NAAC算法及其在智能故障诊断系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种新的应用出现,数字系统的集成度不断攀升,为满足这些数字系统的故障检测需求,出现了许多智能故障检测和诊断的方法,然而在将这些方法应用到实际的故障诊断系统中后,遇到了一些难题,其中如何区分并解决多线桥接故障和固定逻辑故障之间的征兆混淆问题一直是智能故障诊断系统设计的瓶颈,为解决这一难题,本文深入研究目前国内外最新取得的一些理论成果,如布尔矩阵理论、故障检测和紧凑性定理、故障诊断完备性定理和抗误判定理,通过这些研究为本文的撰写提供了坚实的理论依据。
     本文作者还对测试优化算法进行仔细研究,研究结果表明测试优化算法可分为两类,第一类是在满足给定故障定位精度的前提下寻找能够实现最优紧凑性指标P的PTVs(并行测试向量集),如True/Compliment算法;第二类是在满足给定紧凑性指标的前提下寻求能够实现最优故障定位精度的PTVs,如极小权值优化算法,研究结果还显示这些常规的算法存在测试时间长、故障覆盖率低的缺点。因此,本文提出一种属于第一类的新型测试优化算法:NAAC算法(No Aliasing and Anti-Confounding Algorithm:无误判抗混淆算法),并将其应用于实际的智能故障诊断系统中。采用NAAC算法生成的测试矩阵能够确保无征兆误判和无征兆混淆,同时该算法还能将大的测试矩阵压缩成小规模的测试矩阵。在其生成的测试矩阵中各PTV互不相同,但都具有相同的权值,而权值可以由故障诊断系统的设计者予以指定。当这些PTVs从PC机中依次加载到被测电路板后,相应的PRVs(并行响应向量集)可以获取供诊断系统进行测试响应分析,从而检测出固定逻辑故障和桥接故障。实践表明,NAAC算法生成的测试矩阵具有较高的故障覆盖率。
     本文还讨论了两种智能故障诊断技术,即专家系统智能故障诊断技术和边界扫描测试智能故障诊断技术。对于专家系统智能故障诊断技术而言,构建专
    
    四川大学硕士学位论文
    家系统规则库和设计推理机制是重点,本文采用C语言构建规则库,然后通过
    精心设计的专家推理机,从而使得固定逻辑故障和大多数多线桥接故障能够被
    专家诊断系统检测出来。与此同时,本文采用C语言构建规则库的方法也为其
    他智能故障诊断系统的设计提供一个良好的范例。至于本文采用边界扫描测试
    故障诊断技术,是考虑到本系统的通用性和简洁性,因为对于大多数数字系统
    而言,具有边界扫描结构的器件己广泛应用,本文只需4条或5条信号线就能
    将PC机和被测边界扫描电路连接起来,由此极大地简化了智能故障诊断系统中
    为实现PTVs加载和PRVs获取而专门设计的接口板电路。
     在智能故障诊断系统中,虚拟仪器技术是关键,本文采用Delphi 6.0设计
    本系统虚拟仪器界面和驱动程序,整个系统按功能划分模块,符合软件工程设
    计要求。系统中一些模块采用MCS一51汇编语言和VHDL硬件描述语言编写,因
    而涉及到单片机、EDA等新技术。此外由于采用强大的GUI界面,使得该系统
    操作简单且易于移植到其他应用中。
     本文精心设计该诊断系统的硬件接口板,使其能够检测和诊断MCU、PLD、
    存储器、数据传输和接口器件、工/0口,而这些都是数字系统的常见部件,故
    该系统有良好的通用性。
     此外本文还探讨自适应测试及其算法,并结合NAAC算法提出了自适应NAAC
    算法。同时考虑到将来的工作,本文也探讨了第二类测试优化算法:极小权值
    —极大相异性算法,该算法的故障检测能力与NAAC算法相似,但生成测试矩
    阵的步骤较复杂。限于时间,作者仅就基本原理做了阐述,更多的工作留待以
    后完成。
Driven by some emerging applications, digital system integration is on the rise. To serve digital system fault detection requirements, a lot of intelligent fault detection and diagnostic methods have been found. However, in most of fault diagnosis system, it is a difficult thing to classify multi-line short circuit fault from fixed logic fault. To solve the puzzle, the paper author widely study in Boolean Matrix theories , fault detection and condensing theorem, fault diagnostic soundness theorem and anti-aliasing theorem. In addition, the author also research in general detection optimal algorithm used by fault diagnosis system, these detection optimal algorithm can classify into two types, the first type is that algorithm must be able to find the PTVs (Parallel Test Vector)which has the best condensing index P under fault location precision request, these algorithm include WOA optimal algorithm, True/Compliment optimal algorithm; The second type is that algorithm must be able to find the PTVs which has the
     best fault location precision under the condensin index P request. These algorithms include minimum weight value optimal algorithm. But these general detection optimal algorithms have a lot of flaw in test time cost or low fault coverage rate. Therefore, the paper brings up a new detection optimal algorithm that belongs to the first type: NAAC (No Aliasing and Anti-Confounding) detection optimal algorithm, and put the NAAC detection optimal algorithm into a practical intelligent fault diagnosis system. The NAAC detection optimal algorithm can assure to generate test matrix with no symptom aliasing and no symptom confounding, at the same time, it can compress a large of scale test matrix to very
    
    
    
    small of scale test matrix. The PTV of test matrix is different for each other, but has same weight value. And the weight value can be appointed by fault diagnosis system designer. When those PTVs are sequentially loaded to CUT (Circuit Under Test) from intelligent fault diagnosis system, homologous PRVs (Parallel Response Vector) are taken back. Through test response analysis by expert system , Intelligent fault diagnosis system can detect all fixed'1'logic fault, fixed'0'logic fault, and detect the majority of multi-line short circuit fault. Practical analysis and experimental results show that the NAAC detection optimal algorithm is characterized by almost full error coverage.
    The paper also discusses two intelligent fault diagnostic methods: expert system intelligent fault diagnostic method and boundary-scan technique intelligent fault diagnostic method. Benefit from designer experience, Expert system regulations are built by C language. Through the inference, all fixed logic fault and most multi-line short circuit fault are detected by expert system. On that account, the design process built by C language will be a mode that can be imitated by other intelligent fault diagnosis system. On the other hand, Boundary-scan technique intelligent fault diagnostic method was applied to practice. For most digital system, devices with boundary-scan architecture are broadly used. Only using four line or five line to connect PC parallel port with CUT TAP (Test Access Port), all the PTVs can be loaded to CUT and all homologous PRVs can be taken back to intelligent fault diagnosis system. The method extremely simplifies diagnosis system design. .
    In this intelligent fault diagnosis system, virtual instrument technology is a key point. "Software is instrument" isn't a slogan but a fact. The author designs diagnosis system software with Delphi 6.0 , the whole system are divided according to functional block. Some of the blocks are written by MCS-51 ASM language and VHDL hardware description language. With the powerful GUI (Graph User Interface), this diagnosis system is ease to use, and can be conveniently transplanted into other applications.
    In the hardware part of the intelligent fault diagnosis system, a circuit board for interface is design meticulously by author, the interface board connects PC with CUT, all l
引文
1 汪道辉. Studies on Developing the Products of Computer Detection and Control System Conbined With Intelligent-FauIt-Diagnosis, Proceedings of the 1997 IEEE Intemational Conference on lntelligent Processing System, Vol. 2, pp. 1502~1505,1997:
    2 汪道辉.分布式实时数据采集系统中故障的智能诊断和容错,第二届全国智能控制专家讨论会论文集(下),1994年,p672~678;
    3 陈光楀 主编.现代电子测试技术,国防工业出版社,2000年;
    4 温熙森,徐永成等.智能机内测试理论与应用,国防工业出版社,2002年;
    5 胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计,国防工业出版社,2001年;
    6 王仲生.智能容错技术及应用,国防工业出版社,2002年;
    7 王立新.自适应模糊系统与控制——设计与稳定性分析,国防工业出版社,2000年;
    8 刘冠军.基于边界扫描的智能板级BIT技术研究,国防科技大学博士学位论文,2000年;
    9 刘峡,周鸣忮.故障诊断专家系统综述,测控技术,1994,13(2):6~9;
    10 曾天翔.电子设备测试性及诊断技术航空工业出版社,1996年;
    11 张宝珍,曾天翔.智能BIT技术,测控技术,2000,11:1~4;
    12 王立群.BIT和ATE的发展趋势,测控技术,1993,12(6):2~4;
    13 曾天翔.测试性及诊断技术的发展,1993年测试性、BIT技术研讨会,1993:1~13;
    14 王波.基于边界扫描机制的数字电路板智能故障诊断系统的研究与开发,四川大学硕士学位论文,2002年;
    15 李江宁.基于虚拟仪器的单片机电路板智能故障诊断仪,四川大学硕士学位论文,2001年;
    16 佃松宜.基于EDA和虚拟仪器技术的虚拟数字化测试平台的构建于研究,四川大学硕士学位论文,2002年;
    17 魏钧.融入智能故障诊断及容错的计算机测控系统设计,四川大学硕士学位论文,2000年;
    18 李雷.MCS-51系列CPU芯片智能故障诊断,四川大学硕士学位论文,1999年;
    19 杨士元.数字系统的故障诊断与可靠性设计,清华大学出版社,2000年;
    20 周东华,叶银忠.现代故障诊断与容错控制,清华大学出版社,2000年;
    20 杨廷槐,陈光熙.数字系统的故障诊断和容错技术,国防工业出版社,1993年;
    
    
    21 傅佩踩等.计算机系统硬件软件可靠性理论及其应用,国防工业出版社,1990年;
    22 范成荣.数字逻辑诊断与可靠性设计,国防科技大学出版社,1986年;
    23 吴泉源、刘江宁.人工智能与专家系统,国防科技大学出版社,1995年;
    24 IEEE Std 1149.1-1990(including lEEE Std 1149.1a~1993) Standard Test Access Port and Boundary-Scan Architecture. IEEE, 1993;
    25 IEEE Std 1149.5 Standard Module Test and Maintenmce(MTM) Bus Protocol. IEEE,1995;
    26 Dougherty R J. An IEEE 1149.1 Boundary Scan Application for BlT. EE-Evaluation Engineering, 1993, (8):38~43;
    27 Louis Y U. Hierarchical BuiIt-In Test: An Alternative Test and Repair Strategy.1995 AUTOTESTCON, 1995:456~463;
    28 Theodoros A, etc., Multiple Boundary Scan-paths for Minimizing Circuit-board Test-application Time. Microprocessing and Microprogramming, 1994, 40(6):56~62
    29 Jung=-Cheung Lien, etc. Optimal Scheduling Algorithm for Testing Interconnect Using Boundary Scan. JETTA, 1991, 2(1):117~130;
    30 Najmi Jarwala, etc. Achieving Board-Level BIST Using the Boundary-Scan Master Proc. lntl. Test Conf., 1991:649~658;
    31 郴朴生,徐福章,刘玉琴.现代机器故障诊断学,农业出版社,1991年;
    32 胡政.边界扫描测试理论与方法研究,国防科技大学博士学位论文,1998年;
    33 章国栋 等.系统可靠性与维修设计,北京航空航天大学出版社,1990年;
    34 宋万杰,罗丰,吴顺君.CPLD技术及其应用,西安电子科技大学出版社,2000年;
    35 IEEE 1149.1(JTAG)Test ability Primer.TI,1997;
    36 欧阳渺安.智能设计体系结构的研究,计算机工程与科学,1999,2(3):10~15;
    37 徐永成.BIT中智能故障诊断理论与方法研究,国防科技大学博士学位论文,1999;
    38 唐泳洪.系统可靠性,故障诊断及容错.重庆大学出版社,1990年;
    39 朱万年.智能化机内测试验证系统的设计与实现,航空电子技术,1998,(4):35~42;
    40 刘冠军,黎琼炳,温熙森等.基于边界扫描技术的板级机内测试方案及实现策略,航空电子技术,1999(1):25~27,46;
    41 Altera Data Book,1999;
    42 潘松,王国栋.VHDL实用教程,电子科技大学出版社,1999年;
    
    
    43 蔡自兴,徐光佑.人工智能及其应用,清华大学出版社,1996年;
    44 尹朝庆,尹皓.人工智能与专家系统,中国水利水电出版社,2002年;
    45 权太范.信息融合 神经网络——模糊推理理论与应用,国防工业出版社,2002年;
    46 卢文科.电子检测技术,国防工业出版社,2002年;
    47 徐昕,李涛,伯晓晨 等.Matlab工具箱应用指南——控制工程篇,电子工业出版社,2000年;
    48 罗胜钦.数字系统芯片(SOC)设计,北京希望电子出版社,2002年;
    49 杨乐平,李海涛 肖相生 等.LabVIEW程序设计与应用,电子工业出版社,2001年;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700