Detection of Protein Binding via Selective Carbon Nanotube Assembly. Journal of the American Chemical Society,2009, 131(34):12325-12332
    [204]Fei Y H, Liu D, Wu Z S, et al. DNA-Encoded Signal Conversion for Sensitive Microgravimetric Detection of Small Molecule-Protein Interaction. Bioconjugate Chemistry,2011,22(12):2369-2376
    [205]Rodriguez M C, Kawde A N, Wang J. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chemical Communications,2005, (34): 4267-4269
    [206]Heiskanen A R, Spegel C F, Kostesha N, et al. Monitoring of Saccharomyces cerevisiae Cell Proliferation on Thiol-Modified Planar Gold Microelectrodes Using Impedance Spectroscopy. Langmuir,2008,24(16):9066-9073
    [207]Wu Z S, Hu P, Zhou H, et al. Fluorescent oligonucleotide probe based on G-quadruplex scaffold for signal-on ultrasensitive protein assay. Biomaterials, 2010,31(7):1918-1924
    [208]Gokulrangan G, Unruh J R, Holub D F, et al. DNA Aptamer-Based Bioanalysis of IgE by Fluorescence Anisotropy. Analytical Chemistry,2005,77(7): 1963-1970
    [209]Wiegand T W, Williams P B, Dreskin S C, et al. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. The Journal of Immunology,1996,157(1):221-30
    [210]Fukasawa M, Yoshida W, Yamazaki H, et al. An Aptamer-Based Bound/Free Separation System for Protein Detection. Electroanalysis,2009,21(11): 1297-1302
    [211]Papamichael K I, Kreuzer M P, Guilbault G G. Viability of allergy (IgE) detection using an alternative aptamer receptor and electrochemical means. Sensors and Actuators B:Chemical,2007,121(1):178-186
    [212]Kim Y H, Kim J P, Han S J, et al. Aptamer biosensor for lable-free detection of human immunoglobulin E based on surface plasmon resonance. Sensors and Actuators B:Chemical,2009,139(2):471-475
    [213]Yao C, Qi Y, Zhao Y, et al. Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE. Biosensors and Bioelectronics,2009,24(8):2499-2503
    [214]Katilius E, Katiliene Z, Woodbury N W. Signaling Aptamers Created Using Fluorescent Nucleotide Analogues. Analytical Chemistry,2006,78(18): 6484-6489
    [215]Wu Z S, Lu H X, Liu X P, et al. Inhibitory Effect of Target Binding on Hairpin Aptamer Sticky-End Pairing-Induced Gold Nanoparticle Assembly for Light-up Colorimetric Protein Assay. Analytical Chemistry,2010,82(9):3890-3898
    [216]German I, Buchanan D D, Kennedy R T. Aptamers as Ligands in Affinity Probe Capillary Electrophoresis. Analytical Chemistry,1998,70(21): 4540-4545
    [217]Jiang Y, Fang X, Bai C. Signaling Aptamer/Protein Binding by a Molecular Light Switch Complex. Analytical Chemistry,2004,76(17):5230-5235
    [218]Li H, Qiang W, Vuki M, et al. Fluorescence Enhancement of Silver Nanoparticle Hybrid Probes and Ultrasensitive Detection of IgE. Analytical Chemistry,2011,83(23):8945-8952
    [219]Petzinger E, Weidenbach A. Mycotoxins in the food chain:the role of ochratoxins. Livestock Production Science,2002,76(3):245-250
    [220]Grosso F, Sai'd S, Mabrouk I, et al. New data on the occurrence of ochratoxin A in human sera from patients affected or not by renal diseases in Tunisia. Food and Chemical Toxicology,2003,41(8):1133-1140
    [221]Accensi F, Abarca M L, Cabanes F J. Occurrence of Aspergillus species in mixed feeds and component raw materials and their ability to produce ochratoxin A. Food Microbiology,2004,21(5):623-627
    [222]Taniwaki M H, Pitt J I, Teixeira A A, et al. The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods. International Journal of Food Microbiology,2003,82(2):173-179
    [223]Monaci L, Palmisano F, Matrella R, et al. Determination of ochratoxin A at part-per-trillion level in Italian salami by immunoaffinity clean-up and high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A,2005,1090(1-2):184-187
    [224]Czerwiecki L, Wilczynska G, Kwiecien A. Ochratoxin A:an improvement clean-up and HPLC method used to investigate wine and grape juice on the Polish market. Food Additives & Contaminants,2005,22(2):158-162
    [225]Reinsch M, Topfer A, Lehmann A, et al. Determination of ochratoxin A in beer by LC-MS/MS ion trap detection. Food Chemistry,2007,100(1):312-317
    [226]Chan D, MacDonald S J, Boughtflower V, et al. Simultaneous determination of aflatoxins and ochratoxin A in food using a fully automated immunoaffinity column clean-up and liquid chromatography-fluorescence detection. Journal of Chromatography A,2004,1059(1-2):13-16
    [227]Radi A E, Munoz-Berbel X, Lates V, et al. Label-free impedimetric immunosensor for sensitive detection of ochratoxin A. Biosensors and Bioelectronics,2009,24(7):1888-1892
    [228]Willner I, Zayats M. Electronic Aptamer-Based Sensors. Angewandte Chemie International Edition,2007,46(34):6408-6418
    [229]Jayasena S D. Aptamers:An Emerging Class of Molecules That Rival Antibodies in Diagnostics. Clinical Chemistry,1999,45(9):1628-1650
    [230]Patel D J, Suri A K. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. Reviews in Molecular Biotechnology,2000,74(1):39-60
    [231]Li Y, Qi H, Gao Q, et al. Label-free and sensitive electrogenerated chemiluminescence aptasensor for the determination of lysozyme. Biosensors and Bioelectronics,2011,26(5):2733-2736
    [232]Qi Y, Li B. A Sensitive, Label-Free, Aptamer-Based Biosensor Using a Gold Nanoparticle-Initiated Chemiluminescence System. Chemistry-A European Journal,2011,17(5):1642-1648
    [233]Qureshi A, Gurbuz Y, Kallempudi S, et al. Label-free RNA aptamer-based capacitive biosensor for the detection of C-reactive protein. Physical Chemistry Chemical Physics,2010,12(32):9176-9182
    [234]Ohno Y, Maehashi K, Matsumoto K. Label-Free Biosensors Based on Aptamer-Modified Graphene Field-Effect Transistors. Journal of the American Chemical Society,2010,132(51):18012-18013
    [235]Cruz-Aguado J A, Penner G. Fluorescence Polarization Based Displacement Assay for the Determination of Small Molecules with Aptamers. Analytical Chemistry,2008,80(22):8853-8855
    [236]Leech D. Affinity biosensors. Chemical Society Reviews,1994,23(3):205-213
    [237]Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science,2003,301(5641):1884-1886
    [238]Wilson D S, Nock S. Functional protein microarrays. Current Opinion in Chemical Biology,2002,6(1):81-85
    [239]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science,1990,249(4968): 505-510
    [240]Cook S P, Vulchanova L, Hargreaves K M, et al. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature,1997,387(6632):505-508
    [241]Vlaskovska M, Kasakov L, Rong W, et al. P2X3 Knock-Out Mice Reveal a Major Sensory Role for Urothelially Released ATP. The Journal of Neuroscience,2001,21(15):5670-5677
    [242]Souslova V, Cesare P, Ding Y, et al. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X 3 receptors. Nature,2000,407(6807): 1015-1017
    [243]Rong W, Gourine A V, Cockayne D A, et al. Pivotal Role of Nucleotide P2X2 Receptor Subunit of the ATP-Gated Ion Channel Mediating Ventilatory Responses to Hypoxia. The Journal of Neuroscience,2003,23(36): 11315-11321
    [244]Bowser D N, Khakh B S. ATP Excites Interneurons and Astrocytes to Increase Synaptic Inhibition in Neuronal Networks. The Journal of Neuroscience,2004, 24(39):8606-8620
    [245]Khakh B S, Gittermann D, Cockayne D A, et al. ATP Modulation of Excitatory Synapses onto Interneurons. The Journal of Neuroscience,2003,23(19): 7426-7437
    [246]Zuo X, Xiao Y, Plaxco K W. High Specificity, Electrochemical Sandwich Assays Based on Single Aptamer Sequences and Suitable for the Direct Detection of Small-Molecule Targets in Blood and Other Complex Matrices. Journal of the American Chemical Society,2009,131(20):6944-6945
    [247]Saiki R, Gelfand D, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science,1988,239(4839): 487-491
    [248]Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proceedings of the National Academy of Sciences,1991, 88(1):189-193
    [249]Fire A, Xu S Q. Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences,1995,92(10):4641-4645
    [250]Connolly A R, Trau M. Isothermal Detection of DNA by Beacon-Assisted Detection Amplification. Angewandte Chemie,2010,122(15):2780-2783
    [251]Yin P, Choi H M T, Calvert C R, et al. Programming biomolecular self-assembly pathways. Nature,2008,451(7176):318-322
    [252]Jemal A, Siegel R, Ward E, et al. Cancer Statistics,2008. CA:A Cancer Journal for Clinicians,2008,58(2):71-96
    [253]Mills A A. p53:link to the past, bridge to the future. Genes & Development, 2005,19(18):2091-2099
    [254]Inoue T, Wu L, Stuart J, et al. Control of p53 nuclear accumulation in stressed cells. FEBS letters,2005,579(22):4978-4984
    [255]Vogelstein B, Lane D, Levine A J. Surfing the p53 network. Nature,2000, 408(6810):307-310
    [256]Hernandez-Boussard T, Rodriguez-Tome P, Montesano R, et al. I ARC p53 mutation database:A relational database to compile and analyze p53 mutations in human tumors and cell lines. Human Mutation,1999,14(1):1-8
    [257]Willner I, Shlyahovsky B, Zayats M, et al. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chemical Society Reviews, 2008,37(6):1153-1165
    [258]Kosman J, Juskowiak B. Peroxidase-mimicking DNAzymes for biosensing applications:A review. Analytica Chimica Acta,2011,707(1-2):7-17
    [259]Fu R, Li T, Lee S S, et al. DNAzyme Molecular Beacon Probes for Target-Induced Signal-Amplifying Colorimetric Detection of Nucleic Acids. Analytical Chemistry,2010,83(2):494-500
    [260]Wang X, Ding Z, Ren Q, et al. Polymeric Membrane Neutral Phenol-Sensitive Electrodes for Potentiometric G-Quadruplex/Hemin DNAzyme-Based Biosensing. Analytical Chemistry,2013,85(3):1945-1950
    [261]Travascio P, Bennet A J, Wang D Y, et al. A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites. Chemistry & Biology,1999,6(11):779-787
    [262]Li T, Wang E, Dong S. Potassium-Lead-Switched G-Quadruplexes:A New Class of DNA Logic Gates. Journal of the American Chemical Society,2009, 131(42):15082-15083
    [263]Li B, Du Y, Li T, et al. Investigation of 3,3',5,5'-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme. Analytica Chimica Acta, 2009,651(2):234-240
    [264]Yang X, Li T, Li B, et al. Potassium-sensitive G-quadruplex DNA for sensitive visible potassium detection. Analyst,2010,135(1):71-75
    [265]Shimron S, Wang F, Orbach R, et al. Amplified Detection of DNA through the Enzyme-Free Autonomous Assembly of Hemin/G-Quadruplex DNAzyme Nanowires. Analytical Chemistry,2011,84(2):1042-1048
    [266]Miranda-Castro R, Lobo-Castanon M J, Miranda-Ordieres A J, et al. Comparative Study of HRP, a Peroxidase-Mimicking DNAzyme, and ALP as Enzyme Labels in Developing Electrochemical Genosensors for Pathogenic Bacteria. Electroanalysis,2010,22(12):1297-1305
    [267]Kubista M, Andrade J M, Bengtsson M, et al. The real-time polymerase chain reaction. Molecular Aspects of Medicine,2006,27(2-3):95-125
    [268]Qiu L P, Wu Z S, Shen G L, et al. Highly Sensitive and Selective Bifunctional Oligonucleotide Probe for Homogeneous Parallel Fluorescence Detection of Protein and Nucleotide Sequence. Analytical Chemistry,2011,83(8): 3050-3057
    [269]Zhao W, Ali M M, Brook M A, et al. Rolling Circle Amplification: Applications in Nanotechnology and Biodetection with Functional Nucleic Acids, Angewandte Chemie International Edition,2008,47(34):6330-6337
    [270]Lee L G, Connell C R, Bloch W. Allelic discrimination by nick-translation PCR with fluorgenic probes. Nucleic Acids Research,1993,21(16):3761-3766
    [271]Conlon P, Yang C J, Wu Y, et al. Pyrene Excimer Signaling Molecular Beacons for Probing Nucleic Acids. Journal of the American Chemical Society,2008, 130(1):336-342
    [272]Elbaz J, Shlyahovsky B, Willner I. A DNAzyme cascade for the amplified detection of Pb2+ions or 1-histidine. Chemical Communications,2008, (13): 1569-1571
    [273]Sidransky D. Nucleic Acid-Based Methods for the Detection of Cancer. Science,1997,278(5340):1054-1058
    [274]Hirsch F R, Franklin W A, Gazdar A F, et al. Early Detection of Lung Cancer: Clinical Perspectives of Recent Advances in Biology and Radiology. Clinical Cancer Research,2001,7(1):5-22
    [275]He J L, Wu Z S, Zhou H, et alt Fluorescence Aptameric Sensor for Strand Displacement Amplification Detection of Cocaine. Analytical Chemistry,2010, 82(4):1358-1364
    [276]Zhu C, Wen Y, Li D, et al. Inhibition of the In Vitro Replication of DNA by an Aptamer-Protein Complex in an Autonomous DNA Machine. Chemistry-A European Journal,2009,15(44):11898-11903
    [277]Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of Cocaine by an Autonomous Aptamer-Based Machine. Journal of the American Chemical Society,2007,129(13):3814-3815
    [278]Seenisamy J, Rezler E M, Powell T J, et al. The Dynamic Character of the G-Quadruplex Element in the c-MYC Promoter and Modification by TMPyP4. Journal of the American Chemical Society,2004,126(28):8702-8709
    [279]Gatto B, Palumbo M, Sissi C Nucleic acid aptamers based on the G-quadruplex structure:therapeutic and diagnostic potential. Current medicinal chemistry,2009,16(10):1248-1265
    [280]Chan C W S, Khachigian L M. DNAzymes and their therapeutic possibilities. Internal Medicine Journal,2009,39(4):249-251
    [281]Li T, Li B, Dong S. Aptamer-based label-free method for hemin recognition and DNA assay by capillary electrophoresis with chemiluminescence detection. Analytical and Bioanalytical Chemistry,2007,389(3):887-893
    [282]Li T, Li B, Wang E, et al. G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chemical Communications,2009, (24): 3551-3553
    [283]Shlyahovsky B, Li D, Katz E, et al. Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels. Biosensors and Bioelectronics, 2007,22(11):2570-2576
    [284]Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A Virus Spotlighted by an Autonomous DNA Machine. Angewandte Chemie,2006,118(44):7544-7548
    [285]Cheglakov Z, Weizmann Y, Beissenhirtz M K, et al. Ultrasensitive detection of DNA by the PCR-Induced generation of DNAzymes:The DNAzyme primer approach-Chemical Communications,2006, (30):3205-3207
    [286]Martinez K, Estevez M C, Wu Y, et al. Locked Nucleic Acid Based Beacons for Surface Interaction Studies and Biosensor Development. Analytical Chemistry,2009,81(9):3448-3454
    [287]Xiao Y, Pavlov V, Niazov T, et al. Catalytic Beacons for the Detection of DNA and Telomerase Activity. Journal of the American Chemical Society,2004, 126(24):7430-7431
    [288]Zhou H, Xie S J, Zhang S B, et al. Isothermal amplification system based on template-dependent extension. Chemical Communications,2013,49(24): 2448-2450
    [289]Zhou H, Xie S J, Li J S, et al. Intermolecular G-quadruplex-based universal quencher free molecular beacon. Chemical Communications,2012,48(87): 10760-10762
    [290]Hoeijmakers J H J. Genome maintenance mechanisms for preventing cancer. Nature,2001,411(6835):366-374
    [291]Moses A C, Schepartz A. Kinetics and Mechanism of RNA Binding by Triplex Tethered Oligonucleotide Probes. Journal of the American Chemical Society, 1997,119(48):11591-11597
    [292]Ostroff R M, Hopkins D, Haeberli A B, et al. Thin Film Biosensor for Rapid Visual Detection of Nucleic Acid Targets. Clinical Chemistry,1999,45(9): 1659-1664
    [293]Daniel M C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews,2003,104(1):293-346
    [294]Jiang Y, Zhao H, Zhu N, et al. A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles. Angewandte Chemie International Edition,2008,47(45):8601-8604
    [295]Han M S, Lytton-Jean A K R, Oh B K, et al. Colorimetric Screening of DNA-Binding Molecules with Gold Nanoparticle Probes. Angewandte Chemie International Edition,2006,45(11):1807-1810
    [296]Lee J S, Ulmann P A, Han M S, et al. A DNA-Gold Nanoparticle-Based Colorimetric Competition Assay for the Detection of Cysteine. Nano Letters, 2008,8(2):529-533
    [297]Sato K, Hosokawa K, Maeda M. Rapid Aggregation of Gold Nanoparticles Induced by Non-Cross-Linking DNA Hybridization. Journal of the American Chemical Society,2003,125(27):8102-8103
    [298]Wu Z S, Guo M M, Shen G L, et al. G-rich oligonucleotide-functionalized gold nanoparticle aggregation. Analytical and Bioanalytical Chemistry,2007, 387(8):2623-2626
    [299]Davis J T. G-Quartets 40 Years Later:From 5'-GMP to Molecular Biology and Supramolecular Chemistry. Angewandte Chemie International Edition,2004, 43(6):668-698
    [300]Ma L, Iezzi M, Kaucher M S, et al. Cation Exchange in Lipophilic G-Quadruplexes:Not All Ion Binding Sites Are Equal. Journal of the American Chemical Society,2006,128(47):15269-15277
    [301]He F, Tang Y, Wang S, et al. Fluorescent Amplifying Recognition for DNA G-Quadruplex Folding with a Cationic Conjugated Polymer:A Platform for Homogeneous Potassium Detection. Journal of the American Chemical Society, 2005,127(35):12343-12346
    [302]Zu Y, Ting A L, Yi G, et al. Sequence-Selective Recognition of Nucleic Acids under Extremely Low Salt Conditions Using Nanoparticle Probes. Analytical Chemistry,2011,83(11):4090-4094
    [303]Feng K J, Qiu L P, Yang Y F, et al. Label-free optical bifunctional oligonucleotide probe for homogeneous amplification detection of disease markers. Biosensors and Bioelectronics,2011,29(1):66-75
    [304]Symonds H, Krall L, Remington L, et al. p53-Dependent apoptosis suppresses tumor growth and progression in vivo. Cell,1994,78(4):703-711
    [305]Bykov V J N, Issaeva N, Shilov A, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med,2002, 8(3):282-288
    [306]Cho Y, Gorina S, Jeffrey P, et al. Crystal structure of a p53 tumor suppressor-DNA complex:understanding tumorigenic mutations. Science, 1994,265(5170):346-355
    [307]Oren M. Regulation of the p53 Tumor Suppressor Protein. Journal of Biological Chemistry,1999,274(51):36031-36034
    [308]Du H, Strohsahl C M, Camera J, et al. Sensitivity and Specificity of Metal Surface-Immobilized "Molecular Beacon" Biosensors. Journal of the American Chemical Society,2005,127(21):7932-7940

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700