糖原合酶激酶3对蛋白磷酸酯酶2A催化亚基翻译及翻译后修饰水平的调节及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景]
     蛋白磷酸酯酶2A (protein phosphatase-2A, PP2A)是一种具有多功能的酸磷酸酯,对蛋白质的丝氨酸/苏氨酸位点具有去磷酸作用。PP2A由核心酶(结构亚基A和具催化活性的亚基C组成)和调节亚基B组成全酶。活性亚基翻译后可以进行磷酸化和甲基化修饰。PP2A催化亚基(PP2AC)的羧基端307位点酪氨酸(Tyr)磷酸化/去磷酸化由蛋白酪氨酸激酶/酪氨酸磷酸酯酶调节,Tyr307位点磷酸化后PP2A活性下降。PP2Ac羧基端309位点的亮氨酸(Leu309)的甲基化/去甲基化修饰由PP2A特异性的甲基转移酶/甲酯酶调节,活性亚基的Leu309去甲基化后,PP2A的活性下降。在阿尔茨海默病(Alzheimer disease, AD)患者,PP2A和糖原合酶激酶3 (glycogen synthase kinase-3, GSK-3)分别是对微管相关蛋白Tau磷酸化修饰调节最为重要的蛋白磷酸酯酶和蛋白激酶,其活性调节失衡可造成Tau蛋白的异常过度磷酸化,从而导致AD样的病理改变。PP2A活性在AD患者脑组织中明显下降,但其具体的分子机制仍不清楚。我们最近研究发现,GSK-3可通过上调PP2A抑制因子-2(I2PP2A)的表达水平而抑制PP2A的活性。统计学分析资料显示,GSK-3活性与PP2A活性呈负相关,相关系数为R=0.9166; GSK-3与I2PP2A的相关性系数R=0.9158,而I-PP2A与PP2A活性的相关系数为R=-0.7164。这些研究结果提示,GSK-3可能还通过其它的途径调节PP2A的活性。
     [目的]
     基于上述背景,本研究拟通过在整体和细胞水平调节GSK-3活性,检测PP2Ac蛋白、Tyr307磷酸化(pY307-PP2AC)、Leu309去甲基化水平(dmL309-PP2AC)以及调节PP2A磷酸化和甲基化相关分子的变化,进一步阐明GSK-3调节PP2A活性的分子机制。
     [方法]
     将选用小鼠神经瘤细胞株N2a和人胚肾细胞株HEK293,给予磷脂酰肌醇3-激酶抑制剂wortmannin (WO,1μM和2gM,间接激活GSK-3)或GSK-3的特异性拮抗剂SB216763(SB,5μM和7μM)或WO和SB联合给药;或转染野生型GSK-3β质粒、蛋白磷酸酯酶1B (PTP1B)或蛋白酪氨酸激酶Src RNA干扰质粒、PP2A甲酯酶(PME-1)或PP2A甲基转移酶(PPMT1) RNA干扰质粒;或在整体水平,通过在Sprague Dawley大鼠脑立体定位注射10μl的100μM WO或70μM的SB或100μM WO与70μM SB联合给药;或C57BL/6小鼠海马脑立体定位注射2gl表达野生型GSK-3β的慢病毒;还选用了GSK-3β基因敲除的杂合子小鼠(GSK-3β+/- mice)为研究对象。采用免疫印迹方法(Western blotting)检测以上各样品中PP2AC、pY307-PP2AC水平,dmL309-PP2AC水平,PTP1B、Src、CREB、PME-1、PPMT1及PP2A调节亚基(PP2AB)的蛋白水平。免疫组织化学的方法检测了表达GSK-3β慢病毒后小鼠海马pY307-PP2AC、dmL309-PP2Ac和总PP2Ac的变化。免疫共沉淀的方法检测了PTP1B、Src、PME-1、PPMT1与GSK-3p的相互作用。ELISA方法检测总的蛋白酪氨酸磷酸酯酶的酶活性以及PTP1B和Src的酶活性。RT-PCR方法检测了PP2AC、PTP1B、PME-1和PPMT1的mRNA水平。
     [结果]
     当给予PI3-K抑制剂WO处理后,pS9-GSK-3p水平下降;PP2Ac蛋白水平降低;pY307、Src蛋白水平增加、PTP1B蛋白水平下降,PTP1B的酶活性降低;dmL309、PME-1蛋白水平增加,而PPMT1蛋白水平下降;PP2AB蛋白水平降低。而当给予GSK-3的特异性拮抗剂SB处理后,pS9-GSK-3p水平上升;PP2Ac蛋白表达水平增加;pY307、Src蛋白水平降低、PTP1B蛋白水平增加,PTP1B的酶活性增加;dmL309、PME-1蛋白水平降低,PPMT1蛋白水平增加;PP2AB蛋白水平升高。且SB能逆转WO诱导的上述各指标的变化。而WO或SB处理对Src的活性没有明显的改变。过表达GSK-3β野生型质粒后,PP2Ac水平下降;pY307、Src水平升高,PTP1B蛋白水平下降;dmL309、PME-1蛋白水平增加,PPMT1蛋白水平下降。GSK-3β~(+/-)。小鼠海马样品中检测到PP2Ac水平升高;pY307、Src蛋白水平降低,PTP1B蛋白水平升高;dmL309、PME-1蛋白水平降低,PPMT1蛋白水平升高。下调PTP1B的表达水平后能逆转SB诱导的pY307下降,而下调Src的表达后不能消除WO诱导的pY307的改变;下调PME-1的表达后逆转了WO诱导的dmL309增加,而下调PPMT1的表达逆转了SB诱导的dmL309的减少。GSK-3β与PTP1B、PME-1存在相互作用并能磷酸化PTP1B、PME-1的丝氨酸位点。给予WO处理后,可使PP2AC、PTP1B、PPMT1的nRNA水平下降,PME-1的mRNA水平增加;而给予SB处理,PP2Ac、PTP1B、PPMT1的nRNA增加,PME-1的nRNA水平下降;同时,SB能逆转WO诱导引起的PTP1B、PPMT1的mRNA水平下降和PME-1的mRNA水平升高。另外,给予SB处理后,还增加CREB的蛋白表达水平;下调CREB蛋白表达水平后,可逆转SB诱导的PP2Ac蛋白水平的增加。
     [结论]
     GSK-3β可通过分别调节CREB蛋白水平和PTP1B的活性,影响PP2Ac的mRNA和蛋白表达及其Tyr307磷酸化水平。通过调节PME-1和PPME1转录和蛋白表达,GSK-3p改变PP2Ac的Leu309去甲基化水平。此外,GSK-3β还可调节PP2AB的蛋白表达水平。由于GSK-3p和PP2A在AD患者的tau蛋白磷酸化中起关键作用,我们的研究结果提示,调节GSK-3β可达到同时控制PP2A的含量和活性,对AD药物研发有重要价值。
Background
     Protein phosphatase 2A (PP2A) is one of major brain serine/threonine protein phosphatases. In vivo, PP2A predominantly exist as heterotrimers containing a scaffolding subunit (A), a regulatory subunit (B) and a catalytic subunit (C). The highly conserved carboxy-terminal sequence of the C subunit (PP2AC) can undergo post-translational modifications, including phosphorylation and carboxyl methylation. Phosphorylation level at tyrosine-307 (pY307) was regulated by tyrosine kinases and protein tyrosine phosphataselB (PTP1B), phosphorylation transiently inactivates PP2A. Methylation of PP2AC at leucine-309 (Leu309) was catalyzed by specific PP2A methyltransferase (PPMT1), and its demethylation was catalyzed by specific PP2A methylesterase (PME-1). Demethylation of PP2A at Leu309 inhibits PP2A. Phosphorylation and methylation of PP2Ac affects PP2A substrate pecificity, targeting and cellular functions.
     Among the kinases and phosphatases, glycogen synthase kinase-3β(GSK-3β) and PP2A are respectively the most implicated. It has been recognized that the imbalanced regulation of protein phosphatases and protein kinases is the direct cause of tau hyperphosphorylation. In the Alzheimer's disease (AD) brain, decrease of PP2A activity has been reported; but the molecular mechanisms are unknown. Our studies have shown that a negative correlation between GSK-3βand PP2A was observed. Activation of GSK-3βinhibits PP2A with upregulation of an endogenous PP2A inhibitor, namely inhibitor-2 of PP2A (I2PP2A). In the study, we noticed that the correlation values between GSK-3βand I2PP2A (R=0.9158) and between GSK-3βand PP2A (R=-0.9166) were much higher than the correlation value between PP2A and I2PP2A (R=-0.7564), implying that GSK-3βmay affect PP2A through multiple pathways in addition to regulating I2PP2A.
     Objective
     It was aimed to investigate the effects of GSK-3βon PP2Ac expression and posttranslational modifications, including phosphorylation at Tyr307 and demethylation at Leu309 (dmL309) in vitro and in vivo and the underlying mechanisms.
     Methods
     The human embryonic kidney 293 (HEK293) and neuroblastoma 2a (N2a) cells were used for the study. The cells were treated with wortmannin (WO, an inhibitor of PI3-K, 1μM and 2μM), SB216763 (SB, an inhibitor of GSK-3,5μM and 7μM), WO (2μM) associated with SB (7μM), or transfected with plasmids expressing HA-tagged wild type GSK-3β(wtGSK-3β), or pSilencer plasmids silencing gene of PTPIB or tyrosine kinase (Src) or PME-1 or PPMT1. WO (100μM) or SB (70μM) in a total volume of 10μl was injected into 3-month-old Sprague Dawley (SD) rats'left lateral ventricle or 2μl lenti-wtGSK-3βor lenti-eGFP were injected into the 3-month-old C57BL/6J (C57) mice' hippocampus. GSK-3βheterozygous knockout mice (GSK-3β+/- mice), which on the C57BL/6J background are viable and express reduced levels of protein and enzymatic activity, were used. Then proteins including PP2AC, pY307, dmL309, PTPIB, Src, PME-1, PPMT1, PP2AB and cAMP response element binding protein (CREB) were detected by western blotting. And the protein levels of pY307, dmL309 and PP2Ac in mice' hippocampus injected lenti-wtGSK-3βor lenti-eGFP were detected by immunohistochemistry. The association of GSK-3βwith PTPIB, Src, PME-1 and PPMT1 were measured by co-immunoprecipitation. Activity of PTPIB and Src was analysed by ELISA. The mRNA levels of PP2AC, PTPIB, PME-1 and PPMT1 were detected via RT-PCR.
     Results
     WO treatment or transfection with wtGSK-3(3 plasmid decreased the levels of PP2AC and PP2AB, and increased pY307 and dmL309, while SB treatment increased PP2AC and PP2AB and decreased pY307 and dmL309 levels. PP2AC increased and pY307 and dmL309 level decreased in the hippocampus of GSK-3(3β+/- mice compared with C57 mice, and simultaneous inhibition of GSK-3 by SB prevented the WO-induced PP2A inactivation. We also found that the level of Src and PME-1 increased, and level of PTPIB and PPMT1 deceased in WO treated groups, and the levels of these proteins changed contrarily in SB treated groups. We found that GSK-3βcan modulate both PTPIB and Src in protein levels, but it only inhibits PTPIB activity with no effect on Src activity. Furthermore, only knockdown of PTPIB but not Src by siRNA eliminates the effects of GSK-3βon PP2A; GSK-3βcan modulate both PME-1 and PPMT1, knockdown of PME-1 or PPMT1 by siRNA eliminates the effects of GSK-3βon PP2A. GSK-3βphosphorylates PTPIB and PME-1 at serine residuals and activation of GSK-3βreduces the mRNA levels of PTPIB and PPMT1 and increases PME-1 mRNA level. Additionally, we also observed that GSK-3 negatively regulates the protein and mRNA levels of PP2AC, and knockdown of CREB abolishes the increase of PP2Ac induced by GSK-3 inhibition.
     Conclusion
     GSK-3βregulates the expression of PP2Ac via CREB, and it also regulates the Tyr-307 phosphorylation by PTPIB and Leu309 demethylation via PME-1 and PPMT1, respectively. Therefore, GSK-3βmay inhibit PP2A activity through decreasing the catalytic subunit expression and increasing the phosphorylation and demethylation. GSK-3 also regulates the expression level of PP2AB. As GSK-3βand PP2A are respectively the most implicated kinase and phosphatase in AD-like tau hyperphosphorylation, our data suggest that targeting GSK-3βmay simultaneously correcting the abnormality of PP2A.
引文
1 Grundke-Iqbal,I.,Iqbal,K.,Quinlall,M.,Tung,Y.C.,Zaidi,M.S.and Wisniewski,H.M.(1986)Microtubule-associated protein tau:A component ofAlzheimer paired helicalfilament.J.Biol.Chem.261,6084-6089
    2.Lee,V.M.,Balin,B.J.,Otvos,L.J.and Trojanowski,J.Q.(1991)A68:a major subunitof the paired helical filaments and derivatized forms of normal tau.Science 251,675-678
    3 Hanger, D.P., Seereeram, A. and Noble, W. (2009) Mediators of tauphosphorylation in the pathogenesis of Alzheimer's disease.Expert Rev.Neurother.9(11),1647-1666
    4 Hanger.D.P.,Anderton,B.H.and Noble,W.(2009)Tau phosphorylation:thetherapeutic challenge for neurodegenerative disease.Trends Mol Med.15(3),112-119
    5 Takashima,A.(2006)GSK-3 is essential in the pathogenesis of Alzheimer's disease.J.Alzheimers Dis.9.309-317
    6 Planel,E.,Miyasaka,T.,Launey,T.,Chui,D.H.,Tanemura,K.,Sato,S.,Murayama,O.,Ishiguro,K.,Tatebayashi,Y,and Takashima,A.(2004)Alterations in GlucoseMetabolism Induce Hypothermia Leading to Tau Hyperphosphorylation throughDifferential Inhibition of Kinase and Phosphatase Activities:Implications forAlzheimet's Disease.J.Neurosci.4(10),2401-2411
    7 Metcalfe,M.J.and Figueiredo-Pereira,M.E.(2010)Relationship Between TauPatho1ogy and Neuroinflammation in Alzheimer's Disease.Mt.Sinai J.Med.77(1),50-58
    8 Mukai,F.,Ishiguro,K.,Sano,Y.and Fujita,S.C.(2002)Alternative splicing isoform oftau protein kinase I/glycogen synthase kinase 3β.J.Neurochem.81(5),1073-1083
    9 Ishiguro,K.,Omori,A.,Takamatsu,M.,Sato,K.,Arioka,M.,Uchida,T.and Imahori,K.(1992)Phosphorylation sites on tau by tau protein kinase I,a bovine derived kinasegenerating an epitope of paired helical filaments.Neurosci.Lett.148,202-206
    10 Ishiquro,K.,Shiratsuchi,A.,Sato,S.,Omori,A.,Arioka,M.,Kobayashi,S.,Uchida,T. and Imahori, K. (1993) Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett.325, 167-172
    11 Yang, S.D., Song, J.S., Yu, J.S. and Shiah, S.G. (1993) Protein kinase Fa:GSK-3 phosphorylates tau on Ser235-Pro and Ser404-Pro that are abnormally phosphorylated in Alzheimer's disease brain. J. Neurochem.61,1742-1747
    12 Takashima, A., Noguchi, K., Michel, G., Mercken, M., Hoshi, M., Ishiguro, K. and Imahori, K. (1996) Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta. Neurosci. Lett.203,33-36
    13 Okawa, Y., Ishiguro, K. and Fujita, S.C. (2003) Stress-induced hyperphosphorylation of tau in the mouse brain. FEBS Lett.535(1-3),183-189
    14 Lovestone, S., Reynolds, C.H., Latimer, D., Davis, D.R., Anderton, B.H., Gallo, J.M., Hanger, D., Mulot, S., Marquardt, B., Stabel, S., Woodgett,J.R. and Miller, C.J. (1994) Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr. Biol.4,1077-1086
    15 Munoz-Montano, J.R., Moreno, F.J., Avila, J. and Diaz-Nido, J. (1997) Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett. 411,183-188
    16 Hong, M., Chen, D.C., Klein, P.S. and Lee, V.M. (1997) Lithium reduces tau 18 phosphorylation by inhibition of glycogen synthase kinase-3. J. Biol. Chem.272, 25326-25332
    17 Liu, S.J., Zhang, A.H., Li, H.L., Wang, O., Deng, H.M., Netzer, W,J., Xu, H.X. and Wang, J.Z. (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem.87,1333-1344
    18 Ferrer, I., Barrachina, M. and Puig, B. (2002) Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits inAlzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Acta.Neuropathol. (Berl.) 104,583-591
    19 Pei, J.J., Braak, E., Braak, H., Grundke-Iqbal, I., Iqbal, K., Winblad, B. and Cowburn, R.F. (1999) Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol.58, 1010-1019
    20 Engel, T., Lucas, J.J., Gomez-Ramos, P., Moran, M.A., Avila, J. and Hernandez, F. (2006) Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol. Aging.27,1258-1268
    21 Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C.X. (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci.22,1942-1950
    22 Gong, C.X., Singh, T.J., Grundke-Iqbal. I. and Iqbal. K. (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem.61(3),921-927
    23 Leroy, K., Yilmaz, Z. and Brion, J.P. (2007) Increased level of active GSK-3beta in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol.33(1), 43-55
    24 Hye, A., Kerr, F., Archer, N., Foy, C., Poppe, M., Brown, R., Hamilton, G., Powell, J., Anderton, B. and Lovestone, S. (2005) Glycogen synthase kinase-3 is increased in white cells early in Alzheimer's disease. Neurosci. Lett.373(1),1-4
    25 Ren, Q.G, Liao, X.M., Wang, Z.F., Qu, Z.S. and Wang, J.Z. (2006) The involvement of glycogen synthase kinase-3 and protein phosphatase-2A in lactacystin-induced tau accumulation. FEBS Lett.580,2503-2511
    26 Tsuji, S., Morinobu. S., Tanaka, K., Kawano, K. and Yamawaki, S. (2003) Lithium, but not valproate, induces the serine/threonine phosphatase activity of protein phosphatase 2A in the rat brain, without affecting its expression. J. Neural. Transm. 110,413-425
    27 Liu, G.P., Zhang, Y., Yao, X.Q., Zhang, C.E., Fang, J., Wang, Q. and Wang, J.Z. (2008) Activation of glycogen synthase kinase-3 inhibits protein phosphatase-2A and the underlying mechanisms. Neurobiol Aging.29(9),1348-1358
    28 Chen, J., Martin, B.L. and Brautigan, D.L. (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257, 1261-1264
    29 Hoeflich K.P., Luo J., Rubie E.A., Tsao M.S, Jin O. and Woodgett J.R. (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406,86-90
    30 Liu, S.J., Zhang, A.H., Li, H.L., Wang, Q., Deng, H.M., Netzer, W.J., Xu, H., and Wang, J.Z. (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem.87(6),1333-1344
    31 Kaspar, B.K., Vissel, B., Bengoechea, T., Crone, S., Randolph-Moore, L., Muller, R., Brandon, E.P., Schaffer, D., Verma, I.M., Lee, K.F., Heinemann, S.F., and Gage, F.H. (2002) Adeno-associated virus effectively mediates conditional gene modification in the brain. Proc Natl Acad Sci U.S.A.99(4),2320-2325
    32 Venable, C.L., Frevert, E.U., Kim, Y.B., Fischer, B.M., Kamatkar, S., Neel, B.G. and Kahn, B.B. (2000) Overexpression of protein-tyrosine phosphatase-IB in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation. J. Biol. Chem.275(24),18318-18326
    33 Wang, J.Z., Grundke-Iqbal, I. and Iqbal, K. (1996) Restoration of biological activity of Alzheimer abnormally phosphorylated τ by dephosphorylation with protein phosphatase-2A,-2B and-1. Mol. Brain Res.38(2),200-208
    34 Yamamoto H., Hasegawa M., Ono T., Tashima K., Ihara Y. and Miyamoto E. (1995) Dephosphorylation of fetal-tau and paired helical filament-tau by protein phosphatase 1 and 2A and calcineurin. J. Biochem.118(6),1224-1231
    35 Sontag, E., Luangpirom, A., Hladik, C., Mudrak, I., Ogrisrd, E., Speciale, S. and White, C.L.3rd. (2004a) Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J. Neuropathol. Exp.Neuro 1.63,287-301
    36 Sontag, E., Hladik, C., Montgomery, L., Luangpirom, A., Mudrak, I., Ogris, E. and White, C.L.3rd. (2004b) downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J. Neuropathol. Exp. Neurol.63,1080-1091
    37 Tanimukai, H., Grundke-Iqbal,I. and Iqbal, K. (2005) Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer's disease. Am. J. Pathol.166,1761-1771
    38 Chen, J., Parsons, S. and Brautigan, D.L. (1994) Tyrosine phosphorylation of protein phosphatase 2A in response to growth stimulation and v-src transformation of fibroblasts. J. Biol. Chem.269(11),7957-7962
    39 Shimizu, S., Ugi, S., Maegawa, H., Egawa, K., Nishio, Y., Yoshizaki, T., Shi, K., Nagai, Y., Morino, K., Nemoto, K., Nakamura, T., Bryer-Ash, M. and Kashiwagi, A. (2003) Protein-tyrosine phosphatase 1B as new activator for hepatic lipogenesis via sterol regulatory element-binding protein-1 gene expression. J. Biol. Chem.278(44), 43095-4310
    40 Fischer, E.H., Charbonneau, H. and Tonks, N.K. (1991) Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253,401-406
    41 Barford, D., Flint, A.J. and Tonks, N.K. (1994) Crystal structure of human protein tyrosine phosphatase 1B. Science 263,1397-1404
    42 Wang, Q., Somwar, R., Bilan, P.J., Liu, Z., Jin, J., Woodgett, J.R., Klip, A. (1999) Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol. Cell. Biol.19(6),4008-4018
    43 Ahmad, F. and Goldstein, B.J. (1995) Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism 44(9),1175-1184
    44 Ahmad, F., Considine, R.V. and Goldstein, B.J. (1995) Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J.Clin.Invest.95(6),2806-2812
    45 Yokoyama, N. and Miller, W.T. (2001) Inhibition of Src by direct interaction with protein phosphatase 2A. FEBS Lett.505(3),460-464
    46 Brown, M.T. and Cooper, J.A. (1996) Regulation, substrates and functions of src. Biochim. Biophys. Acta.1287(2-3),121-149
    47 Cooper, J.A. and Howell, B. (1993) The when and how of Src regulation. Cell 73(6), 1051-1054
    48 Roskoski, R.J. (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem. Biophys. Res. Commun.331(1),1-14
    49 Levin, V.A. (2004) Basis and importance of Src as a target in cancer. Cancer Treat. Res.119,89-119
    50 Bjorge, J.D., Pang, A. and Fujita, D.J. (2000) Identification of protein-tyrosine phosphatase IB as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem.275(52),41439-41446
    51 Khew-Goodall, Y, Mayer, R.E., Maurer, F., Stone, S.R., Hemmings, B.A. (1991) Structure and transcriptional regulation of protein phosphatase 2A catalytic subunit genes. Biochemistry 30,89-97
    52 Jones, T.A., Barker, H.M., Da Cruz e Silva, E.F., Mayer-Jaekel, R.E., Hemmings, B.A., Spurr, N.K., Sheer, D. and Cohen, P.T.W. (1993) Localization of the genes encoding the catalytic subunits of protein phosphatase 2A to human chromosome bands 5q23-q31 and 8p12-p11.2, respectively. Cytogenet. Cell Genet.63,35-41
    53 Stone, S.R., Hofsteenge, J. and Hemmings, B.A. (1987) Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry 26,7215-7220
    54 Green, D.D., Yang, S.I. and Mumby, M.C. (1987) Molecular cloning and sequence analysis of the catalytic subunit of bovine type 2A protein phosphatase. Proc. Natl. Acad. Sci. U.S.A.84,4880-4884
    55 Arino, J., Woon, C.W., Brautigan, D.L. and Miller Jr, T.B. (1988) Human liver phosphatase 2A:cDNA and amino acid sequence of two catalytic subunit isotypes. Proc. Natl. Acad. Sci. U.S.A.85,4252-4256
    56 Khew-Goodall, Y. and Hemmings, B.A. (1988) Tissue-specific expression of mRNAs encoding a-and b-catalytic subunits of protein phosphatase 2A. FEBS Lett.238, 265-268
    57 Hooper, C., Killick, R. and Lovestone, S. (2008) The GSK3 hypothesis of Alzheimer's disease. J Neurochem.104(6),1433-1439
    58 Leroy, K., Boutajangout, A., Authelet, M., Woodgett, J.R., Anderton, B.H. and Brion, J.P. (2002) The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer's disease. Acta. Neuropathol. 103(2),91-99
    59 Pei, J.J., Gong, C.X., Iqbal, K., Grundke-Iqbal, I., Wu, Q.L., Winblad, B. and Cowburn, R.F. (1998) Subcellular distribution of protein phosphatases and abnormally phosphorylated tau in the temporal cortex from Alzheimer's disease and control brains. J. Neural. Transm.105(1),69-83
    60 Vogelsberg-Ragaglia, V., Schuck, T., Trojanowski, J.Q. and Lee, V.M. (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp.Neurol.168(2),402-412
    61 Liu, R., Zhou, X.W., Tanila, H., Bjorkdahl, C., Wang, J.Z., Guan, Z.Z., Cao, Y., Gustafsson J.A., Winblad B. and Pei J.J. (2008) Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J. Cell Mol. Med.12(1), 241-257
    1 Cohen, P. (1989) The structure and regulation of protein phosphatases. Annu. Rev. Biochem.58,453-508
    2 S. Wera, S. and Hemmings, B.A. (1995) Serine/threonine protein phosphatases. Biochem. J.311,7-29
    3 Chen, J., Martin, B.L. and Brautigan, D.L. (1992) Regulation of protein serine threonine phosphatase type-2A by tyrosine phosphorylation. Science 257,1261-1264
    4 Chen, J., Parsons, S. and Brautigan, D.L. (1994) Tyrosine phosphorylation of protein phosphatase 2A in response to growth stimulation and v-src transformation of fibroblasts. J. Biol. Chem.269,7957-7962
    5 Wang, J.Z., Wu, Q., Smith, A., Grundke-Iqbal, I. and Iqbal, K. (1998) Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Lett.436,28-34
    6 Gong, C.X., Wang, J.Z., Iqbal, K. and Grundke-Iqbal, I. (2003) Inhibition of protein phosphatase 2A induces phosphorylation and accumulation of neurofilaments in metabolically active rat brain slices. Neurosci. Lett.340,107-110
    7 Hye, A., Kerr, F., Archer, N., Foy, C., Poppe, M., Brown, R., Hamilton, G., Powell, J., Anderton, B. and Lovestone, S. (2005) Glycogen synthase kinase-3 is increased in white cells early in Alzheimer's disease. Neurosci. Lett.373(1),1-4
    8 Leroy, K., Yilmaz, Z. and Brion, J.P. (2007) Increased level of active GSK-3beta in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol.33(1), 43-55
    9 Gong, C.X., Singh, T.J., Grundke-Iqbal. I. and Iqbal. K. (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem.61(3),921-927
    10 Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C.X. (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci.22,1942-1950
    11 Ren, Q.G, Liao, X.M., Wang, Z.F., Qu, Z.S. and Wang, J.Z. (2006) The involvement of glycogen synthase kinase-3 and protein phosphatase-2A in lactacystin-induced tau accumulation. FEBS Lett.580,2503-2511
    12 Tsuji, S., Morinobu, S., Tanaka, K., Kawano, K. and Yamawaki, S. (2003) Lithium, but not valproate, induces the serine/threonine phosphatase activity of protein phosphatase 2A in the rat brain, without affecting its expression. J. Neural. Transm. 110,413-425
    13 Liu, G.P., Zhang, Y., Yao, X.Q., Zhang, C.E., Fang, J., Wang, Q. and Wang, J.Z. (2008) Activation of glycogen synthase kinase-3 inhibits protein phosphatase-2A and the underlying mechanisms. Neurobiol Aging.29(9),1348-1358
    14 Chen, C.L., Lin, C.F., Chiang, C.W., Jan, M.S. and Lin, Y.S. (2006) Lithium inhibits ceramide-and etoposide-induced protein phosphatase 2A methylation, Bcl-2 dephosphorylation, caspase-2 activation, and apoptosis. Mol. Pharmacol.70(2), 510-517
    15 Li, M., Guo, H., and Damuni, Z. (1995) Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry 34,1988-1996
    16 Cayla, X., Goris, J., Hermann, J., Hendrix, P., Ozon, R. and Merlevede, W. (1990) Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Biochemistry 29,658-667
    17 Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C. and Hannun, Y. A. (1993) Ceramide activates heterotrimeric protein phosphatase 2A.J. Biol. Chem.268, 15523-15530
    18 Rundell, K. (1987) Complete interaction of cellular 56,000-and 32,000-Mr proteins with simian virus 40 small-t antigen in productively infected cells. J. Virol.61, 1240-1243
    19 Lee, J. and Stock, J. (1993) Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J. Biol. Chem. 268,19192-19195
    20 Li, M. and Damuni, Z. (1994) Okadaic acid and microcystin-LR directly inhibit the methylation of protein phosphatase 2A by its specific methyltransferase. Biochem. Biophys. Res. Commun.202,1023-1030
    21 Favre, B., Zolnierowicz, S., Turowski, P. and Hemmings, B. A. (1994) The catalytic subunit of protein phosphatase 2A is carboxyl-methylated in vivo. J. Biol. Chem.269, 16311-16317
    22 Xie, H. and Clarke, S. (1994) Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J. Biol. Chem.269, 1981-1984
    23 Sontag, E., Luangpirom, A., Hladik, C., Mudrak, I., Ogrisrd, E., Speciale, S. and White, C.L.3rd. (2004) Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J. Neuropathol. Exp.Neurol.63,287-301
    24 Sontag, E., Hladik, C., Montgomery, L., Luangpirom, A., Mudrak, I., Ogris, E. and White, C.L.3rd. (2004) downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J. Neuropathol. Exp. Neurol.63,1080-1091
    25 De Baere, I., Derua, R., Janssens, V., Van Hoof, C., Waelkens, E., Merlevede, W. and Goris, J. (1999) Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human Homologue. Biochemistry 38, 16539-16547
    26 Lee, J., Chen, Y., Tolstykh, T. and Stock, J. (1996) A specific protein carboxyl methesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proc. Natl. Acad. Sci. USA 93,6043-6047
    27 Xie, H. and Clarke, S. (1994)An enzymatica activity in bovine brain that catalyzes the reversal of the C-terminal methyl esterification of protein phosphatase 2A. Biochem. Biophys. Res. Commun.203,1710-1715
    28 Lee, J.A. and Pallas, D.C. (2007) Leucine carboxyl methyltransferase-1 is necessary for normal progression through mitosis in mammalian cells. J. Biol. Chem.282, 30974-30984
    29 Longin, S., Zwaenepoel K, Louis, J.V., Dilworth, S., Goris, J. and Janssens, V. (2007) Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic subunit. J. Biol. Chem.282,26971-26980
    30 Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y.C., Zaidi, M.S. and Wisniewski, H.M. (1986) Microtubule-associated protein tau:A component of Alzheimer paired helical filament. J. Biol. Chem.261,6084-6089
    31 Lee, V.M., Balin, B.J., Otvos, L.J. and Trojanowski, J.Q. (1991) A68:a major subunit of the paired helical filaments and derivatized forms of normal tau. Science 251, 675-678
    32 Gong, C.X., Lidsky, T., Wegiel, J., Zuck, L., Grundke-Iqbal, I. and Iqbal, K.(2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J. Biol. Chem.275,5535-5544
    33 Gong, C.X., Weigiel, J., Lidsky, T., Zuck, L., Avila, J., Wisniewski, H.M., Grundke-Iqbal, I. and Iqbal, K. (2000) Regulation of phosphorylation of neuronal microtubule-associated proteins MAPlb and MAP2 by protein phosphatase-2A and-2B in rat brain. Brain Res.853,299-309
    34 Pei, J.J., Sersen, E., Iqbal, K. and Grundke-Iqbal, I. (1994) Expression of protein phosphatases (PP-1, PP-2A, PP-2B and PTP-1B) and protein kinases (MAP kinase and P34cdc2) in the hippocampus of patients with Alzheimer disease and normal aged individuals. Brain Res.655,70-76
    35 Planel, E., Yasutake, K., Fujita, S.C. and Ishiguro, K. (2001) Inhibition of phosphatase 2A overrides tau protein kinase 1/glycogen synthase kinase3β and cyclin-dependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse. J. Biol. Chem.276,34298-34306
    36 Takashima, A. (2006) GSK-3 is essential in the pathogenesis of Alzheimer's disease. J. Alzheimers Dis.9,309-317
    37 Avila, J. And Diaz-Nido, J. (2004) Tangling with hypothermia. Nature Med.10, 460-461
    38 Wang, J.Z., Gong, C.X., Zaidi, T., Grundke-Iqbal, I. and Iqbal, K. (1995) Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and-2B. J. Biol. Chem.270,4854-4860
    39 Wang, J.Z., Grundke-Iqbal, I. and Iqbal, K. (1996) Restoration of biological activity of Alzheimer abnormally phosphorylated τ by dephosphorylation with protein phosphatase-2A,-2B and -1. Mol. Brain Res.38(2),200-208
    40 Yamamoto H., Hasegawa M., Ono T., Tashima K., Ihara Y. and Miyamoto E. (1995) Dephosphorylation of fetal-tau and paired helical filament-tau by protein phosphatase 1 and 2A and calcineurin. J. Biochem.118(6),1224-1231
    41 Hooper, C., Killick, R. and Lovestone, S. (2008) The GSK3 hypothesis of Alzheimer's disease. J Neurochem.104(6),1433-1439
    42 Leroy, K., Boutajangout, A., Authelet, M., Woodgett, J.R., Anderton, B.H. and Brion, J.P. (2002) The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer's disease. Acta. Neuropathol. 103(2),91-99
    43 Ferrer, I., Barrachina, M. and Puig, B. (2002) Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Acta. Neuropathol. (Berl.) 104,583-591
    44 Pei, J.J., Braak, E., Braak, H., Grundke-Iqbal, I., Iqbal, K., Winblad, B. and Cowburn, R.F. (1999) Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol.58, 1010-1019
    45 Takashima, A., Noguchi, K., Michel, G., Mercken, M., Hoshi, M., Ishiguro, K. and Imahori, K. (1996) Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta. Neurosci. Lett.203,33-36
    46 Pei, J.J., Gong, C.X., Iqbal, K., Grundke-Iqbal, I., Wu, Q.L., Winblad, B. and Cowburn, R.F. (1998) Subcellular distribution of protein phosphatases and abnormally phosphorylated tau in the temporal cortex from Alzheimer's disease and control brains. J. Neural. Transm.105(1),69-83
    47 Vogelsberg-Ragaglia, V, Schuck, T., Trojanowski, J.Q. and Lee, V.M. (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp. Neurol.168(2),402-412
    48 Tanimukai, H., Grundke-Iqbal, I. and Iqbal, K. (2005) Upregulation of inhibitors of protein phosphatase-2A in Alzheimer's disease. Am. J. Pathol.166,1761-1771
    49 Liu, R., Zhou, X.W., Tanila, H., Bjorkdahl, C., Wang, J.Z., Guan, Z.Z., Cao, Y., Gustafsson J.A., Winblad B. and Pei J.J. (2008) Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J. Cell Mol. Med.12(1), 241-257
    1 Braak, H. and Braak, E.(1991) Neuropathological staging ofAlzheimer-related changes. Acta Neuropathol.82(4),239-259
    2 Haass, C., and Selkoe, Dennis J. (1993) Cellular processing of beta-amyloid precursor protein and the genesis ofamyloid beta-peptide. Cell 75(6),1039-1042
    3 Price, Joseph L., McKeel Jr., Daniel W. and Morris, J.C., (2001) Synaptic loss and pathological change inolder adults e aging versus disease? Neurobiol. Aging 22(3), 351-352
    4 Benzing, William C., Ikonomovic, M.D., Brady, Daniel R., Mufson, E.J. and Armstrong, D.M., (1993) Evidence that transmitter-containing dystrophic neurites precede paired helical filament and Alz-50 formation within senile plaques inthe amygdala of nondemented elderly and patients with Alzheimer's disease. J. Comp. Neurol.334(2), 176-191
    5 Yamaguchi, Hiroki, Hirai, S., Morimatsu, M., Shoji, M. and Ihara, Y. (1988) A variety of cerebral amyloid deposits in the brains of the Alzheimer-type dementia demonstrated by betaprotein immunostaining. Acta Neuropathol.76(6),541-549
    6 Maccioni, Ricardo B., Munoz, Juan P. and Barbeito, L. (2001) The molecular basesof Alzheimer's disease and other neurodegenerative disorders. Arch. Med. Res.32(5), 367-381
    7 Ballatore, C., Lee, Virginia M. and Trojanowski, John Q. (2007) Tau-mediated neurodegeneration in Alzheimer's disease and relateddisorders. Nat. Rev. Neurosci. 8(9),663-672
    8 Braak, H. and Braak, E. (1988) Neuropil threads occur indendrites of tangle-bearing nerve cells. Neuropathol. Appl. Neurobiol.14(1),39-44
    9 Fagan, A.M., Mintun, Mark A., Aldea, P., Shah, A.R., Roe, Catherine M., Mach, Robert H., Marcus, D.,Morris, J.C. and Holtzman, D.M. (2009) Cerebrospinalfluid tau and p-tau181 increase with corticalamyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO Mol. Med.1(8-9), 371-380
    10 Price, Joseph L. and Morris, Joanne C. (1999) Tangles and plaques innondemented aging and "preclinical" Alzheimer's disease. Ann. Neurol.45(3),358-368
    11 Gomez-Isla, T., Price, Joseph L., McKeel Jr., D.W., Morris, Joanne C., Growdon, J.H. and Hyman, B.T. (1996) Profound loss of layer Ⅱ entorhinal cortexneurons occurs in very mild Alzheimer's disease. J. Neurosci.16(14),4491-4500
    12 Morris, Joanne C., McKeel J.r., Daniel W., Storandt, M., Rubin, E.H., Price, Joseph L., Grant, E.A., Ball, M.J. and Berg, L. (1991) Very mild Alzheimer's disease: informant-based clinical, psychometric,and pathologic distinction from normalaging. Neurology 41(4),469-478
    13 Silverman, W., Wisniewski, H.M., Bobinski, M. and Wegiel, J. (1997) Frequency of stages of Alzheimer-related lesions indifferent age categories. Neurobiol Aging 18(4), 377-379
    14 Kauwe, J.S., Cruchaga, C., Mayo, Kevin, Fenoglio, C., Bertelsen, S., Nowotny, P., Galimberti, D., Scarpini, E., Morris, John C., Fagan, Anne M., Holtzman, D.M. and Goate, A.M. (2008) Variation in MAPT is associated with cerebrospinalfluid tau levels in the presence of amyloid-beta deposition. Proc. Natl. Acad. Sci.105(23),8050-8054
    15 Ingelsson, M., Fukumoto, H., Newell, Kathy L., Growdon, J.H., Hedley-Whyte, E.T., Frosch, Matthew P., Albert, M.S., Hyman, B.T. and Irizarry, M.C. (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangleformation in AD brain. Neurology 62(6),925-931
    16 Gotz, J., Chen, F., Dorpe, J. and Nitsch, R.M. (2001) Formation of neurofibrillarytangles in P3011 tautransgenic mice induced by Abeta42 fibrils. Science 293(5534),1491-1495
    17 Lewis, J., Dickson, Dennis W., Lin, Wen L., Chisholm, L., Corral, A., Jones, G.,Yen, Shu H., Sahara, N., Skipper, L., Yager, D., Eckman, C., Hardy, J., Hutton, M. and McGowan, E. (2001) Enhanced neurofibrillarydegeneration in transgenic mice expressing mutant tau and APP. Science 293(5534),1487-1491
    18 Price, Joseph L., Ko, A.I., Wade, Marcus J., Tsou, S.K., McKeel, D.W. and Morris, J.C. (2001) Neuron number in the entorhinalcortex and CA1 in preclinical Alzheimer disease. Arch.Neurol.58(9),1395-1402
    19 Fiala, John C., Spacek, J. and Harris, Kristen M. (2002) Dendritic spinepathology: cause or consequence of neurological disorders? Brain. Res. Brain Res. Rev.39(1), 29-5
    20 Giannakopoulos, P., Herrmann, Francois R., Bussiere, T., Bouras, C., Kovari, E., Perl, Daniel P., Morrison, J.H., Gold, G. and Hof, Patrick R. (2003) Tangle and neuron numbers, but not amyloidload, predict cognitive status in Alzheimer's disease. Neurology 60(9),1495-1500
    21 Gomez-Isla, T., Hollister, R.,West, H., Mui, S., Growdon, John H., Petersen,Ronald C., Parisi, J.E. and Hyman, Bradley T. (1997) Neuronal loss correlates with but exceeds neurofibrillarytangles in Alzheimer's disease. Ann. Neurol.41(1),17-24
    22 Frey, H.J., Mattila, K.M., Korolainen, M.A. and Pirttila, T. (2005) Problems associated with biologicalmarkers of Alzheimer's disease. Neurochemical Res.30(12), 1501-1510
    23 HenleyS, M.D., Bates, G.P. and Tabrizi, S.J. (2005) Biomarkers forneuro-degenerative diseases. Curr. Opin. Neurol.18(6),698-705
    24 Sprott, R.L. (2010) Biomarkers ofaging and disease:introduction and definitions. Exp. Gerontol.45(1),2-4
    25 Cedazo-Minguez, A. and Winblad, B. (2010)Biomarkers of Alzheimer's disease and other forms ofdementia:clinical needs, limitations and future aspects. Exp. Gerontol. 45(1),5-14
    26 Ho, L., Fivecoat, H., Wang, J. and Pasinetti, G.M. (2010) Alzheimer's disease biomarker discovery in symtomatic and asymptomatic patients: Experimentalapproaches and futureclinical applications. Exp. Gerontol.45(1),15-22
    27 Hampel, H., Frank, R., Broich, K., Teipel, S.J., Katz, R.G., Hardy, J., Herholz, K., Bokde, A.L., Jessen, F., Hoessler, Y.C., Sanhai, W.R., Zetterberg, H., Woodcock, J. and Blennow, K. (2010) Biomarkers for Alzheimer's disease:academic, industry and regulatoryperspectives. Nat. Rev. Drug Discov.9(7),560-574
    28 Desai, A.K. and Grossberg, GT. (2005) Diagnosis and treatmentof Alzheimer's disease. Neurology 64, S34-39
    29 Sjogren, A., Andreasen, N. and Blennow, K. (2003) dvances in the detection of Alzheimer's disease-use of cerebrospinalfluid biomarkers. Clin. Chim.332(1-2),1-10
    30 Zetterberg, H. Wahlund, L.O.and Blennow, K. (2003) Cerebrospinal fluidmarkers for prediction of Alzheimer's disease. Neurosci. Lett.352(1),67-69
    31 Thal, Leon J., Kantarci, K., Reiman, Eric M., Klunk, W.E., Weiner, Michael W., Zetterberg, H., Galasko, D., Pratico, D., Griffin, S., Schenk, D. and Siemers, E. (2006) The role of biomarkers in clinicaltrials for Alzheimer disease. Alzheimer Dis. Assoc. Disord.20(1),6-15
    32 Hu, Y., Hosseini, A., Kauwe, John S.K., Gross, J., Cairns, Nigel J., Goate, Alison M., Fagan, Anne M.,Townsend, R.R. and Holtzman, David M. (2007) Identification and validation ofnovel CSF biomarkers for early stages of Alzheimer's disease. Proteomics Clin. Appl 11(1),1373-1384
    33 Ray, S., Britschgi, Markus, Herbert, C., Takeda-Uchimura, Y., Boxer, A., Blennow, K., Friedman, Leah F., Galasko, D.R., Jutel, M., Karydas, A., Kaye, Jeffrey A., Leszek, J., Miller, Bruce L., Minthon, L., Quinn, Joseph F., Rabinovici, G.D., Robinson, William H., Sabbagh, M.N., So, Yuen T., Sparks, D.L., Tabaton, M., Tinklenberg, J., Yesavage, Jerome A., Tibshirani, R. and Wyss-Coray, T. (2007) Classification and prediction of clinical Alzheimer's diagnosis based on plasmasignaling proteins. Nat. Med.13(11),1359-1362
    34 Maes, O.C., Xu, S., Yu, B., Chertkow, Howard M., Wang, E. and Schipper, Hyman M. (2007) Transcriptionalprofiling of Alzheimer blood mononuclear cells by microarray. Neurobiol. Aging 28(12),1795-1809
    35 Mayeux, R., Honig, Lawrence S., Tang, M.X., Manly, J., Stern, Y., Schupf, N. and Mehta, Pankaj D. (2003) PlasmaAβ40 and Aβ42 and Alzheimer's disease:relation to age, mortality, and risk. Neurology 61(9),1185-1190
    36 van Oijen, M., Hofman, A., Soares, Holly D., Koudstaal, Peter J. and Breteler, Monique M. (2006) Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia:a prospective casecohortstudy. Lancet Neurol 5(8),655-660
    37 Blennow, Kaj, Vanmechelen, Eugeen. and Hampel, H. (2001) CSF total tau, Abeta42 and phosphorylated tauprotein as biomarkers for Alzheimer's disease. Mol. Neurobiol. 24(1-3),87-97
    38 Shoji, M., Matsubara, E., Kanai, M., Watanabe, Masaki, Nakamura, T., Tomidokoro, Y.,Shizuka, M., Wakabayashi, Kohei, Igeta, Y., Ikeda, Y., Mizushima, K., Amari, M.Ishiguro, Kazuhiro, Kawarabayashi, T., Harigaya, Y., Okamoto, K. and Hirai, Shui C. (1998) Combination assay of CSF tau, A beta 1-40 and A beta 1-42(43) as a biochemicalmarker of Alzheimer's disease. J. Neurol. Sci.158(2),134-140
    39 Fagan, Anne M., Mintun, Mark A., Mach, R.H., Lee, Sang Y., Dence, C.S., Shah, Aarti R., LaRossa, G.N.,Spinner, M.L., Klunk, William E., Mathis, Chester A., DeKosky, ST., Morris, John C. and Holtzman, David M. (2006) Inverse relation between in vivo amyloidimaging load and cerebrospinal fluid Abeta42 in humans. Ann. Neurol.59(3), 512-519
    40 Verbeek, M.M., Kremer, Berry P., Rikkert, M.O., Van Domburg, Peter H., Skehan, M.E. and Greenberg, Steven M. (2009) Cerebrospinalfluid amyloid beta(40) is decreased in cerebral amyloid angiopathy. Ann. Neurol.66(2),245-249
    41 Rowe, C.C., Ng, S., U., Ackermann, Gong, S.J., K., Pike, G., Savage, Cowie, T.F.,Dickinson, K.L., P., Maruff, Darby, D., Smith, C., M., Woodward, Merory, J.,Tochon-Danguy, H., G., O'Keefe, Klunk, W.E., Mathis, Chester A., Price, Julie C.,Masters, C.L. and Villemagne, V.L. (2007) Imagingbeta-amyloid burden in aging and dementia. Neurology 68(20),1718-1725
    42 Bateman, R.J., Wen, G., Morris, John C. and Holtzman, David M. (2007) Fluctuations of CSF amyloid-beta levels:implications for a diagnostic and therapeuticbiomarker. Neurology 68(9),666-669
    43 Kang, Jae E., Lim, Miranda M., Bateman, R.J., Lee, James J., Smyth, L.P., Cirrito, John R., Fujiki, N., Nishino, S. and Holtzman, David M. (2009) Amyloid-{beta} dynamics are regulated byorexin and the sleep-wake cycle. Science 326(5955), 1005-1007
    44 Blennow, K. (2004) CSF biomarkers for mild cognitive impairment. J. Intern. Med. 256,224-234
    45 Sunderland, T., Linker, G., Mirza, N., Putnam, Karen T., Friedman, D.L., Kimmel, L.H.,Bergeson, J., Manetti, Guy J., Zimmermann, M., Tang, B., Bartko, John J. and Cohen, Robert M. (2003) Decreased beta-amyloid1-42 and increased tau levels in cerebrospinalfluid of patients with Alzheimer disease. JAMA 289(16),2094-210
    46 Arai, H., Morikawa, Yu I., Higuchi, M., Matsui, T., Clark, Christopher M., Miura, M., Machida, N.,Lee, Virginia M., Trojanowski, John Q. and Sasaki, H. (1997) Cerebrospinalfluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem. Biophys.Res. Commun.236(2),262-264
    47 Hesse, C., Rosengren, Lars, Andreasen, N., Davidsson, Pia, Vanderstichele, Hugo,Vanmechelen, E. and Blennow, Kaj. (2001) Transient increase in totaltau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci. Lett.297(3), 187-190
    48 Sunderland, T., Wolozin, B., Galasko, Douglas, Levy, J., Dukoff, R., Bahro, Marcel, Lasser, R.,Motter, Ruth, Lehtimaki, T. and Seubert, Peter. (1999) Longitudinal stability of CSF tau levels in Alzheimerpatients. Biol. Psychiatry 46(6),750-755
    49 de Leon, M.J., L., Mosconi, Blennow, K., S., DeSanti, Zinkowski, R., Mehta, P.D.,Pratico, D., W., Tsui, Saint Louis, L.A., L., Sobanska, Brys, M., Li, Y., K., Rich, Rinne, J. and Rusinek, H.(2007) Imaging and CSF studies in the preclinicaldiagnosis of Alzheimer's disease. Ann. N.Y.Acad. Sci.1097,114-145
    50 Blennow, K. and Hampel, H. (2003) CSF markers for incipient Alzheimer's disease.Lancet Neurol.2(10),605-613
    51 Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A. and Hof, Patrich R. (2000) Tau proteinisoforms, phosphorylation and role inneurodegenerative disorders. Brain Res.Brain Res. Rev.33(1),95-130
    52 Buerger, K., Zinkowski, Raymond, Teipel, Stefan J., Tapiola, Tero, Arai, H., sell Blennow, Kaj, Andreasen, N.,Hofmann-Kiefer, K., DeBernardis, J., Kerkman, Daniel, McCulloch, C., Kohnken, Russell, Padberg, F., Pirttila, Tuula, Schapiro, M.B., Rapoport, Stanley I., Moller, Hans J., Davies, P. and Hampel, H. (2002) Differential diagnosis of Alzheimer disease with cerebrospinalfluid levels of tau protein phosphorylated at threonine 231. Arch. Neurol.59(8),1267-1272
    53 Welge, V., Fiege, Oliver, Lewczuk, P., Mollenhauer, Brit, Esselmann, H., Klafki, Hans W.,Wolf, S., Trenkwalder, C., Otto, Markus, Kornhuber, J., Wiltfang, J. and Bibl, M. (2009) CombinedCSF tau,p-taul81 and amyloid-beta38/40/42 for diagnosing Alzheimer's disease. J. Neural. Transm.116(2),203-212
    54 Brys, M., E., Pirraglia, Rich, K., S., Rolstad, Mosconi, L., R., Switalski, Glodzik-Sobanska, L., S., De Santi, Zinkowski, R., Mehta, P., D., Pratico, Saint Louis, Leslie A., A., Wallin, Blennow, K. and de Leon, Mony J. (2009) Prediction and longitudinal study of CSF biomarkers in mildcognitive impairment. Neurobiol. Aging 30(5),682-690
    55 Blennow, K. (2004) Cerebrospinal fluid proteinbiomarkers for Alzheimer's disease. NeuroRx.1(2),213-225
    56 Arai, H., T., Nakagawa. and Kosaka, Y. (1997) Elevated cerebrospinalfluid tau protein level as a predictor of dementia in memory-impaired patients. Alzheimer's Res. 3,211-213
    57 Buerger, K., Teipel, Stefen J., Zinkowski, R., Blennow, K., H., Arai, Engel, R., Hofmann-Kiefer, K., McCulloch, C., U., Ptok, Heun, R., Andreasen, N., DeBernardis, J.,Kerkman, D., Moeller, Hans J., Davies, P. and Hampel, Harald. (2002) CSF tau proteinphosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 59(4),627-629
    58 Riemenschneider, M., N., Lautenschlager, Wagenpfeil, S., J., Diehl, Drzezga, A. and Kurz, A. (2002) Cerebrospinalfluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch. Neurol.59(11), 1729-1734
    59 Hansson, O., Zetterberg, Henrik, Buchhave, P., Londos, Elisabet, Blennow, Kaj. and Minthon, Lennart. (2006) Association between CSF biomarkers and incipient Alzheimer's disease in patients with mildcognitive impairment:a follow-up study. Lancet Neurol.5(3),228-234
    60 Shaw, Leslie M., Vanderstichele, Hugo, Knapik-Czajka, M., Clark, C hristopher M., Aisen, Paul S., Petersen, Ronald C., Blennow, K., Soares, H., Simon, Adam, Lewczuk, P., Dean, R., Siemers, Eric, Potter, W., Lee, Virginia M. and Trojanowski, John Q. (2009) Cerebrospinal fluid biomarkersignature in Alzheimer's disease neuroimaging initiative subjects. Ann. Neurol.65(4),403-413
    61 Mattsson, N., Zetterberg, Henfik, Hansson, Oskar, Andreasen, N., Parnetti, Lucilla, Jonsson, M.,Herukka, Sanna K., van der Flier, Wiesje M., Blankenstein, Marinus A., Ewers, M., Rich, K.,Kaiser, E., Verbeek, M., Tsolaki, Magda, Mulugeta, Ezra, Rosen, E., Aarsland, Dag, Visser, Pieter J., Schroder, J., Marcusson, Jan, de Leon, Mony, Hampel, Harald, Scheltens, Philip, Pirttila, T., Wallin, A., Jonhagen, Maria E., Minthon, L., Winblad, B. and Blennow, Kaj. (2009) CSFbiomarkers and incipient Alzheimer disease in patients with mildcognitive impairment. JAMA 302(4),385-393
    62 Snider, B.Joy, Fagan, Anne M., Roe, Catherine M., Shah, A.R., Grant, E.A., Xiong, Cheng J., Morris, John C. and Holtzman, David M. (2009) Cerebrospinalfluid biomarkers and rate of cognitive decline in very milddementia of the Alzheimer type. Arch. Neurol.66(5),638-645
    63 Fagan, Anne M., Roe, Catherine M., Xiong, Cheng J., Mintun, Mark A., Morris, John C. and Holtzman, David M. (2007) Cerebrospinalfluid tau/beta-amyloid(42) ratio as a prediction of cognitivedecline in nondemented older adults. Arch. Neurol.64(3), 343-349
    64 Li, Ge, Sokal, I., Quinn, Joseph F., Leverenz, J.B., Brodey, M., Schellenberg, Gerard D., Kaye, Jeffrey A.,Raskind, M.A., Zhang, J., Peskind, Elaine R. and Montine, Thomas J. (2007) CSFtau/Abeta42 ratio for increased risk of mildcognitive impairment:a follow-up study. Neurology 69(7),631-639
    65 Zhong, Z., M., Ewers, Teipel, S., Burger, K., Wallin, A., Blennow, K., P., He, C., McAllister, Hampel, H. and Shen, Y. (2007) Levels of beta-secretase (BACE1) incerebrospinalfluid as a predictor of risk in mildcognitive impairment. Arch.Gen. Psychiatry.64(6),718-726
    66 Saez-Valero, J., Fodero, Lisa R., Sjogren, M., Andreasen, N., Amici, S., Gallai, V., Vanderstichele, H., Vanmechelen, E., Parnetti, L., Blennow, K. and Small, David H., (2003) Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a functionof the durationof Alzheimer's disease. J. Neurosci. Res.72(4),520-526
    67 Bailey, P. (2007) Biological markers in Alzheimer's disease. Can. J. Neurol. Sci.34, S72-6
    68 Lee, Jin M., Blennow, Kaj, Andreasen, N., Laterza, Omar, Modur, Vijay, Olander, J., Gao, F., Ohlendorf, Matt. and Ladenson, Jack H. (2008) The brain injurybiomarker VLP-1 is increased in the cerebrospinalfluid of Alzheimer disease patients. Clin. Chem. 54(10),1617-1623
    69 Markesbery, William R. and Carney, Jill M. (1999) Oxidativealterations in Alzheimer's disease.Brain Pathol.9(1),133-146
    70 Montine, Thomas J., Markesbery, William R., Zackert, William, Sanchez, Stephanie C., Roberts Ⅱ, L.Jackson, and Morrow, Jason D. (1999) The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillarytangles or with APOE genotype in Alzheimer'sdisease patients. Am. J. Pathol.155(3),863-868
    71 Montine, Thomas J., Kaye, Jeffery A., Montine, Kathleen S., McFarland, Lynne, Morrow, Jason D. and Quinn, Joseph F. (2001) Cerebrospinalfluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimerdisease, other dementias, and in ag e-matched controls. Arch.Pathol. Lab. Med.125(4),510-512
    72 ohgi, Hideo, Abe, T., Yamazaki, Kinya, Murata, T., Ishizaki, Eri. and Isobe, Chiaki. (1999) Alterations of 3-nitrotyrosine concentration in the cerebrospinalfluid during aging and in patients with Alzheimer'sdisease. Neurosci. Lett.269(1),52-54
    73 Lovell, Mark A., Gabbita, S.Prasad. and Markesbery, William R. (1999) Increased DNA oxidation and decreased levels of repairproducts in Alzheimer's disease ventricular CSF. J. Neurochem.72(2),771-776
    74 Fassbender, K., Simons, Mikael, Bergmann, C., Stroick, M., Lutjohann, D., Keller, Pernille, Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., Hennerici, M.,Beyreuther, K. and Hartmann, Thomas. (2001) Simvastatin strongly reduces levels of Alzheimer's disease betaamyloid peptides Abeta 2 and Abeta40 in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A.98(10),5856-5861
    75 Griffin, W.Sue T., Sheng, Jin G., McKenzie, Joanne E., Royston, M.C., Gentleman, Steve M., Brumback, R.A., Cork, L.C., Del Bigio, Marc R., Roberts, G.William and Mrak, Robert E. (1998) Lifelong overexpression of S100beta in Down's syndrome: implications for Alzheimerpathogenesis. Neurobiol. Aging 19(5),401-405
    76 Qin, Wei P., Ho, Lap., Wang, J., Peskind, Elaine. and Pasinetti, Giulio M. (2009) S100A7, a novel Alzheimer'sdisease biomarker with non-amyloidogenic alpha-secretase activity acts via selective promotion of ADAM-10. PLoS One 4(1), 4183
    77 Wallin, Anders., Blennow, Kaj. and Rosengren, Lars E. (1996) Glialfibrillary acidic protein in the cerebrospinalfluid of patients with dementia. Dementia 7(5),267-272
    78 Takahashi, Miyoko., Stanton, Eric., Moreno, J.Ignacio and Jackowski, George. (2002) Immunoassay for serumglutamine synthetase inserum:development, reference values, and preliminary study in dementias. Clin. Chem.48(2),375-378
    79 Klunk, William E., Engler, H., Nordberg, A., Wang, Yan M., Blomqvist, G., Holt, Daniel P., Bergstrom, M., Savitcheva, I., Huang, Guo F., Estrada, S., Ausen, B., Debnath, Manik L., Barletta, J., Price, Julie C., Sandell, J., Lopresti, Brian J., Wall, A., Koivisto, P., Antoni, G., Mathis, Chester A. and Langstrom, B. (2004) Imagingbrain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann. Neurol.55(3), 306-319
    80 Edison, P., Archer, H.A., Hinz, R., A., Hammers, N., Pavese, Tai, Yen F., Hotton, G., Cutler, D., N., Fox, A., Kennedy, Rossor, M. and Brooks, David J. (2007) Amyloid, hypometabolism,and cognition in Alzheimerdisease:an [11C]PIB and [18F]FDG PET study. Neurology 68(7),501-508
    81 Engler, Henry., Forsberg, Anton., Almkvist, Ove., Blomquist, G., Larsson, Emma., Savitcheva, I., Wall, Anders., Ringheim, A., Langstrom, Bengt. and Nordberg, Agneta. (2006) Two-year follow-up of amyloiddeposition in patients with Alzheimer's disease. Brain 129(11),2856-2866
    82 Mintun, Mark A., Larossa, Gina N., Sheline, Yvette I., Dence, Carmen S., Lee, Sang Y., Mach, R.H., Klunk, William E., Mathis, Chester A., DeKosky, Steven T. and Morris, John C. (2006) [11C]PIB in a nondementedpopulation:potential antecedent marker of Alzheimer disease. Neurology 67(3),446-452
    83 Wolk, David A., Price, Julie C., Saxton, Judy A., Snitz, Beth E., James, Jeffery A., Lopez, Oscar L., Aizenstein, H.J., Cohen, Ann D., Weissfeld, Lisa A., Mathis, Chester A., Klunk, William E. and De-Kosky, Steven T. (2009) Amyloidimaging in mild cognitive impairment subtypes. Ann. Neurol.65(5),557-568
    84 Small, Gary W., Kepe, V., Ercoli, Linda M., Siddarth, P., Bookheimer, Susan Y, Miller, Karen J., Lavretsky, H., Burggren, Alison C., Cole, Greg M., Vinters, Harry V., Thompson, Paul M., Huang, S.C., Satyamurthy, N., Phelps, Michael E. and Barrio, Jorge R. (2006) PET of brainamyloid and tau in mild cognitive impairment. N. Engl. J. Med.355(25),2652-2663
    85 DeKosky, Steven T. (2008) Taking the next steps in thediagnosis of Alzheimer's disease:the use of biomarkers. CNS Spectr.13(3),7-10
    86 Choi, Seok R., Golding, G., Zhuang, Zhi P., Zhang, Wei., Lim, N., Hefti,F., Benedum, Tyler E.,Kilbourn, Michael R., Skovronsky, D. and Kung, Hank F. (2009) Preclinical properties of 18FAV-45:a PET agent for Abetaplaques in the brain. J. Nucl. Med. 50(11),1887-1894
    87 Sperling, R., K., Johnson, M., Pontecorvo, Safirstein, B., M., Farmer, Holub, R., Korn, R., K., Spicer, and Reiman, Eric M. et al. (2009) PET imaging of (3amyloid with florpiramine F18 (18F-AV-45):preliminary results from a phasell study of cognitively normal elderly subjects, individuals with mildcognitive impairment,and patients with a clinical diagnosis of Alzheimer's disease. Alzheimer's Dement.5,197
    88 Bobinski, M., de Leon, Mony J., J., Wegiel, Desanti, S., A., Convit, Saint Louis, L.A., H., Rusinek, and Wisniewski, H.M. (2000) The histological validation of post Mortem magnetic resonance imaging-determined hippocampalvolume in Alzheimer's disease. Neuroscience 95(3),721-725
    89 Zarow, C., Vinters, Harry V., Ellis, William G., Weiner, Michael W., Mungas, D., White, L. and Chui, Helena C. (2005) Correlates of hippocampalneuron number in Alzheimer's disease and ischemicvascular dementia. Ann. Neurol.57(6),896-903
    90 Jack Jr., Clifford R., Petersen, Ronald C., Xu, Yu C., O'Brien, Peter C., Smith, Glenn E., Ivnik, Robert J., Tangalos, Eric G. and Kokmen, E. (1998) Rate of Medial temporal lobe atrophy in typicalaging and Alzheimer's disease. Neurology 51 (4),993-999
    91 Convit, Antonio, J., de Asis, de Leon, Mony J., Tarshish, C.Y., Susan, De Santi, and Rusinek, H. (2000) Atrophy of the medialoccipitotemporal, inferior, and middle temporal gyriin nondemented elderly predict decline to Alzheimer's disease. Neurobiol. Aging 21(1),19-26
    92 Lerch, Jason P., Pruessner, Jens C., Zijdenbos, Alex., Hampel, H., Teipel, Stefan J. and Evans, Alan C. (2005) Focal decline of corticalthickness in Alzheimer's disease identified by computational neuroanatomy. Cereb. Cortex 15(7),995-1001
    93 de Leon, Mony J., Golomb, James., George, Ajax.E., Convit, Antonio., Tarshish, C.Y., McRae, Thomas, De Santi, Susan, Smith, G. and Ferris, Steven H. et al., (1993) The radiologic prediction of Alzheimer disease:the atrophic hippocampal formation. AJNR Am. J.Neuroradiol.14(4),897-906
    94 Jack Jr., C.R., Petersen, Ronald C., Xu, Yue C, O'Brien, Peter C., Smith, Glenn E., Ivnik, Robert J., Boeve, Bradley F.,Waring, Stephen C., Tangalos, Eric G. and Kokmen, E. (1999) Prediction of AD with MRI-based hippocampalvolume in mild cognitive impairment. Neurology 52(7),1397-1403
    95 Laakso, Mikko P., Lehtovirta, Maarit, Partanen, K., Riekkinen, Paavo J. and Soininen, Hilkka. (2000) Hippocampus in Alzheimer's disease:a 3-year follow-up MRI study. Biol. Psychiatry 47(6),557-561
    96 Raz, Naftali, Rodrigue, Karen M., Head, D., Kennedy, Kristen M. and Acker, James D. (2004) Differential aging of the medialtemporal lobe:a study of a five-year change. Neurology 62(3),433-438
    97 Risacher, Shannon L., Saykin, Andrew J., West, John D., Shen, L., Firpi, Hiram A. and McDonald, Brenna C. (2009) Baseline MRI predictors of conversion from MCI to probableAD in the ADNI cohort. Curr. Alzheimer Res.6(4),347-361
    98 Hampel, Harald, Burger, K., Teipel, Stefan J., Bokde, Arun L., Zetterberg, Henrik. and Blennow, Kaj. (2008) Core candidate neurochemical and imagingbiomarkers of Alzheimer's disease. Alzheimers Dement.4(1),38-48
    99 Baron, Jean C., Gael, Chetelat., Desgranges, Beatrice, Perchey, G., Landeau, Brigitte, de la Sayette, V. and Eustache, Francis. (2001) In vivo mapping of graymatter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 14(2), 298-299
    100 Pennanen, C., C., Testa, Laakso, M.P., M., Hallikainen, Helkala, Eeva L., Hanninen, T., Kivipelto, Miia, Kononen, M., Nissinen, Aulikki, Tervo, S. and Vanhanen, M. et al. (2005) A voxel based morphometry study on mildcognitive impairment. J. Neurol. Neur osurg. Psychiatry 76(1),11-14
    101 Chetelat t, Gael., Landeau, B., Eustache, Francis., Mezenge, F., Viader, F., de la Sayette, V., Desgranges, Beatrice. and Baron, Jean C. (2005) Using voxel-based morphometry to map the structuralchanges associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 27(4),934-946
    102 Teipel, Stefan J., Alexander, Gene E., Schapiro, Marc B., Moller, Hans J., Rapoport, Stanley I. and Hampel, Harald (2004) Age-related cortical greymatter reductions in non-demented Down's syndrome adults determined by MRI with voxel-based morphometry. Brain 127(4),811-824
    103 Teipel, Stefan J., Born, C., Ewers, Michael., Bokde, Arun L., Reiser, Maximilian F., Moller, Hans J. and Hampel, Harald. (2007) Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mildcognitive impairment. Neuroimage 38(1),13-24
    104 Bouwman, Femke H., Schoonenboom, S.N., van der Flier, Wiesie M., van Elk, Evert J., Kok, Astrid, Barkhof, F., Blankenstein, Marinus A. and Scheltens, Philip. (2007) CSFbiomarkers and medial temporallobe atrophy predict dementia in mild cognitive impairment. Neurobiol.Aging 28(7),1070-1074
    105 Vemuri, Prashanshi., Wiste, Heather J., Weigand, Stephan D., Shaw, Leslie M., Trojanowski, John Q., Weiner, Michael W., Knopman, David S., Petersen, Ronald C. and Jack Jr., Clifford R. (2009) MRI and CSF biomarkers in normalMCI, and AD subjects:predictingfuture clinical change. Neurology 73(4),294-301
    106 Ridha, Basil H., Anderson, Valerie M., Barnes, J., Boyes, Richard G., Price, Shona L., Rossor, Martin N., Whitwell, Jennifer L., Jenkins, L., Black, Ronald S., Grundman, M. and Fox, Nick C. (2008) Volumetric MRI and cognitivemeasures in Alzheimer disease:comparison of markers of progression. J. Neurol.255(4),567-574
    107 Jack Jr., Clifford R., Shiung, M.M., Weigand, Stephen D., O'Brien, Peter C., Gunter, Jeffrey L., Boeve, Bradley F., Knopman, David S., Smith, Glenn E., Ivnik, Robert J., Tangalos, Eric G. and Petersen, Ronald C. (2005) Brainatrophy rates predict subsequent clinicalconversion in normal elderly and amnestic MCI. Neurology 65(8), 1227-1231
    108 Stoub, Travis R., Bulgakova, M., Leurgans, S., Bennett, David A., Fleischman, D., Turner, David A. and de Toledo-Morrell, Leyla. (2005) MRI predictors of risk of incident Alzheimerdisease:a longitudinal study. Neurology 64(9),1520-1524
    109 Vemuri, P., Wiste, Heather J., Weigand, S tephen D., Shaw, Leslie M.,Trojanowski, John Q., Weiner, Michael W.,Knopman, David S., Petersen, Ronald C. and Jack Jr., Clifford R. (2009) MRI and CSFbiomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitivecorrelations. Neurology 73(4),287-293
    110 Sluimer, Jasper D., Bouwman, Femke H., Vrenken, H., Blankenstein, Marinus A., Barkhof, F., van der Flier, WiesieM. and Scheltens, Philip. (2010) Whole-brain atrophy rate and CSFbiomarker levels in MCI and AD:a longitudinalstudy. Neurobiol. Aging 31(5),758-764
    111 Stefani, Alessandro., Martorana, Alessandro., Bernardini, Sergio., Panella, Marta., Mercati, Flavio., Orlacchio, Antonio. and Pierantozzi, M. (2006) CSFmarkers in Alzheimer disease patients are not relatedto the differentdegree of cognitive impairment. J. Neurol. Sci.251(1-2),124-128
    112 Silverman, Daniel H., Small, Gary W., Chang, Carol Y., Lu, Carolyn S., Kung De Aburto, Michelle A., Chen, W., Czernin, J., Rapoport, Stanley I., Pietrini, P., Alexander, Gene E., Schapiro, Mark B., Jagust, William J., Hoffman, John M., Welsh-Bohmer, Kathleen A., Alavi, A., Clark, Christopher M., Salmon, E.,De Leon, Mony J., Mielke, R., Cummings, Jeffery L., Kowell, Arthur P., Gambhir, Sanjiv S., Hoh, Carl K. and Phelps, Michael E. (2001) Positron emission tomography in evaluation of dementia:regionalbrain metabolism and longterm outcome. JAMA 286(17),2120-2127
    113 Alexander, Gene E., Chen, Ke W., Pietrini, P., Rapoport, Stanley I. and Reiman, Eric M., (2002) Longitudinal PET evaluation of cerebralmetabolic decline in dementia:a potential outcomemeasure in Alzheimer's disease treatment studies. Am. J. Psychiatry 159(5),738-745
    114 Minoshima, Satoshi, Frey, Kirk A., Koeppe, Robert A., Foster, Norman L. and Kuhl, David E. (1995) A diagnosticapproach in Alzheimer's disease using three-dimensional stereotactic surfaceprojections of fluorine-18-FDG PET. J. Nucl. Med.36(7),1238-1248
    115 de Leon, Mony J., Convit, Antonio, Wolf, Oliver T., Tarshish, C.Y., DeSanti, Susan, Rusinek, Henry, Tsui, W., Kandil, E. and Scherer, A.J. et al. (2001) Predictionof cognitive decline in normalelderly subjects with 2-[(18)F]fluoro-2-deoxy-Dglucose/positron-emission tomography (FDG/PET). Proc. Natl. Acad. Sci. U.S.A.98(19),10966-10971
    116 Drzezga, Alexander., Lautenschlager, Nicola., Siebner, Hartwig., Riemenschneider, M., Willoch, Frode., Minoshima, S., Schwaiger, Markus. and Kurz, Alexander. (2003) Cerebralmetabolic changes accompanying conversion of mildcognitive impairment into Alzheimer's disease:a PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging 30(8),1104-1113
    117 Jagust, W illiam J., Landau, S.M., Shaw, LeslieM., Trojanowski, John Q., Koeppe, Robert A., Reiman, Eric M., Foster, N.L., Petersen, Ronald C., Weiner, Michael W., Price, Julie C. and Mathis, Chester A., (2009) Relationships between biomarkers in aging anddementia. Neurology 73(15),1193-1199
    118 Bohnen, Nicolaas I., Kaufer, Daniel I., Hendrickson, R., Ivanco, L.S., Lopresti, Brian J., Koeppe, Robert A.,Meltzer, Carolyn C., Constantine, Gregory, Davis, Jessica G., Mathis, Chester A., Dekosky, Steven T. and Moore, Robert Y. (2005) Degree of inhibition of corticalacetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 76(3),315-319
    119 Jagust, W illiam J., Thisted, Ronald, Devous Sr., Michael D., Van Heertum, Ronald, Mayberg, H., Jobst, Kim.,Smith, Andrew D. and Borys, N., (2001) SPECT perfusion imagingin the diagnosis of Alzheimer's disease:a clinical-pathologic study. Neurology 56(7),950-956
    120 Lojkowska, Wanda, Ryglewicz, Danuta., Jedrzejczak, Tomasz, Mine, S. Awomira, Jakubowska, Teresa, Jarosz, Halina and Bochynska, Anna. (2003) The effect of cholinesterase inhibitors on the regionalblood flow in patients with Alzheimer's disease and vascular dementia. J. Neurol. Sci.216(1),119-126
    121 Gusnard, Dbra A. and Raichle, Marcus E. (2001) Searching for a baseline:functional imaging and the restinghuman brain. Nat. Rev. Neurosci.2(10),685-694
    122 Buckner, Randy L., Snyder, Abraham Z., Shannon, Benjamin J., LaRossa, Gina, Sachs, R., Fotenos, Anthony F., Sheline, Yvette I., Klunk, William E., Mathis, Chester A., Morris, John C. and Mintun, Mark A. (2005) Molecular,structural, and functionalcharacterization of Alzheimer'sdisease:evidence for a relationship between default activity, amyloid, and memory. J. Neurosci.25(34),7709-7717
    123 Sheline, Yvette I., Raichle, Marcus E., Snyder, Abrahm Z., Morris, John C., Head, Denise, Wang, Su Z. and Mintun, Mark A. (2010) Amyloidplaques disrupt resting state default mode network connectivity in cognitively normalelderly. Biol. Psychiatry 67(6),584-587
    124 Sperling, Reisa A., Laviolette, Peter S., O'Keefe, Kelly, O'Brien, J., Rentz, Dorene M., Pihlajamaki, Maija, Marshall, Gad, Hyman, Bradley T., Selkoe, Dennis J., Hedden, T., Buckner, Randy L., Becker, J. Alex and Johnson, Keith A., (2009) Amyloiddeposition is associated with impaired default network function in older persons withoutdementia. Neuron 63(2),178-188
    125 Cirrito, John R., Yamada, Kelvin A., Finn, Mary B., Sloviter, Robert S., Bales, Kelly R., May, Patrick C., Schoepp, Darryle D., Paul, Steven M., Mennerick, S. and Holtzman, David M. (2005) Synapticactivity regulates interstitial fluid amyloid-beta levels invivo. Neuron 48(6),913-922
    126 Kamenetz, Flavio, Tomita, Taisuke, Hsieh, Helen, Seabrook, Guy, Borchelt, D., Iwatsubo, T., Sisodia, Sangram and Malinow, Robert (2003) APP processing and synapticfunction. Neuron 37(6),925-937
    127 Jackson, Colleen E. and Snyder, Peter J. (2008) Electroencephalography and eventrelated potentials as biomarkers of mildcognitive impairment and mild Alzheimer's disease. Alzheimers Dement.4(1), s137-S143
    128 Liddell, Belinda J., Paul, Robert H., Arns, M., Gordon, N., Kukla, M., Rowe, D., Cooper, Natalie, Moyle, Jennifer. and Williams, Leanne M. (2007) Rates of decline distinguish Alzheimer's disease and mildcognitive impairment relative to normal aging:integrating cognition and brainfunction. J. Integr. Neurosci.6(1),141-174
    129 Grunwald, Marlene, Busse, F., Hensel, Anke, Kruggel, F., Riedel-Heller, S., Wolf, H., Arendt, Thomas. and Gertz, Hermann J., (2001) Correlation between corticaltheta activity and hippocampalvolumes in health, mild cognitive impairment, and mild dementia. J. Clin. Neurophysiol.18(2),178184
    130 Olichney, John M., Morris, Shaun K., Ochoa, C., Salmon, David P., Thal, Leon J., Kutas, Marta. and Iragui, Vicente J. (2002) Abnormal verbal eventrelated potentials in mild cognitiveimpairment and incipient Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 73(4),377-384
    131 Gironell, Aleandre., Garcia-Sanchez, Carmen, Estevez-Gonzalez, Estevez-Gonzalez Armando, Boltes, Estevez-Gonzalez. and Kulisevsky, Jaime. (2005) Usefulness of p300 in subjective memorycomplaints:a prospective study. J. Clin. Neurophysiol. 22(4),279-284
    132 Prichep, Leslie S., John, E.Roy, Ferris, Steven H., Rausch, L., Fang, Z., Cancro, Robert, Torossian, C. and Reisberg, Barry. (2006) Prediction of longitudinal cognitive decline in normalelderly with subjective complaints using electrophysiologicalimaging. Neurobiol.Aging 27(3),471-481
    133 Rossini, Paolo M., Del Percio, C., Pasqualetti, P., Cassetta, E manuele, Binetti, G., Dal Forno, Gloria, Ferreri, F. and Frisoni, G. et al. (2006) Conversion from mild cognitiveimpairment to Alzheimer's disease is predicted by sources and coherence of brain electroencephalographyrhythms. Neuroscience 143(3),793-803

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700