系列手性氮杂小环配体的合成及在不对称催化反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用易得的L-氨基酸和手性苯乙胺为手性源,设计合成了两类三员氮杂环手性氨基醇配体,两类四员氮杂环手性氨基醇配体以及三类三员氮杂环手性硫醚配体。考察了它们在不对称催化反应中的催化活性,提出了配体在相关不对称催化反应中可能的机理。
     本论文主要集中在以下五个方面:
     1)通过苯乙炔和苯乙酰氯热解、间苯基萘酚的偶联、鹰爪豆碱的拆分得到光学纯的联萘酚(S)-VANOL(3),并对其他两种包结物拆分法进行了初步的研究。以(S)-VANOL-B(OPh)_3为催化剂,通过氮杂环丙烷化反应,然后与格式试剂或四氢锂铝分别反应得手性配体7a,7b,并且考察了该催化剂在二茂铁亚胺的氮杂环丙烷化反应中的应用,取得34%产率和62%ee值。同时也考察了配体(S)-VANOL(3)和7a,7b在二乙基锌对醛的不对称加成反应中的催化活性。
     2)以易得的L-丝氨酸为原料,经过酯化、保护、关环、格氏试剂反应、脱保护,最后与1-二茂铁基乙酸酯反应得一对非对映异构体12,通过TLC分离得光学纯配体(S,2S)-12和(R,2S)-12,利用X-光衍射确定了配体中新产生的中心手性的构型。研究了手性配体12在二乙基锌与芳香醛不对称加成反应中的催化活性,最好结果取得了99%的化学产率和99%的ee值。结合试验结果和配体的晶体结构,提出了手性配体在不对称乙基化反应中可能的反应机理。
     3)通过手性苯乙胺与2,4-二溴丁酸甲酯关环,最后与格式试剂反应并通过TLC分离得手性配体15和17。通过(R,2S)-17的晶体结构,确定了配体中新产生的中心手性的构型。研究了手性配体15和17在炔基锌与芳香醛不对称加成反应中的催化活性,取得了49-84%的收率和69-84%ee值。同时结合试验结果和配体的晶体结构,提出了配体在该不对称催化反应中可能的反应机理。
     4)以易得的(R)-半胱氨酸和L-甲硫氨酸为原料,合成了具有不同螯合链和电子效应的手性N,S-双齿三员氮杂环硫醚配体20a-c,23和25a-c。研究了手性配体在钯催化的不对称烯丙基取代反应中的催化活性,其中配体20b取得了99%的化学产率和91%的ee值。
     5)配体20a,20b和23分别与1,3-二苯基烯丙基氯化钯二聚物在AgSbF_6作用下得配体的π-烯丙基钯络合物中间体26,27和28。通过对固体的X-单晶衍射以及溶液的NMR[~1H NMR,~(13)C NMR,dept,~1H-~1H COSY, ~(13)C-~1H correlation(HSQC,HMBC)]和NOE(2D-NOESY,NOE difference)分析,首次系统地阐述了S-N(sp~3)类配体在钯催化的不对称烯丙基取代反应中配体的结构对反应对映选择性的影响。关
With this context, two kinds of chiral aziridine-based amino alcohol ligands, twokinds of chiral azetidine-based amino alcohol ligands and three kinds of aziridinesulfide ligands have been explored by use of readily available L-amino acids, (S)- or(R)-phenylethylamine. Moreover, we examined their catalytic activities in relatedasymmetric reactions. Possible mechanism for the related asymmetric induction wasproposed on the basis of results of reactions and the crystal structures of ligands.
     This dissertation mainly focuses on 5 aspects as follows:
     1) The optically pure (S)-VANOL (3) was prepared by the thermolysis of phenlacetylchloride in the presence of phenylacethlene, the coupling of the 3-phenyl-1-naphthol,the deracemization of VANOL with the in situ generation of copper(Ⅱ) in thepresence of (-)-spartiene. Two other methods for the deracemization of racemate 2involving the reactions of salt formation were also tested. Ligands 5a-e were preparedfrom the asymmetric catalytic aziridination reaction with chiral catalysts preparedfrom triphenylborate and (S)-VANOL 3, and then converted into the correspondingcarbinols (7a, 7b) by reaction with PhMgBr or LiAlH_4. The catalyst(VANOL-B(OPh)_3) gave low induction (34% yield and 60% ee) for the addition ofethyl diazoacetate to N-ferrocenylmethyl imine. Their catalytic activities wereexamined in the asymmetric addition of diethylzinc to benzaldehyde as a modelreaction.
     2) Chiral ligands 11 was prepared from easily available L-serine by the esterification,Trt-protection, cyclization, treatment with PhMgBr, deprotection, and then reactedwith rac-1-ferrocenylethyl acetate to yield a chromatographically separablediastereomeric mixture of (S, 25)- and (R, 2S)-12 with almost 1:1 ratio. Thestereochemical configuration of the ligand 12 was established by X-ray analysis. Thereaction of diethylzinc with arylaldehydes gave the corresponding alcohols in up to99% chemical yields and 99% ee. A possible mechanism for this asymmetricalkynylation of aldehydes was also proposed.
     3) Methyl 2,4-dibromobutanoate 13 was reacted with (S)- or (R)-phenylethylamine toyield a mixture of diastereomeric N-alkylazetidine esters (14, 16). These esters wereseparated by the preparative silica gel TLC plate in optically pure form, and thenconverted into the corresponding carbinols by reaction with PhMgBr. The X-raystructure analysis of ligand (R, 25)-17 established the stereochemical configuration atC-2 relatively to the known (R)-configuration of theα-methylbenzyl group. Theircatalytic capabilities in the asymmetreic addition of alkynylzinc to aldehydes were examined with moderate-to-good enantioselectivities. A possible mechanism for thisasymmetric alkynylation of aldehydes was also proposed.
     4) A series of new chiral heterobidentate azieidine-based ligands 20a-c, 23 and 25a-chaving different chelating size and electric effect were readily prepared from cheapand easily available (R)-cysteine and L-(+)-methionine. A Pd-catalyzed asymmetricallylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate was usedas a model reaction to examine the catalytic efficiencies of these aziridine sulfideligands, and ligand 20b afforded the enantioselectivity of up to 91% ee.
     5) The palladium allylic complexes 26, 27, and 28 were prepared from thebis[(μ-chloro)(η~3-1,3-diphenylallyl)palladium(Ⅱ)] and ligands 20a, 20b, and 23,respectively, in the presence of AgSbF_6. The origin of the pattern of enantioselectivityfor heterobidentate sulfide-tertiary amine (sp~3) ligands was first rationalized by theX-ray diffraction and solution NMR [~1H NMR, ~(13)C NMR, dept, ~1H-~1H COSY, ~(13)C-~1Hcorrelation (HSQC, HMBC)] and NOE (2D-NOESY, NOE difference) studies of theintermediate palladium-π-complex.
引文
[1] 戴立信 陆熙炎 朱光美.手性技术的兴起.化学通报 1995,62-62.
    [2] 林国强,陈耀全,陈新滋,等.手性合成-不对称反应及其应用(第二版)(M),北京:科学出版社,2005第1页.
    [3] Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. Asymmetric induction in carbenoid reactions by means of a dissymmetric copper chelate. Tetrahedron Lett 1966, 43, 5239-5244.
    [4] (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994. (b) Ojima, I. Ed.; Catalytic Asymmetric Synthesis; VCH Publisher: New York, 1993.
    [5] Nugent, W. A.; Rajanbabn, T. V.; Burk, M. J. Beyond nature's chiral pool: enantioselective catalysis in industry. Science 1993, 259,479-483.
    [6] Akrtagawa, S. Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites. Top. Catal. 1997,4,271-274.
    [7] 齐藤隆夫,佐用升,桶田善树,长岛弘幸,云林秀德,日特开 平2-134249,1990.
    [8] Blaser, H. U.; Spindler, F. New dinosaur sites correlated with Upper Maastrichtian pelagic deposits in the Spanish Pyrenees. Top. Catal. 1997, 4, 275-282.
    [9] Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 1997,277, 936-938.
    [10] Noyori, R. Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew. Chem. Int. Ed. 2002, 41, 2008-2022.
    [11] (a) Knowles, W. S. Asymmetric hydrogenation. Acc. Chem. Res. 1983, 16, 106-112. (b) Vineyard, B. D.; Knowles, W. S.; Sabacky, W. J.; Bachman, G. L.; Weinkautt, D. J. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. J. Am. Chem. Soc. 1977, 99, 5946-5952.
    [12] (a) Wang, M.-C.; Hou, X.-H.; Chi, C.-X.; Tang, M.-S. The effect of direct steric interaction between substrate substituents and ligand substituents on enantioselectivities in asymmetric addition of diethylzinc to aldehydes catalyzed by sterically congested ferrocenyl aziridino alcohols. Tetrahedron: Asymmetry 2006, 17, 2126-2132. (b) Wang, M.-C.; Hou, X.-H.; Xu, C.-L.; Liu, L.-T.; Li, G.-L.; Wang, D.-K. Novel C2-symmetric 1,1'-disubstituted ferrocenyl aziridino alcohol ligands: Remarkable improvement of enantioselectivity in the catalytic asymmetric addition of diethylzinc to aldehydes. Synthesis 2005, 3620-3626. (c) Wang, M.-C.; Wang, D.-K.; Zhu, Y.; Liu, L.-T.; Guo, Y.-F. Enantiopure N-ferrocenylmethylaziridin-2-ylmethanols from l-serine: synthesis, crystal structure and applications. Tetrahedron: Asymmetry 2004, 75, 1289-1294. (d) Wang, M.-C.; Liu, L.-T.; Zhang, J.-S.; Shi, Y.-Y; Wang, D.-K. Synthesis of chiral ferrocenyl aziridino alcohols and use in the catalytic asymmetric addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry 2004, 15, 3853-3859. (e) Wang, M.-C.; Zhang, Q.-J.; Zhao, W.-X.; Wang, X.-D.; Ding, X. Jing, T.-T.; Song, M.-P. Evaluation of Enantiopure N-(Ferrocenylmethyl)azetidin-2-yl(diphenyl)methanol for Catalytic Asymmetric Addition of Organozinc Reagents to Aldehydes. J. Org. Chem. 2008, 73, 168-176.
    [13] Reviews on enantioselective organozinc additions to aldehydes: (a) Soai, K.; Niwa, S. Enantioselective addition of organozinc reagants to Aldehydes. Chem. Rev. 1992, 92, 833-856. (c) Pu, L.; Yu, H. B. Catalytic asymmetric organozinc additions to carbonyl compounds. Chem. Rev. 2001, 101, 757-824. (d) Seebach, D.; Beck, A. K.; Heckel, A. TADDOLs, their derivatives, and TADDOL analogs: versatile chiral auxiliaries. Angew.Chem. Int. Ed. 2001, 40, 92-138. (e) Walsh, P. Titanium-Catalyzed enantioselective additions of alkyl groups to aldehydes: mechanistic studies and new concepts in asymmetric catalysis. Acc. Chem. Res. 2003, 36, 739-749. (f) Pu, L. Asymmetric alkynylzinc additions to aldehydes and ketones. Tetrahedron 2003, 59, 9873-9886. (g) Zhu, H.-J.; Jiang, J.-X.; Ren, J.; Yan, Y.-M.; Pittman, C. U. Recently developed organometallic complexes of Zn, Cu(Zn, Li), Fe, Ru and less-used ions. Use in selective 1,2-or 1,4-additions, transfer hydrogenations, aldol reactions and Diels-Alder reactions. Curr. Org. Synth. 2005, 2, 547-587. (h) Hatano, M.; Miyamoto, T.; Ishihara, K. Recent progress in selective additions of organometal reagents to carbonyl compounds. Curr. Org. Chem. 2007,11, 127-157.
    [1] (a) Knochel, P.; Singer, R. D. Preparation and reactions of polyfunctional organozinc reagents in organic synthesis. Chem. Rev. 1993, 93, 2117-2188. (b) Knochel, P.; Perea, J. J. A.; Jones, P. Organozinc mediated reactions. Tetrahedron 1998, 54, 8275-8319. (c) Knochel, P.; Jones, P. Organozinc Reagents: A Practical Approach, Oxford Univ. Pr.: New York 1999.
    [2] (a) Yoshioka, M.; Kawakita, T.; Ohno, M. Asymmetric induction catalyzed by conjugate bases of chiral proton acids as ligands. Enantioselective addition of dialkylzinc-orthotitanate complex to benzaldehyde with catalytic ability of a remarkable high order. Tetrahedron Lett. 1989, 30, 1657-1660. (b) Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M; Kobayashi, S. A catalytic enantioselective reaction using a C2-symmetric disulfonamide as a chiral ligand: alkylation of aldehydes catalyzed by disulfonamide-Ti(0-iso-Pr)4-dialkyl zinc system. Tetrahedron 1992, 48, 5691-5700.
    [3] (a) Mori, M.; Nakai, T. symmetric catalytic alkylation of aldehydes with diethylzinc using a chiral binaphthol-titanium complex. Tetrahedron Lett. 1997, 38, 6233-6236. (b) Zhang, F.-Y.; Yip, C.-W.; Cao, R.; Chan, A. S. C. Enantioselective addition of diethylzinc to aromatic aldehydes catalyzed by Ti(BINOL) complex. Tetrahedron Asymmetry 1997, 8, 585-589. (c) Shen, X.; Guo, H.; Ding, K. The synthesis of a novel non-C2 symmetric H4-BINOL ligand and its application to titanium-catalyzed enantioselective addition of diethylzinc to aldehydes. Tetrahedron Asymmetry 2000, 77, 4321-4327.
    [4] Noyori, R.; Suga, S.; Kawai, K.; Okada, S.; Kitamura, M.; Oguni, N.; Hayashi, M.; Kaneko, T.; Matsuda, Y. Enantioselective addition of diorganozincs to aldehydes catalyzed by β-amino alcohols. J. Organomet. Chem. 1990, 382, 19-37.
    [5] (a) Ramon, D. J.; Yus, M. First enantioselective addition of diethylzinc and dimethylzinc to prostereogenic ketones catalyzed by camphorsulfonamide-titanium alkoxide derivatives. Tetrahedron 1998, 54, 5651-5666. (b) Wu, K.-H.; Gau, H.-M. Mechanism of asymmetric dialkylzinc addition to aldehydes catalyzed by Titanium(IV) complexes of N-sulfonylated P-amino alcohols. Organometallics 2004, 23, 580-588.
    
    [6] (a) Schmidt, B.; Seebach, D. Catalytic and stoichiometric enantioselective addition of methyllithium and magnesium and zinc compounds to aldehydes with the aid of a novel chiral spirotitanate. Angew. Chem. Int. Ed. Engl. 1991, 30, 99-101. (b) Schmidt, B.; Seebach, D. 2,2-Dimethyl-α, α, α',α'-tetrakis(β-naphthyl)-1,3-dioxolane-4,5-dim-ethanol (DINOL) for the titanate-mediated enantioselective addition of diethylzinc to aldehydes. Angew. Chem. Int. Ed. Engl. 1991, 30, 1321-1323. (c) Seebach, D.; Beck, A. K.; Schmidt, B.; Wang, Y. M. Enantio- and diastereoselective titanium-TADDOLate catalyzed addition of diethyl- and bis(3-buten-1-yl)zinc to aldehydes. A full account with preparative details. Tetrahedron 1994, 50, 4363-4384. (d) Weber, B.; Seebach, D. Tetrahedron 1994, 50, 7473-7484. (e) Seebach, D.; Pichota, A.; Beck, A. K.; Pinkerton, A. B.; Litz, T.; Karjalainen, J.; Gramlich, V. Preparation of TADDOL derivatives for new applications. Org. Lett. 1999, 1, 55-58.
    [7] Andersson, P. G.; Guijarro, D.; Tanner, D. Preparation and use of aziridino alcohols as promoters for the enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl) imines. J. Org. Chem. 1997, 62, 7364-7375.
    [8] Tanner, D.; Korn(?), H. T.; Guijarro, D.; Andersson, P. G. Aziridino alcohols as catalysts for the enantioselective addition of diethylzinc to aldehydes. Tetrahedron 1998, 54, 14213-14232.
    
    [9] Lawrence, C. F.; Nayak, S. K.; Thijs, L.; Zwanenburg, B. (N-trityl-aziridinyl)(diphenyl)methanol as an effective catalyst in the enantioselective addition of diethylzinc to aldehydes. Synlett. 1999, 1571-1572. (b) ten Holte, P.; Wijgergangs, J.-P.; Thijs, L.; Zwanenburg, B. Org. Lett. 1999,1, 1095-1097.
    [10] Braga, A. L.; Paixao, M. W.; Westermann, B.; Schneider, P. H.; Wessjohann, L. A. Acceleration of arylzinc formation and its enantioselective addition to aldehydes by microwave irradiation and aziridine-2-methanol catalysts. J. Org. Chem. 2008, 73, 2879-2882.
    
    [11] Shadakshari, U.; Nayak, S. K. Enantioselective conjugate addition of diethylzinc to chalcones catalysed by N-trityl aziridine-2-(S)-(diphenyl)methanol and Ni(acac)_2. Tetrahedron 2001, 57, 8185-8188.
    
    [12] Bulman Page, P. C.; Allin, S. M.; Maddocks, S. J.; Elsegood, M. R. J. New ligands for asymmetric diethylzinc additions to aromatic aldehydes, demonstrating substrate-dependent nonlinear effects. J. Chem. Soc. Perkin Trans. 1, 2002, 36, 2827-2832.
    
    [13] Willems, J. G. H.; Dommerholt, F. J.; Hammink, J. B.; Vaarhorst, A. M.; Thijs, L.; Zwanenburg, B. Asymmetric ketone reduction using chiral oxazaborolidines derived from aziridine carbinols. Tetrahedron Lett. 1995, 36, 603-606.
    
    [14] Bonini, B. F.; Capito, Elena; Comes-Franchini, M.; Fochi, M.; Ricci, A.; Zwanenburg, B. Aziridin-2-yl methanols as organocatalysts in Diels-Alder reactions and Friedel-Crafts alkylations of N-methyl-pyrrole and N-methyl-indole. Tetrahedron: Asymmetry 2006,17, 3135-3143.
    
    [15] (a) Bulut, A.; Asian, A.; Dogan, O. Catalytic Asymmetric nitroaldol (Henry) reaction with a Zinc-Fam catalyst. J. Org. Chem. 2008, 73, 7373-7375. (b) Dogan, O.; Koyuncu, H.; Garner, P.; Bulut, A.; Youngs, W. J.; Panzner, M. New Zinc(II)-Based catalyst for asymmetric azomethine ylide cycloaddition reactions. Org. Lett. 2006, 8, 4687-4690. (c) Koyuncu, H.; Dogan, O. Fam-Ti catalyzed enantioselective alkynylation of aldehydes. Org. Lett. 2007, 9, 3477-3479.
    
    [16] (a) Hermsen, P. J.; Cremers, J. G.. O.; Thijs, L.; Zwanenburg, B. Enantioselective diethylzinc addition to aldehydes using azetidine-derived chiral catalysts. Tetrahedron Lett. 2001, 42, 4243-4245. (b) Hermsen, P. J.; Cremers, J. G. O.; Thijs, L.; Zwanenburg, B. Tetrahedron Letters 2001, 42,4243-4245.
    
    [17] (a) Shi, M.; Satoh, Y.; Makihara, T.; Masaki, Y. Chiral C_2-symmetric 2, 5-disubstituted pyrrolidine derivatives as chiral catalyst ligands in the reaction of diethylzinc with arylaldehydes. Tetrahedron: Asymmetry 1995, 6, 2109-2112. (b)Shi, M.; Satoh, Y.; Masaki, Y. J. Chiral C_2-symmetric 2,5-disubstituted pyrrolidine derivatives as catalytic chiral ligands in the reactions of diethylzinc with aryl aldehydes.J. Chem. Soc, Perkin Trans. I. 1998,16, 2547-2552.
    [18] Shi, M.; Jiang, J.-K. Chiral C_2-symmetric 2, 4-disubstituted azetidines as chiral ligands in the addition of diethylzinc to aldehyde. Tetrahedron: Asymmetry 1999, 10, 1673-1679.
    [19] (a) Caddick, S.; Parr, N. J.; Pritchard, M. C. Preparation of a-amino-carboxylic acid derivatives via diastereoselective reactions of glycine enolate equivalents. Tetrahedron 2001, 57, 6615-6626. (b) Catalytic asymmetric synthesis of b-hydroxy-a-amino acid esters by direct aldol reaction of glycinate Schiff bases Tetrahedron 58 (2002) 8289-8298. (c) Panek, J. S.; Masse, C. E. An Improved Synthesis of (45,55)-2-Phenyl-4-(methoxycarbonyl)-5-isopropyloxazoline from (5)-Phenylglycinol. J. Org. Chem. 1998, 63, 2382-2384. (d) Nagamitsu, T.; Sunazuka, T.; Tanaka, H.; Omura, S.; Sprengeler, P. A.; Smith, A. B. Total Synthesis of (+)-Lactacystin J. Am. Chem. Soc. 1996,118, 3584-3590. (e) La(?)b, T.; Chastanet, J.; Zhu, J. Diastereoselective Synthesis of γ-Hydroxy-β-amino Alcohols and (25,35)-β-Hydroxyleucine from Chiral D-(N,N-Dibenzylamino)serine (TBDMS) Aldehyde J. Org. Chem. 1998,63, 1709-1713.
    [20] (a) Bao, J.; Wulff, W. D.; Dominy, J. B.; Fumo, M. J.; Grant, E. B.; Rob, A. C.; Whitcomb, M. C.; Yeung, S.-M.; Ostrander, R. L.; Rheingold, A. L. Synthesis, Resolution, and Determination of Absolute Configuration of a Vaulted 2,2'-Binaphthol and a Vaulted 3,3'-Biphenanthrol (VAPOL). J. Am. Chem. Soc. 1996, 118, 3392-3405. (b) Antilla, J. C.; Wulff, W. D. Catalytic Asymmetric Aziridination with a Chiral VAPOL-Boron Lewis Acid J. Am. Chem. Soc. 1999,121, 5099-5100. (c) Antilla, J. C.; Wulff, W. D. Catalytic asymmetric aziridination with arylborate catalysts derived from VAPOL and VANOL ligands. Angew. Chem. Int. Ed. 2000, 39, 4518-4521.
    [21] Bao, J.; Wulff, W. D.; Dominy, J. B.; Fumo, M. J.; Grant, E. B.; Rob, A. C.; Whitcomb, M. C.; Yeung, S.-M.; Ostrander, R. L.; Rheingold, A. L. Synthesis, Resolution, and Determination of Absolute Configuration of a Vaulted 2,2'-Binaphthol and a Vaulted 3,3'-Biphenanthrol (VAPOL). J. Am. Chem. Soc. 1996, 118, 3392-3405
    [23] Wang, Y.; Sun, J.; Ding, K. Practical method and novel mechanism for optical resolution of BINOL by molecular complexation with N-benzylcinchoninium chloride. Tetrahedron 2000, 56, 4447-4451.
    
    [24] Tanner, D.; Korno, H. T.; Guijarro, D.; Andersson, P. G. Aziridino alcohols as catalysts for the enantioselective addition of diethylzinc to aldehydes. Tetrahedron 1998,54, 14213-14232.
    
    [25] Wang, M.-C.; Zhang, Q.-J.; Zhao, W.-X.; Wang, X.-D.; Ding, X. Jing, T.-T.; Song, M.-P. Evaluation of Enantiopure N-(Ferrocenylmethyl)azetidin-2-yl(diphenyl)met- han-ol for Catalytic Asymmetric Addition of Organozinc Reagents to Aldehydes. J. Org. Chem. 2008, 73, 168-176.
    
    [26] a) Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823. b) Oguni, N.; Omi, T.; Yamamoto, Y.; Nakamura, A. Chem. Lett. 1983, 841.
    
    [27] Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757.
    
    [28] Hermsen, P. J.; Cremers, J. G. O.; Thijs, L.; Zwanenburg, B. Tetrahedron Letters 2001, 42, 4243-4245.
    
    [29] Wang, M.-C.; Hou, X.-H.; Chi, C.-X.; Tang, M.-S. The effect of direct steric interaction between substrate substituents and ligand substituents on enantioselectivities in asymmetric addition of diethylzinc to aldehydes catalyzed by sterically congested ferrocenyl aziridino alcohols. Tetrahedron: Asymmetry 2006, 17, 2126-2132.
    
    [30] Kipping, C.; Schiefer, H.; Schonfelder, K. Formation of phenyl-1-naphthols in the thermolysis of phenylacetyl chlorides in the presence of phenylacetylene. J. Prakt. Chem. 1973, 315, 887-894.
    
    [31] Edwards, J. D., Jr.; Cashaw, J. L. Studies in the naphthalene series. III. Synthesis of apogossypol hexamethyl ether. J. Am. Chem. Soc. 1957, 79, 2283-2285.
    
    [32] Wang, Y.; Sun, J.; Ding, K. Practical method and novel mechanism for optical resolution of BINOL by molecular complexation with N-benzylcinchoninium chloride. Tetrahedron 2000, 56, 4447-4451.
    
    [33] Zhang Y.; Yeung S.-M.; Wu H.; Heller D. P; Wu C.; Wulff, W. D. Highly enantioselective deracemization of linear and vaulted biaryl ligands. Org. Lett. 2003, 5, 1813-1816.
    
    [34] Mayers, A.; Schmidt, W.; Mcdennon, M. J. Asymmetric Addition to Chiral Aromatic and Unsatured Oxazolines using a Novel Chiral Auxiliary. Synthesis. 1993, 2, 250-262.
    
    [35] Baldwin, J. E.; Spivey, A. C. Schofield, C. J.; Sweeney, J. B. Amino Acid Synthesis via Ring Opening of N-Sulphonyl Aziridine-2-Carboxylate Eaters with Organometallic Reagents Tetrahedron. 1993, 49, 6309-6330.
    
    [36] Willems, J. G. H.; Hersmis, M. C.; De Gelder, R.; Smits, J. M. M.; Hammink, J. B.; Dommerholt, F. J.; Thijs, L.; Zwanenburg, B. Synthesis and crystal structure of enantiopure N-tritylaziridine-2-yl-methanols from L-serine and L-threonine. J. Chem Soc., Perkin Trans. 1, 1997, 963-967.
    
    [37] Feng, X.; Qiu, G.; Liang, S.; Teng, H.; Wu, L.; Hu, X. Aza-Payne rearrangement of α,α-disubstituted-aziridinemethanols. Tetraderon:Asymmetry 2006,17, 1394-1401.
    
    [38] Blanka, W. Synthesis of 6,8-diphenoxyoctanoic acid. J. Org. Chem. 1961, 26, 711-713.
    [1] For reviews and highlights on applications, see (a) Fan, Q.-H.; Li, Y.-M.; Chan, A. S. C. Recoverable catalysts for asymmetric organic synthesis. Chem. Rev. 2002, 102, 3385-3466. (b) Trost, B. M.; Crawley, M. L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem. Rev. 2003, 103, 2921-2943. (c) Trost, B. M. Asymmetric allylic alkylation, an enabling methodology. J. Org. Chem. 2004, 69, 5813-5837. (d) Tunge, J. A.; Burger, E. C. Transition metal-catalyzed decarboxylative additions of enolates. Eur. J. Org. Chem. 2005, 9, 1715-1726. (e) You, S. L.; Dai, L. X. Enantioselective palladium-catalyzed decarboxylative allylic alkylations. Angew. Chem. Int. Ed. 2006, 45, 5246-5248. (f) Graening, T.; Schmalz, H. G. Pd-catalyzed enantioselective allylic substitution: new strategic options for the total synthesis of natural products. Angew. Chem. Int. Ed. 2003, 42, 2580-2854. (g) Braun M.; Meier T. Tsuji-trost allylic alkylation with ketone enolates. Angew. Chem. Int. Ed. 2006, 45, 6952 - 6955.
    [2] Trost, B. M.; Strege, P. E. Asymmetric induction in catalytic allylic alkylation. J. Am. Chem. Soc. 1977, 99, 1649-1651.
    [3] For reviews on various ligands, see: (a) Helmchen, G. Pfaltz, A. Phosphinooxazolines—a new class of versatile, modular P,N-ligands for asymmetric catalysis. Acc. Chem. Res. 2000, 33, 336-345. (b) Dai, L. X.; Tu, T.; You, S. L.; Deng, W. P.; Hou, X. L. Asymmetric catalysis with chiral ferrocene ligands. Acc. Chem. Res. 2003, 36, 659-667. (c) McManus, H. A.; Guiry, P. J. Recent developments in the application of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev. 2004, 104, 4151-4202. (d) Desimoni, G.; Faita, G.; Jorgensen, K. A. C(2)-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev. 2006, 106, 3561-3651. (e) Lu Z.; Ma, S. M. Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew. Chem. Int. Ed. 2008, 47, 258 - 297. (f) Dieguez, M.; Pamies, O.; Ruiz, A.; Diaz, Y.; Castillon, S.; Claver, C. Carbohydrate derivative ligands in asymmetric catalysis. Coord. Chem. Rev. 2004, 248, 2165-2192.
    
    [4] Ait-Haddou, H.; Hoarau, O.; Cramailere, D.; Pezet, F.; Daran, J.-C.; Balavoine, Gilbert G. A. New dihydroxy bis(oxazoline) ligands for the palladium-catalyzed asymmetric allylic alkylation: Experimental investigations of the origin of the reversal of the enantioselectivity. Chem. Eur. J. 2004,10, 699-707.
    
    [5] Bayardon, J.; Sinou, D.; Guala, M.; Desimoni, G. Applications of enantiopure 4,5-diphenyl substituted box and pybox ligands in asymmetric catalysis. Tetrahedron: Asymmetry 2004, 75, 3195-3200.
    
    [6] Pericas, M. A.; Puigjaner, C.; Riera, A.; Vidal-Ferran, A.; Gomez, M.; Jimenez, F.; Muller, G.; Rocamora, M. Modular bis(oxazoline) ligands for palladium catalyzed allylic alkylation: unprecedented conformational behavior of a bis(oxazoline) palladium-1,3-diphenylallyl complex. Chem. Eur. J. 2002, 8, 4164-4178.
    
    [7] Glos, M.; Reiser, O. Aza-bis(oxazolines): new chiral ligands for asymmetric catalysis. Org. Lett. 2000, 2, 2045-2048.
    
    [8] Nordstroem, K.; Macedo, E.; Moberg, C. Enantioselective Allylic Substitutions Catalyzed by [[(Hydroxyalkyl)pyridinyl]oxazoline]-and [[(Alkoxyalkyl)pyridine- yl]oxazoline]palladium Complexes. J. Org. Chem. 1997, 62, 1604-1609.
    
    [9] Vasse, J.-L.; Stranne, R.; Zalubovskis, R.; Gayet, C.; Moberg, C. Influence of Steric Symmetry and Electronic Dissymmetry on the Enantioselectivity in Palladium-Catalyzed Allylic Substitutions. J. Org. Chem. 2003, 68, 3258-3270.
    
    [10] Dieguez, M.; Pamies, O.; Claver, C. Modular furanoside diphosphite ligands for Pd-catalyzed asymmetric allylic substitution reactions: Scope and limitations. Adv. Synth. Catal. 2005,347, 1257-1266.
    
    [11] Raghunath, M.; Gao, W.; Zhang, X. Ferrocenyl bis-phosphine ligands bearing sulfinyl, sulfonyl or sulfenyl groups: applications in asymmetric hydrogenation and allylic alkylation reactions. Tetrahedron: Asymmetry 2005, 16, 3676.
    
    [12] Xie, J.-H.; Duan, H.-F.; Fan, B.-M.; Cheng, X.; Wang, L.-X.; Zhou, Q.-L. Application of SDP ligands for Pd-catalyzed allylic alkylation. Adv. Synth. Catal. 2004, 346, 625-632.
    
    [13] Watson, I. D. G.; Styler, S. A.; Yudin, A. K. Unusual selectivity of unprotected aziridines in palladium-catalyzed allylic animation enables facile preparation of branched aziridines. J. Am. Chem. Soc. 2004, 126, 5086-5087.
    [14] Raghunath, M; Zhang, X. A correlation study of bisphosphine ligand bite angles with enantioselectivity in Pd-catalyzed asymmetric transformations. Tetrahedron Lett. 2005,46,8213-8216.
    [15] Bower, J. F.; Jumnah, R.; Williams, A. C.; Williams, J. M. J. Palladium-catalyzed asymmetric allylic substitution: synthesis of α- and β-amino acids. J. Chem. Soc. Perkin Trans. 1 1997, 1411-1420.
    [16] (a) You, S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W. Role of planar chirality of S,N- and P,N-Ferrocene ligands in palladium-catalyzed allylic substitutions. J. Org. Chem. 2002, 67, 4684-4695. (b) Deng, W.-P.; You, S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W.; Sun, J. Importance of planar chirality in chiral catalysts with three chiral elements: The role of planar chirality in 2'-Substituted 1,1'-P,N-ferrocene ligands on the enantioselectivity in Pd-catalyzed allylic substitution. J. Am. Chem. Soc. 2001,123, 6508-6519. (d) You, S.-L.; Zhu, X.-Z.; Luo, Y.-M.; Hou, X.-L.; Dai, L.-X. Highly regio- and enantioselective Pd-catalyzed allylic alkylation and amination of monosubstituted allylic acetates with novel ferrocene P,N-ligands. J. Am. Chem. Soc. 2001,123,7411-7412.
    [17] Pamies, O.; Dieguez, M.; Claver, C. New phosphite-oxazoline ligands for efficient Pd-catalyzed substitution reactions. J. Am. Chem. Soc. 2005,127, 3646-3647.
    [18] Hou, D.-R.; Reibenspies, J. H.; Burgess, K. New, optically active phosphine oxazoline (JM-Phos) ligands: syntheses and applications in allylation reactions. J. Org. Chem. 2001, 66, 206-215.
    [19] Bunlaksananusom, T.; Luna, A. P.; Bonin, M.; Micouin, L.; Knochel, P. New applications of camphor-derived P,N-ligands for asymmetric Pd- and Ir-catalyzed reactions. Synlett 2003, 2240-2242.
    [20] Mino, T.; Saito, A.; Tanaka, Y.; Hasegawa, S.; Sato, Y.; Sakamoto, M.; Fujita, T. Amination of N-Aryl Prolinol via Ring Expansion and Contraction: Application to the Chiral Ligand for the Catalytic Asymmetric Reaction. J. Org. Chem. 2005, 70, 1937-1940.
    [21] Mino, T.; Tanaka, Y.; Hattori, Y.; Yabusaki, T.; Saotome, H.; Sakamoto, M; Fujita, T. Synthesis and optical resolution of aminophosphines with axially chiral C(aryl)-N(amine) bonds for use as ligands in asymmetric catalysis. J. Org. Chem. 2006, 71, 7346-7353.
    
    [22] Akihito S.; Kazuo A.; Kiyoshi T.; Toshiaki M. Versatile chiral bidentate ligands derived from r-amino acids: synthetic applications and mechanistic considerations in the palladium-mediated asymmetric allylic substitutions J. Org. Chem. 2000, 65, 4228-4240.
    
    [23] Boog-Wick, K.; P. S. Pregosin, G. Trabesinger, New Chiral N,S-Ligands Based on Oxazoline-Thioglucose Donors. Palladium(II)-Catalyzed Enantioselective Allylic Alkylation. Organometallics 1998,17, 3254-3264.
    
    [24] You, S.-L.; Zhou, Y.-G.; Hou, X.-L.; Dai, L.-X. Enantioselective palladium catalyzed allylic substitution with chiral thioether derivatives of ferrocenyl-oxazoline and the role of planar chirality in this reaction. Chem. Commun. 1998, 2765-2766.
    
    [25] Braga, A. L.; Paix.o, M.W.; Milani, P.; Silveira, C. C.; Rodrigues, O. E. D.; Alves, E. F. New aziridine sulfide ligands for palladium-catalyzed asymmetric allylic alkylation. Synlett 2004, 1297-1299.
    
    [26] Selvakumar, K.; Valentini, M.; Pregosin, P. S. Chiral Phosphito-Thioether Complexes of Palladium(O). Comments on the Pd, Rh, and Ir Regio- and Enantioselective Allylic Alkylations of PhCH:CHCH(OAc)R, R = H, Me, Et. Organometallics 1999, 18, 4591-4597.
    
    [27] Adams, H.; Anderson, J. C.; Cubbon, R.; James, D. S.; Mathias, J. P. Origins of Enantioselectivity with Nitrogen-Sulfur Chelate Ligands in Palladium-Catalyzed Allylic Substitution. J. Org. Chem. 1999, 64, 8256-8262.
    
    [28] Garcia Mancheno, O.; Priego, J.; Cabrera, S.; Gomez Arrayas, R.; Llamas, T.; Carlos Carretero, J. 1-Phosphino-2-sulfenylferrocenes as Planar Chiral Ligands in Enantioselective Palladium-Catalyzed Allylic Substitutions. J. Org. Chem. 2003, 68, 3679-3686.
    
    [29] Evans, D. A.; Campos, K. R.; Tedrow, J. S.; Michael, F. E.; Gagne, M. R. Application of Chiral Mixed Phosphorus/Sulfur Ligands to Palladium-Catalyzed Allylic Substitutions. J. Am. Chem. Soc. 2000, 122, 7905-7920.
    [30] Gladiali, S.; Medici, S.; Pirri, G.; Pulacchini, S.; Fabbri, D. BINAPS — An axially chiral P,S-heterodonor ligand for asymmetric catalysis based on binaphthalene backbone. Can. J. Chem. 2001, 79, 670-678.
    
    [31] Khiar, N.; Suarez, B.; Valdivia, V.; Fernandez, I. Phosphinite thioglycosides derived from natural D-sugars as useful P/S ligands for the synthesis of both enantiomers in palladium-catalyzed asymmetric substitution. Synlett 2005, 2963-2964.
    
    [32] Tollabi, M.; Framery, E.; Goux-Henry, C; Sinou, D. Palladium-catalyzed asymmetric allylic alkylation using chiral glucosamine-based monophosphines. Tetrahedron: Asymmetry 2003,14, 3329-3333.
    
    [33] Boaz, N.W.; J.; A. Ponasik, Jr.; Large, S. E.; Debenham, S. D. Ferrocenylphosphine-amide ligands for palladium-catalyzed asymmetric allylation. Tetrahedron: Asymmetry 2004,15, 2151 -2154.
    
    [34] Dai, W.-M.; Yeung, K. K. Y.; Liu, J.-T.; Zhang, Y.; Williams, I. D. A novel class of nonbiaryl atropisomeric P,O-ligands for palladium-catalyzed asymmetric allylic alkylation. Org. Lett. 2002, 4, 1615-1618.
    
    [35] Bergner, E. J.; Helmchen, G. Synthesis of enantiomerically pure (-)-wine lactone based on a palladium-catalyzed enantioselective allylic substitution. Eur. J. Org. Chem. 2000,419-423.
    
    [36] for reviews on sulfur-containing ligands, see: (a) Martin, Erika; Dieguez, Montserrat. Thioether containing ligands for asymmetric allylic substitution reactions. C. R. Chimie 2007, 10, 188-205. (b) Mellah, M.; Voituriez, A.; Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 2007, 707, 5133-5209. (c) Masdeu-Bulto, A. M.; Dieguez, M.; Martin, E.; Gomez, M. Chiral thioether ligands: coordination chemistry and asymmetric catalysis. Coord. Chem. Rev. 2003, 242, 159-201. (d) Canovese, L.; Chessa, G.; Visentin, F.; Uguagliati, P. Pyridylthioethers: a promising class of polydentate ligands in palladium and platinum coordination. Coord. Chem. Rev. 2004, 248, 945-954.
    
    (37) Hayashi, T.; Yamamoto, A.; Hagihara, T.; Ito, Y. Modification of optically active ferrocenylphosphine ligands for palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Lett. 1986, 27, 191-194.
    [38] (a) Helmchen, G.; Kudis, S.; Sennhenn, P.; Steinhagen, H. Enantioselective catalysis with complexes of asymmetric P,N-chelate ligands. Pure Appl. Chem. 1997, 69, 513-518. (b) Brown, J. M.; Hulmes, D. I.; Guiry, P. J. Mechanistic and synthetic studies in catalytic allylic alkylation with palladium complexes of 1-[2-(diphenylphosphino)-1-naphthyl]isoquinoline. Tetrahedron 1994, 50,4493-4506.
    [39] Auburn, P. R.; Mackenzie, P. B.; Bosnich, B. Asymmetric synthesis. Asymmetric catalytic allylation using palladium chiral phosphine complexes. J. Am. Chem. Soc. 1985,107, 2033-2046.
    [40] von Matt, P.; Lloyd-Jones, G. C.; Minidis, A. B. E.; Pfaltz, A.; Macko, L.; Neuburger, M.; Zehnder, M.; Rueegger, H.; Pregosin, P. S. Enantioselective allylic substitution catalyzed by chiral [bis(dihydrooxazole)]palladium complexes: catalyst structure and possible mechanism of enantioselection. Helv. Chim. Acta 1995, 78, 265-284.
    [41] (a) Pregosin, P. S.; Trabesinger, G. 2-D NMR spectroscopy of chiral phosphine complexes. Applications to problems related to enantioselective homogeneous catalysis. J. Chem. Soc. Dalton Trans. 1998, 727-734. (b) Pregosin, P. S.; Salzmann, R. Structure and dynamics of chiral allyl complexes of Pd(Ⅱ): NMR spectroscopy and enantioselective allylic alkylation. Coord. Chem. Rev. 1996,155, 35-68
    [42] (a) Aakermark, B.; Krakenberger, B.; Hansson, S. Vitagliano, A. Ligand effects and nucleophilic addition to (η~3-allyl)palladium complexes. A carbon-13 NMR study. Organometallics 1987, 6, 620-628. (b) Macsari, I.; Hupe, E.; Szabo, K. J. Regioselective catalytic transformations involving β-silyl-substituted (η~3-Allyl)palladium complexes: an efficient route to functionalized allylsilanes. J. Org. Chem. 1999, 64, 9547-9556. (b) Aranyos, A.; Szabo, K. J.; Castano, A. M.; Baeckvall, J.-E. Central versus terminal attack in nucleophilic addition to (n-allyl)palladium complexes, ligand effects and mechanism. Organometallics 1997, 16, 1058-1064. (c) Moreno-Manas, M.; Pajuelo, F.; Parella, T.; Pleixats, R. Preparation and NMR Spectroscopy [of] (1,2-Bis(diphenylphosphino)ethane)(η~3-1,3-Diarylallyl)palladium Tetrafluoroborates. Correlation of Chemical Shifts with Hammett Substituent Constants and with the Regioselectivity of Nucleophilic Attack. Organometallics 1997,16, 205-209.
    [43] For a review on Curtin-Hammet kinetics, see: Seeman, J. I. Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics. Chem. Rev. 1983, 83, 83-134.
    
    [44] Ferioli, F.; Fiorelli, C.; Martelli, G.; Monari, M.; Savoia, D.; Tobaldin, P. Steric effects in enantioselective allylic alkylation catalysed by cationic (η~3-allyl)palladium complexes bearing chiral pyridine-aziridine ligands. Eur. J. Org. Chem. 2005, 7, 1416-1426.
    
    [45] (a) Confalone, P. N.; Pizzolato, G.; Baggiolini, E. G.; Lollar, D.; Uskokovic, M. R. Stereospecific total synthesis of d-biotin from L(+)-cysteine. J. Am. Chem. Soc. 1977, 99, 7020-9026. (b) Braga, A. L.; Appelt, H. R.; Schneider, P. H.; Silveira, C. C.; Wessjohann, L. A. A new functionalized, chiral disulfide derived from L-cysteine: (R,R)-bis[(3-benzyl-4-oxazolidinyl)methyl] disulfide as a catalyst for diethylzinc addition to aldehydes. Tetrahedron: Asymmetry 1999, 10, 1733-1738.
    
    [46] Shaw, K. J.; Luly, J. R.; Rapoport, H. Routes to mitomycins. Chirospecific synthesis of aziridinomitosenes. J. Org. Chem. 1985, 50, 4515-4523.
    
    [47] Luche, J. L. Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J. Am. Chem. Soc. 1978,100, 2226-2227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700