REGγ对p53蛋白活性调控的分子机制及其在肿瘤形成中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然蛋白酶体激活因子REGy已经被证明能够降解哺乳动物细胞中完整的蛋白质,但是REGy的生物学功能和机理还是有很多未知之处,需要进一步的研究和探索。本文通过胞外和胞内实验证明REGy能够促进p53蛋白发生单泛素化,从而调节p53蛋白的胞内分布。当p53蛋白发生依赖于Mdm2的单泛素化后,会促进p53蛋白发生经典途径的出核和降解。p53蛋白多点的单泛素化会加强p53与Mdm2之间的相互作用,可能进一步的促进其出核和降解。同时,REGy会抑制p53蛋白四聚体的形成。这也进一步促进了p53蛋白出核,并降低了其在核内的活性。在细胞凋亡实验中,抑制REGy的表达使肿瘤细胞对抗癌药物刺激所引起的细胞凋亡变得更加敏感。通过抑制p53蛋白的表达证明REGy对细胞凋亡的调控依赖于p53蛋白。利用小鼠移植瘤模型,我们发现抑制REGy的表达会明显抑制肿瘤生长。这充分表明REGy在肿瘤发生发展中的重要作用。总之,我们的研究证明了REGy对p53蛋白活性的抑制是影响癌症发生发展的重要机理之一。
The proteasome activator REGγhas been demonstrated to mediate a shortcut to destruction of intact mammalian proteins. Yet the biological roles of REGy and underlying mechanisms are not fully understood. Here we provide evidence, in vitro and in cells, that REGy regulates p53 cellular distribution by facilitating multiple monoubiquitination of p53. While p53 get the Mdm2-dependent monoubiquitination promotes canonical nuclear export and subsequent degradation, inhibition of p53 tetramerization by REGγmay further enhance cytoplasmic relocation of p53 and reduce p53 activity in nucleus. Furthermore, multiple monoubiquitination of p53 enhances its physical interaction with Mdm2 and likely facilitates subsequent polyubiquitination of p53, suggesting a role of monoubiquitination as asignal for p53 degradation. Depletion of REGy sensitizes cells to stress-induced apoptosis, validating its critical role in the control of apoptosis likely through regulating p53 function. Using a mouse xenograft model, we show that REGy knockdown results in a significant reduction of tumor growth, suggesting an important role for REGγin tumor development. Taken together, our study demonstrates REGγ-mediated inactivation of p53 as one of the mechanisms in cancer progression.
引文
1. Rock, K.L., et al., Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on,MHC class I molecules. Cell,1994.78(5):p.761-71.
    2. Craiu, A., et al., Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem,1997.272(20):p.13437-45.
    3. Kisselev, A.F., T.N. Akopian, and A.L. Goldberg, Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J Biol Chem,1998.273(4):p.1982-9.
    4. Kisselev, A.F., et al., The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem,1999.274(6): p.3363-71.
    5. Glickman, M.H. and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway:destruction for the sake of construction. Physiol Rev,2002.82(2):p. 373-428.
    6. Li, X., et al., The SRC-3/AIB1 coactivator is degraded in a ubiquitin-and ATP-independent manner by the REGgamma proteasome. Cell,2006.124(2): p.381-92.
    7. Li, X., et al., Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell,2007.26(6):p.831-42.
    8. Chen, X., et al., Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell,2007.26(6):p.843-52.
    9. Suzuki, R., et al., Proteasomal turnover of hepatitis C virus core protein is regulated by two distinct mechanisms:a ubiquitin-dependent mechanism and a ubiquitin-independent but PA28gamma-dependent mechanism. J Virol,2009. 83(5):p.2389-92.
    10. Groll, M., et al., Investigations on the maturation and regulation of archaebacterialproteasomes. J Mol Biol,2003.327(1):p.75-83.
    11. Dahlmann, B., Proteasomes. Essays Biochem,2005.41:p.31-48.
    12. Hicke, L. and R. Dunn, Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol,2003.19:p. 141-72.
    13. Muratani, M. and W.P. Tansey, How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol,2003.4(3):p.192-201.
    14. Hoege, C., et al., RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature,2002.419(6903):p.135-41.
    15. Stelter, P. and H.D. Ulrich, Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature,2003.425(6954):p. 188-91.
    16. Gregory, R.C., T. Taniguchi, and A.D. D'Andrea, Regulation of the Fanconi anemia pathway by monoubiquitination. Semin Cancer Biol,2003.13(1):p. 77-82.
    17. Li, M., et al., Mono-versus polyubiquitination:differential control of p53 fate by Mdm2. Science,2003.302(5652):p.1972-5.
    18. Jentsch, S. and G. Pyrowolakis, Ubiquitin and its kin:how close are the family ties? Trends Cell Biol,2000.10(8):p.335-42.
    19. Ha, B.H. and E.E. Kim, Structures of proteases for ubiqutin and ubiquitin-like modifiers. BMB Rep,2008.41(6):p.435-43.
    20. Koegl, M., et al., A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell,1999.96(5):p.635-44.
    21. Breitschopf, K., et al., A novel site for ubiquitination:the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J,1998.17(20):p.5964-73.
    22. Ben-Saadon, R., et al., The tumor suppressor protein pl6(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue. J Biol Chem,2004.279(40):p. 41414-21.
    23. Cadwell, K. and L. Coscoy, Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science,2005.309(5731):p.127-30.
    24. Thrower, J.S., et al., Recognition of the polyubiquitin proteolytic signal. EMBO J,2000.19(1):p.94-102.
    25. Orlowski, M. and S. Wilk, Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys,2003.415(1):p.1-5.
    26. Tofaris, G.K., R. Layfield, and M.G. Spillantini, alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett,2001.509(1):p.22-6.
    27. Lin, L., G.N. DeMartino, and W.C. Greene, Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell,1998.92(6):p.819-28.
    28. Wright, P.E. and H.J. Dyson, Intrinsically unstructured proteins:re-assessing the protein structure-function paradigm. J Mol Biol,1999.293(2):p.321-31.
    29. Grune, T., T. Reinheckel, and K.J. Davies, Degradation of oxidized proteins in mammalian cells. FASEB J,1997.11(7):p.526-34.
    30. Bercovich, Z., et al., Degradation of ornithine decarboxylase in reticulocyte lysate is ATP-dependent but ubiquitin-independent. J Biol Chem,1989. 264(27):p.15949-52.
    31. Murakami, Y., et al., Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination:Nature,1992.360(6404):p.597-9.
    32. Jariel-Encontre, I., G. Bossis, and M. Piechaczyk, Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta,2008. 1786(2):p.153-77.
    33. Touitou, R., et al., A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J,2001.20(10):p.2367-75.
    34. Kriwacki, R.W., et al., Structural studies ofp21 Wafl/Cipl/Sdil in the free and Cdk2-bound state:conformational disorder mediates binding diversity. Proc Natl Acad Sci U S A,1996.93(21):p.11504-9.
    35. Liu, C.W., et al., Endoproteolytic activity of the proteasome. Science,2003. 299(5605):p.408-11.
    36. Liu, C.W., et al., ATP binding and ATP hydrolysis play distinct roles in the function of 26Sproteasome. Mol Cell,2006.24(1):p.39-50.
    37. zur Hausen, H., Papillomaviruses causing cancer:evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst,2000.92(9):p. 690-8.
    38. Haupt, Y., et al., Mdm2 promotes the rapid degradation of p53. Nature,1997. 387(6630):p.296-9.
    39. Classon, M. and E. Harlow, The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer,2002.2(12):p.910-7.
    40. Knight, J.S., N. Sharma, and E.S. Robertson, Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci U S A,2005.102(51):p. 18562-6.
    41. Kalejta, R.F., J.T. Bechtel, and T. Shenk, Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol, 2003.23(6):p.1885-95.
    42. Sdek, P., et al., MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell,2005.20(5):p.699-708.
    43. Chumakov, P.M., Versatile functions of p53 protein in multicellular organisms. Biochemistry (Mosc),2007.72(13):p.1399-421.
    44. Sherr, C.J. and J.M. Roberts, CDK inhibitors:positive and negative regulators of G1-phase progression. Genes Dev,1999.13(12):p.1501-12.
    45. Thai, T.H., et al., Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum Mol Genet,1998. 7(2):p.195-202.
    46. Lahav-Baratz, S., et al., Decreased level of the cell cycle regulator p27 and increased level of its ubiquitin ligase Skp2 in endometrial carcinoma but not in normal secretory or in hyperstimulated endometrium. Mol Hum Reprod, 2004.10(8):p.567-72.
    47. Bleotu, C., et al., K-ras expression--marker of dysplasia and cancer. Roum Arch Microbiol Immunol,2009.68(4):p.195-200.
    48. Van Waes, C., Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res,2007.13(4):p.1076-82.
    49. Sawada, H., et al., Proteasome mediates dopaminergic neuronal degeneration, and its inhibition causes alpha-synuclein inclusions. J Biol Chem,2004. 279(11):p.10710-9.
    50. Rideout, H.J., et al., Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive. inclusions in PC12 cells. J Neurochem,2001.78(4):p.899-908.
    51. McNaught, K.S. and P. Jenner, Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett,2001.297(3):p.191-4.
    52. Nikaido, T., et al., Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin Exp Immunol,1990.79(2):p.209-14.
    53. Ma, C.P., C.A. Slaughter, and G.N. DeMartino, Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J Biol Chem,1992.267(15):p.10515-23.
    54. Dubiel, W., et al., Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem,1992.267(31):p.22369-77.
    55. Kloetzel, P.M. and F. Ossendorp, Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol,2004.16(1): p.76-81.
    56. Rechsteiner, M., C. Realini, and V. Ustrell, The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochem J,2000.345 Pt 1:p. 1-15.
    57. Rivett, A.J. and A.R. Hearn, Proteasome function in antigen presentation: immunoproteasome complexes, Peptide production, and interactions with viral proteins. Curr Protein Pept Sci,2004.5(3):p.153-61.
    58. Murata, S., et al., Growth retardation in mice lacking the proteasome activator PA28gamma. J Biol Chem,1999.274(53):p.38211-5.
    59. Barton, L.F., et al., Immune defects in 28-kDa proteasome activator gamma-deficient mice. J Immunol,2004.172(6):p.3948-54.
    60. Ciechanover, A., The ubiquitin-proteasome proteolytic pathway. Cell,1994. 79(1):p.13-21.
    61. Ciechanover, A., The ubiquitin-proteasome pathway:on protein death and cell life. EMBO J,1998.17(24):p.7151-60.
    62. Hochstrasser, M., Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol,1995.7(2):p.215-23.
    63. Baumeister, W., et al., The proteasome:paradigm of a self-compartmentalizing protease. Cell,1998.92(3):p.367-80.
    64. Groll, M., et al., Structure of 20S proteasome from yeast at 2.4 A resolution. Nature,1997.386(6624):p.463-71.
    65. Rechsteiner, M. and C.P. Hill, Mobilizing the proteolytic machine:cell biological roles of proteasome activators and inhibitors. Trends Cell Biol, 2005.15(1):p.27-33.
    66. Voges, D., P. Zwickl, and W. Baumeister, The 26S proteasome:a molecular machine designed for controlled proteolysis. Annu Rev Biochem,1999.68:p. 1015-68.
    67. Li, J. and M. Rechsteiner, Molecular dissection of the 11S REG (PA28) proteasome activators. Biochimie,2001.83(3-4):p.373-83.
    68. Masson, P., et al., Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGgamma (PA28gamma). J Biol Chem,2001.276(2):p.1383-90.
    69. Murata, S., et al., Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta. EMBO J,2001.20(21):p. 5898-907.
    70. Schwarz, K., et al., The proteasome regulator PA28alpha/beta can enhance antigen presentation without affecting 20S proteasome subunit composition. Eur J Immunol,2000.30(12):p.3672-9.
    71. Tanahashi, N., et al., Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem,2000.275(19):p. 14336-45.
    72. Harris, J.L., et al., Substrate specificity of the human proteasome. Chem Biol, 2001.8(12):p.1131-41.
    73. Zhang, Z., et al., Identification of an activation region in the proteasome activator REGalpha. Proc Natl Acad Sci U S A,1998.95(6):p.2807-11.
    74. Realini, C., et al., Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators. J Biol Chem,1997.272(41):p.25483-92.
    75. Li, J., et al., Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta. EMBO J,2001. 20(13):p.3359-69.
    76. Masson, P., et al., Characterization of a REG/PA28 proteasome activator homolog in Dictyostelium discoideum indicates that the ubiquitin-and ATP-independent REGgamma proteasome is an ancient nuclear protease. Eukaryot Cell,2009.8(6):p.844-51.
    77. Li, J., et al., The proteasome activator 11 S REG or PA28:chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits. J Mol Biol, 2000.299(3):p.641-54.
    78. Gao, X., et al., Purification procedures determine the proteasome activation properties of REG gamma (PA28 gamma). Arch Biochem Biophys,2004. 425(2):p.158-64.
    79. Nie, J., et al., REGgamma proteasome mediates degradation of the ubiquitin ligase Smurfl. FEBS Lett.584(14):p.3021-7.
    80. Zhou, P., REGgamma:a shortcut to destruction. Cell,2006.124(2):p.256-7.
    81. Bar-Nahum, G., et al., A ratchet mechanism of transcription elongation and its control. Cell,2005.120(2):p.183-93.
    82. Saffarian, S., et al., Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science,2004.306(5693):p.108-11.
    83. Yamano, T., et al., Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing. J Exp Med,2002. 196(2):p.185-96.
    84. Khan, S., et al., Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J Immunol, 2001.167(12):p.6859-68.
    85. Tanahashi, N., et al., Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation. Genes Cells,1997.2(3):p. 195-211.
    86. Li, N., K.M. Lerea, and J.D. Etlinger, Phosphorylation of the proteasome activator PA28 is required for proteasome activation. Biochem Biophys Res Commun,1996.225(3):p.855-60.
    87. Hagemann, C., R. Patel, and J.L. Blank, MEKK3 interacts with the PA28 gamma regulatory subunit of the proteasome. Biochem J,2003.373(Pt 1):p. 71-9.
    88. Hagemann, C. and U.R. Rapp, Isotype-specific functions of Raf kinases. Exp Cell Res,1999.253(1):p.34-46.
    89. Zannini, L., et al., REGgamma proteasome activator is involved in the maintenance of chromosomal stability. Cell Cycle,2008.7(4):p.504-12.
    90. Gill, G., SUMO and ubiquitin in the nucleus:different functions, similar mechanisms? Genes Dev,2004.18(17):p.2046-59.
    91. Gao, G., et al., Proteasome Activator REG{gamma} Enhances Coxsackieviral Infection via Facilitating p53 Degradation. J Virol.
    92. Araya, R., R. Takahashi, and Y. Nomura, Yeast two-hybrid screening using constitutive-active caspase-7 as bait in the identification of PA28gamma as an effector caspase substrate. Cell Death Differ,2002.9(3):p.322-8.
    93. Nikaido, T., et al., Loss in transformed cells of cell cycle regulation of expression of a nuclear protein recognized by SLE patient antisera. Exp Cell Res,1989.182(1):p.284-9.
    94. Masson, P., J. Lundgren, and P. Young, Drosophila proteasome regulator REGgamma:transcriptional activation by DNA replication-related factor DREF and evidence for a role in cell cycle progression. J Mol Biol,2003. 327(5):p.1001-12.
    95. Anzick, S.L., et al., AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science,1997.277(5328):p.965-8.
    96. Roninson, I.B., Oncogenic functions of tumour suppressor p21(Waf1/Cp1/Sdi1):association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett,2002.179(1):p.1-14.
    97. Zhang, Z. and R. Zhang, Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation. EMBO J,2008.27(6):p.852-64.
    98. Sharpless, N.E. and R.A. DePinho,p53:good cop/bad cop. Cell,2002.110(1): p.9-12.
    99. Baldin, V., et al., A novel role for PA28gamma-proteasome in nuclear speckle organization and SR protein trafficking. Mol Biol Cell,2008.19(4):p. 1706-16.
    100. Zhou, Y., et al., Proteome identification of binding-partners interacting with cell polarity protein Par3 in Jurkat cells. Acta Biochim Biophys Sin (Shanghai),2008.40(8):p.729-39.
    101. Zannini, L., et al., REGgamma/PA28gamma proteasome activator interacts with PML and Chk2 and affects PML nuclear bodies number. Cell Cycle, 2009.8(15):p.2399-407.
    102. Nakahata, N. and M. Saito, [Regulation of G protein-coupled receptor function by its binding proteins]. Yakugaku Zasshi,2007.127(1):p.3-14.
    103. Okamura, T., et al., Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. J Clin Endocrinol Metab,2003.88(3): p.1374-83.
    104. Roessler, M., et al., Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol Cell Proteomics,2006.5(11):p.2092-101.
    105. Wang, X., et al., REG gamma:a potential marker in breast cancer and effect on cell cycle and proliferation of breast cancer cell. Med Oncol.
    106. Yan, J., S.Y. Tsai, and M.J. Tsai, SRC-3/AIB1:transcriptional coactivator in oncogenesis. Acta Pharmacol Sin,2006.27(4):p.387-94.
    107. Henke, R.T., et al., Overexpression of the nuclear receptor coactivator AIB1 (SRC-3) during progression of pancreatic adenocarcinoma. Clin Cancer Res, 2004.10(18 Pt 1):p.6134-42.
    108. Sakakura, C., et al., Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int J Cancer,2000. 89(3):p.217-23.
    109. Zhou, H.J., et al., SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res,2005.65(17):p.7976-83.
    110. Ying, H., et al., Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone beta receptor inhibits mitotic progression. J Clin Invest, 2006.116(11):p.2972-84.
    111. Moriishi, K., et al., Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol,2003. 77(19):p.10237-49.
    112. Tian, M., et al., Proteasomes reactivator REG gamma enchances oncogenicity of MDA-MB-231 cell line via promoting cell proliferation and inhibiting apoptosis. Cell Mol Biol (Noisy-le-grand),2009.55 Suppl:p. OL1121-31.
    113. Lowe, S.W. and C.J. Sherr, Tumor suppression by Ink4a-Arf:progress and puzzles. Curr Opin Genet Dev,2003.13(1):p.77-83.
    114. Meiners, S., et al., Proteasome inhibitors:poisons and remedies. Med Res Rev,2008.28(2):p.309-27.
    115. Rubinsztein, D.C., The roles of intracellular protein-degradation pathways in neurodegeneration. Nature,2006.443(7113):p.780-6.
    116. Yu, G., et al., Comparative analysis of REG{gamma} expression in mouse and human tissues. J Mol Cell Biol.2(4):p.192-8.
    117. Bett, J.S., et al., Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington's disease mice:exclusion of proteasome activator REGgamma as a therapeutic target. Hum Mol Genet,2006.15(1):p.33-44.
    118. Venkatraman, P., et al., Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell,2004.14(1):p.95-104.
    119. Pratt, G. and M. Rechsteiner, Proteasomes cleave at multiple sites within polyglutamine tracts:activation by PA28gamma(K188E). J Biol Chem,2008. 283(19):p.12919-25.
    120. Gao, G. and H. Luo, The ubiquitin-proteasome pathway in viral infections. Can J Physiol Pharmacol,2006.84(1):p.5-14.
    121. Moriishi, K., et al., Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci US A,2007.104(5):p.1661-6.
    122. Miyamoto, H., et al., Involvement of the PA28gamma-dependent pathway in insulin resistance induced by hepatitis C virus core protein. J Virol,2007. 81(4):p.1727-35.
    123. Grist, N.R. and D. Reid, Organisms in myocarditis/endocarditis viruses. J Infect,1997.34(2):p.155.
    124. Wang, X. and J. Robbins, Heart failure and protein quality control. Circ Res, 2006.99(12):p.1315-28.
    125. Weekes, J., et al., Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics,2003.3(2):p.208-16.
    126. Hedhli, N., et al., Proteasome activation during cardiac hypertrophy by the chaperone Hll Kinase/Hsp22. Cardiovasc Res,2008.77(3):p.497-505.
    127. Meiners, S., et al., Suppression of cardiomyocyte hypertrophy by inhibition of the ubiquitin-proteasome system. Hypertension,2008.51(2):p.302-8.
    128. Stansfield, W.E., et al., Proteasome inhibition promotes regression of left ventricular hypertrophy. Am J Physiol Heart Circ Physiol,2008.294(2):p. H645-50.
    129. Depre, C., et al., Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation,2006.114(17):p. 1821-8.
    130. Heineke, J. and J.D. Molkentin, Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol,2006.7(8):p. 589-600.
    131. Feingold, K., et al., Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. Am J Physiol Endocrinol Metab,2004.286(2):p. E201-7.
    132. Sano, M., et al., p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature,2007.446(7134):p.444-8.
    133. Donehower, L.A., et al., Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature,1992.356(6366):p.215-21.
    134. Srivastava, S., et al., Detection of both mutant and wild-type p53 protein in normal skin fibroblasts and demonstration of a shared'second hit'on p53 in diverse tumors from a cancer-prone family with Li-Fraumeni syndrome. Oncogene,1992.7(5):p.987-91.
    135. Vousden, K.H. and X. Lu, Live or let die:the cell's response to p53. Nat Rev Cancer,2002.2(8):p.594-604.
    136. Moll, U.M., N. Marchenko, and X.K. Zhang, p53 and Nur77/TR3-transcription factors that directly target mitochondria for cell death induction. Oncogene,2006.25(34):p.4725-43.
    137. Green, D.R. and G. Kroemer, Cytoplasmic functions of the tumour suppressor p53. Nature,2009.458(7242):p.1127-30.
    138. Haupt, Y.,p53 Regulation:a family affair. Cell Cycle,2004.3(7):p.884-5.
    139. Moll, U.M. and O. Petrenko, The MDM2-p53 interaction. Mol Cancer Res, 2003.1(14):p.1001-8.
    140. Honda, R., H. Tanaka, and H. Yasuda, Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressorp53. FEBS Lett,1997.420(1):p.25-7.
    141. Kubbutat, M.H., S.N. Jones, and K.H. Vousden, Regulation of p53 stability by Mdm2. Nature,1997.387(6630):p.299-303.
    142. Barak, Y., et al., mdm2 expression is induced by wild type p53 activity. EMBO J,1993.12(2):p.461-8.
    143. Momand, J., H.H. Wu, and G. Dasgupta, MDM2--master regulator of the p53 tumor suppressor protein. Gene,2000.242(1-2):p.15-29.
    144. Wu, X., et al., The p53-mdm-2 autoregulatory feedback loop. Genes Dev, 1993.7(7A):p.1126-32.
    145. Shvarts, A., et al., MDMX:a novel p53-binding protein with some functional properties of MDM2. EMBO J,1996.15(19):p.5349-57.
    146. Shvarts, A., et al., Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics,1997.43(1):p.34-42.
    147. Toledo, F. and G.M. Wahl, Regulating the p53 pathway:in vitro hypotheses, in vivo veritas. Nat Rev Cancer,2006.6(12):p.909-23.
    148. Matijasevic, Z., et al., MdmX regulates transformation and chromosomal stability in p53-deficient cells. Cell Cycle,2008.7(19):p.2967-73.
    149. Toledo, F. and G.M. Wahl, MDM2 and MDM4:p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol,2007.39(7-8):p.1476-82.
    150. Wilkening, S., J.L. Bermejo, and K. Hemminki, MDM2 SNP309 and cancer risk:a combined analysis. Carcinogenesis,2007.28(11):p.2262-7.
    151. Jones, S.N., et al., Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature,1995.378(6553):p.206-8.
    152. Vassilev, L.T., et al., In vivo activation of the p53 pathway by small-molecule antagonists ofMDM2. Science,2004.303(5659):p.844-8.
    153. Brooks, C.L. and W. Gu, p53 ubiquitination:Mdm2 and beyond. Mol Cell, 2006.21(3):p.307-15.
    154. Carter, S. and K.H. Vousden, p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation ofp53. Cell Cycle,2008.7(16):p.2519-28.
    155. Stehmeier, P. and S. Muller, Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair (Amst),2009.8(4):p.491-8.
    156. Wu, S.Y. and C.M. Chiang, Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J, 2009.28(9):p.1246-59.
    157. Xirodimas, D.P., et al., Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell,2004.118(1):p.83-97.
    158. Sundqvist, A., et al., Regulation of nucleolar signalling to p53 through NEDDylation of Lll. EMBO Rep,2009.10(10):p.1132-9.
    159. Kamijo, T., et al., Functional and physical interactions of the ARF tumor suppressor withp53 and Mdm2. Proc Natl Acad Sci U S A,1998.95(14):p. 8292-7.
    160. Pomerantz, J., et al., The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition ofp53. Cell,1998. 92(6):p.713-23.
    161. Inuzuka, H., et al., Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell.18(2):p.147-59.
    162. Doman, D., et al., The ubiquitin ligase COP1 is a critical negative regulator ofp53. Nature,2004.429(6987):p.86-92.
    163. Leng, R.P., et al., Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell,2003.112(6):p.779-91.
    164. Chen, D., et al., ARF-BPl/Mule is a critical mediator of the ARF tumor suppressor. Cell,2005.121(7):p.1071-83.
    165. Chen, D., C.L. Brooks, and W. Gu, ARF-BP1 as a potential therapeutic target. Br J Cancer,2006.94(11):p.1555-8.
    166. Li, M., et al., Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature,2002.416(6881):p.648-53.
    167. Mao, I., et al., REGgamma, a proteasome activator and beyond? Cell Mol Life Sci,2008.65(24):p.3971-80.
    168. Green, D.R. and J.E. Chipuk, p53 and metabolism:Inside the TIGAR. Cell, 2006.126(1):p.30-2.
    169. Harms, K., S. Nozell, and X. Chen, The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci,2004.61(7-8):p. 822-42.
    170. Zhang, Y., Y. Xiong, and W.G. Yarbrough, ARF promotes MDM2 degradation and stabilizes p53:ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell,1998.92(6):p.725-34.
    171. Kudo, N., et al., Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci U S A,1999.96(16):p.9112-7.
    172. Rodriguez, M.S., et al., Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol,2000.20(22):p. 8458-67.
    173. Kawaguchi, Y., et al., Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking. J Biol Chem,2006.281(3):p.1394-400.
    174. Stommel, J.M., et al., A leucine-rich nuclear export signal in the p53 tetramerization domain:regulation of subcellular localization and p53 activity by NES masking. EMBO J,1999.18(6):p.1660-72.
    175. Geyer, R.K., Z.K. Yu, and C.G. Maki, The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol,2000.2(9):p.569-73.
    176. Boyd, S.D., K.Y. Tsai, and T. Jacks, An intact HDM2 RING-finger domain is required for nuclear exclusion ofp53. Nat Cell Biol,2000.2(9):p.563-8.
    177. Freedman, D.A. and A.J. Levine, Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol, 1998.18(12):p.7288-93.
    178. Brooks, C.L., M. Li, and W. Gu, Mechanistic studies of MDM2-mediated ubiquitination inp53 regulation. J Biol Chem,2007.282(31):p.22804-15.
    179. Carter, S., et al., C-terminal modifications regulate MDM2 dissociation and nuclear export ofp53. Nat Cell Biol,2007.9(4):p.428-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700