EMD-621和N-去甲基克拉霉素诱导肿瘤细胞凋亡机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
EMD-621为人工合成的结构新化合物,本文首次对其体内外抗肿瘤活性进行了较为系统的研究,主要探讨了EMD-621在两种肿瘤细胞:人胃腺癌SGC-7901细胞、人宫颈癌HeLa细胞诱导细胞凋亡的机制;另外还研究了N-去甲基克拉霉素诱导HeLa细胞凋亡的机制。
     体内实验结果表明,EMD-621对荷S_(180)的昆明种小鼠移植肿瘤有一定的抑制作用;体外实验结果表明,EMD-621对人宫颈癌(HeLa),人乳腺癌(MCF-7),人胃腺癌(SGC-7901),人慢性骨髓性白血病细胞(K562)均有明显的细胞毒作用。EMD-621对小鼠成纤维细胞(3T3)也有一定的细胞毒作用,但在等剂量下其毒性远低于顺铂。
     用形态学方法、核荧光染色、DNA片段化分析、LDH活力测定、细胞周期分布分析及Annexin V-FITC检测磷脂酰丝氨酸(PS)外翻实验充分证实了EMD-621诱导HeLa和SGC-7901细胞死亡机制为细胞凋亡。
     3.4μmol·L~(-1) EMD-621作用于HeLa细胞后,半胱氨酸天冬氨酸酶-3(cysteinyl aspirate specific proteinase-3,caspase-3)和-8的酶原被降解,caspase家族抑制剂、caspase-1、-3和-8的抑制剂可部分抑制细胞死亡,caspase-10抑制剂几乎没有作用,而caspase-9抑制剂则增加了细胞死亡率。Caspase-3底物caspase-3依赖型的DNA酶抑制物(inhibitor of caspase activated DNase,ICAD)和多聚腺苷二磷酸聚合酶(poly-(ADP-ribose)polymerase,PARP)降解,表明EMD-621诱导HeLa细胞凋亡时激活了caspase级联反应,但是caspase-9没有参与其中;死亡受体的配体FasL表达增加,推测EMD-621可能同时诱导FADD(Fas-associated protein with death domain)的表达,激活了下游的caspase途径;促凋亡蛋白Bax(Bcl-2 associated X protein)表达增加,抑凋亡蛋白Bcl-2(B-cell lymphoma-leukemia-2 gene,Bcl-2)表达降低,Bax/Bcl-2表达的比率在药物作用12h后随时间延长而升高,罗丹明123(rhodamine123)染色可见线粒体膜电位下降,表明EMD-621诱导细胞凋亡时激活以线粒体为中心的信号转导途径。细胞凋亡早期p21水平短暂升高,但此后很快被降解;药物作用12h后即可见p53表达增加,并且其表达强度逐渐增加;抗凋亡蛋白SIRT1的表达随着药物作用时间的延长而降低;p38抑制剂SB203580降低细胞的死亡率,细胞外信号调控的蛋白激酶(extracellularsignal-regulated protein kinase,ERK)抑制剂PD98059增加细胞的死亡率,c-Jun N末端激酶(c-Jun N-terminal kinase,JNK)抑制剂SP600125对细胞没有作用;ERK在12h时被抑制,p38在12h时被激活,表明p38发挥了促进细胞凋亡的作用而ERK发挥了促进细胞增殖的作用。
     EMD-621作用HeLa细胞24h,下调了Ser/Thr激酶Akt的表达,p-Akt先增加后降低,表明Akt参与了EMD-621诱导的HeLa凋亡。蛋白激酶C(protein kinase C,PKC)家族成员在EMD-621诱导HeLa细胞凋亡过程起到促细胞增殖作用。PI3K(phosphatidylinositol 3-kinase)抑制剂wortmannin和PKC家族抑制剂staurosporine均更为显著地增加了EMD-621对ERK蛋白表达及其磷酸化的抑制。以上结果提示我们在HeLa细胞中,ERK对细胞的保护作用可能是依赖上游的PI3K和PKC途径实现的。wortmannin和staurosporine增加了EMD-621对SIRT1表达的抑制,表明SIRT1的失活可能受PI3K家族不同成员以及PKC不同亚型的调控。
     核内因子κB(nuclear factor-κB,NF-κB)抑制剂PDTC和蛋白消化体(proteasome)抑制剂MG132,增加了细胞的死亡率,同时IκBα也随药物作用时间的延长而被降解,说明NF-κB可能在EMD-621诱导HeLa细胞凋亡过程中发挥作用。酪氨酸激酶在EMD-621诱导HeLa细胞凋亡过程起到促细胞增殖作用。
     1.6μmol·L~(-1) EMD-621作用于SGC-7901细胞12h后,caspase-3酶原被降解,同时ICAD和PARP降解,caspase家族抑制剂、caspase-1、-3和-10的抑制剂可部分增加细胞死亡,而caspase-8抑制剂却显著降低了SGC-7901细胞对药物的敏感性,caspase-9抑制剂几乎没有作用,表明EMD-621诱导SGC-7901细胞凋亡时caspase家族成员起到保护细胞作用。采用ORAC方法考察了EMD-621对活性氧清除的影响,结果提示EMD-621几乎无清除活性氧的能力。加入caspase家族抑制剂后,免疫印迹结果显示PARP仍被降解,进一步证明存在caspase非依赖性蛋白降解了PARP;FasL的表达先短暂增加而后减少,而FADD表达呈时间依赖性减少,推测很可能存在新的作用靶点;药物作用12h后Bax表达显著升高,Bcl-2表达显著下降,细胞色素c的释放也随着药物作用时间的延长而增加,rhodamine123染色可观察到线粒体膜电位下降,表明EMD-621通过改变Bax/Bcl-2的表达,激活以线粒体为中心的信号转导途径而诱导细胞凋亡。药物作用12h后p53表达水平升高,SIRT1表达下调,表明EMD-621能够下调SIRT1蛋白,从而促进了p53和Bax上调。p38、ERK均被激活,p38对凋亡有促进作用,ERK发挥了促进细胞增殖的作用,而JNK几乎没有发挥作用。
     EMD-621作用SGC-7901细胞12h,下调了Akt的表达,p-Akt也呈时间依赖性减少,表明Akt参与了EMD-621诱导的SGC-7901凋亡。NF-κB抑制剂PDTC和proteasome抑制剂MG132增加了细胞的死亡率,并且IκBα随药物作用时间的延长而被降解,说明NF-κB可能在EMD-621诱导SGC-7901细胞凋亡过程中发挥作用。PKC家族成员以及酪氨酸激酶在EMD-621诱导SGC-7901细胞凋亡过程中均起到促细胞增殖作用。
     本论文首次发现N-去甲基克拉霉素具有抗癌活性。60μmol·L~(-1) N-去甲基克拉霉素作用于HeLa细胞,形态学方法、核荧光染色、DNA片段化分析、LDH活力测定表明N-去甲基克拉霉素诱导HeLa细胞死亡机制为凋亡。
     实验结果表明药物作用后caspase-3酶原被降解,产生有活性的小片段caspase-3,同时ICAD和PARP降解,DNA片段化,caspase家族抑制剂,caspase-3、-9的抑制剂可部分抑制细胞死亡,表明N-去甲基克拉霉诱导HeLa细胞凋亡时激活了caspase级联反应。Bax/Bcl-2在药物作用后随时间延长而升高,抗凋亡成分Bcl-X_L蛋白的表达不受影响,Cyt.c从线粒体释放到胞浆逐渐增多,表明N-去甲基克拉霉素通过增加Bax/Bcl-2的比例,降低了线粒体膜电位,激活以线粒体为中心的信号转导途径而诱导细胞凋亡。N-去甲基克拉霉素能够下调SIRT1蛋白,从而促进了p53和Bax上调。在N-去甲基克拉霉素诱导的HeLa细胞凋亡中,p38、ERK和JNK均被激活,并且三种MAPK的特异性抑制剂均对凋亡有促进作用,表明它们均发挥了促进细胞增殖的作用。
     N-去甲基克拉霉素作用HeLa细胞24 h,下调了Akt的表达,p-Akt先增加后开始降低,表明Akt参与了N-去甲基克拉霉素诱导的HeLa凋亡。NF-κB抑制剂PDTC和proteasome抑制剂MG132增加了细胞的死亡率,并且IκBα随药物作用时间的延长而被降解,说明NF-κB可能在N-去甲基克拉霉素诱导HeLa细胞凋亡过程中发挥作用。
The mechanisms of EMD-621 -induced cell death in human cervical carcinoma HeLa, gastric adenocarcinoma SGC-901, and mechanism of N-demethyl-clarithromycin-induced HeLa cell death were studied in this dissertation.It showed that EMD-621 had potent antitumor activity in vivo, and it could inhibit the proliferation of SGC-7901, HeLa, K562 and MCF-7 in a dose- and time-dependent manner in vitro. Results of MTT assay, photomicroscopical observation, DNA agarose gel electrophoresis, LDH release, flowcytometric analysis cell-cycle distribution and Annexin V binding to the membrane phospholipid phosphatidylserine showed that EMD-621 could induce cell apoptosis in HeLa and SGC-7901 cells.After treatment with EMD-621, the caspase-3 of HeLa cells was activated, followed by the degradation of caspase-3 substrates, ICAD (inhibitor of caspase dependent DNase) and PARP (poly-(ADP-ribose) polymerase). Caspase family inhibitor, caspase-1, -3, -8 inhibitors could reduce EMD-621-induced HeLa cell death, and the caspase 10 inhibitor almost had no effect, while the caspase-9 inhibitor could increase the cell death. FasL (Fas ligand) and FADD (Fas-associated with death domain) expressions were up-regulated, which suggested that Fas/FasL pathway was activated in EMD-621-induced cell apoptosis. The drug decreased the expression of anti-apoptotic mitochondrial protein Bcl-2, not BcI-X_l, and increased the expression of pro-apoptotic protein Bax. It also could cause the loss of mitochondrial membrane potential. EMD-621 could increase the expression of pro-apoptotic protein p53 and p21 proteins and down-regulated the expression of anti-apoptotic protein SIRT1. The cell death was partially reduced by p38 MAPK inhibitor (SB 203580) and increased by ERK inhibitor (PD98059). At the same time, phosphorylation of ERK was down-regulated and that of p38 was up-regulated indicating different roles of these MAPK at different stages of cell death. Simultaneously, the activation of protein kinase B (PKB/Akt) was also decreased in EMD-621-treated HeLa cell.EMD-621-enhanced engulfment was partially blocked by a nuclear factor (NF-kB) inhibitor PDTC or proteasome inhibitor MG132. Further studies revealed that EMD-621 could induce IκBα(inhibitorκB) degradation. Tyrosine kinase inhibitor genistein also increased the cell death. As a whole, EMD-621 could induce apoptosis in HeLa cells via accumulation of p53, altered Bax/Bcl-2 ratio, activation of caspases and p38 MAPK.
     In EMD-621-treated SGC-7901 cells, caspase family inhibitor (z-VAD-fmk), caspase-1 inhibitor (Ac-YVAD-cmk), caspase-3 inhibitor (z-DEVD-fmk) and caspase-10 inhibitor (z-AEVD-fmk) partially augmented the cell death, while caspase-8 inhibitor (z-IETD-fmk) reversed the cell death and caspase-9 inhibitor (z-LEHD-fmk) almost had no effect. Caspase-3 was activated followed by the degradation of caspase-3 substrates, ICAD and PARP, and the caspase family inhibitor failed to inhibit PARP cleavage. This result suggested that there might have an unknown signal pathway from the mitochondrial to the downstream protein PARP, which is cleaved in a caspase-independent manner.
     ORAC (Oxygen Radical Absorbance Capacity) assay was used to detect the change of radical. EMD-621 almost had no effect on scavenging hydroxyl radical. FasL expression was up-regulated in 12 h and began to decrease in 36 h, while FADD expression was down-regulated suggesting that there might exist new target in EMD-621-induced cell apoptosis. EMD-621 up-regulated the expression ratio of Bax/Bcl-2 and significantly increased the expression of p53 protein. It also caused the loss of mitochondrial membrane potential. The cell death was partially reduced by p38 MAPK inhibitor (SB 203580), while ERK inhibitor (PD98059) augmented the cell death; ERK phosphorylation was down-regulated and p38 phosphorylation was up-regulated. Moreover, PI3K inhibitor wortmannin reduced the cell viability, EMD-621 induced IκBαdegradation and tyrosine kinase inhibitor, genistein, also augmented the cell death. Generally, EMD-621 could induce apoptosis in SGC-7901 cells via accumulation of p53, altered Bax/Bcl-2 ratio, and p38/JNK MAPK.
     N-demethyl-clarithromycin was the main metabolite of clarithromycin in vivo, and it had been reported that N-demethyl-clarithromycin had potent anti-inflammatory activity. There had no report on its anticancer activity. Therefore, for the first time the apoptotic effect of N-demethyl-clarithromycin on human cervical cancer HeLa cells was investigated in this study.
     This study showed that N-demethyl-clarithromycin could inhibit the proliferation of HeLa cells. Based on morphologic observation, the DNA fragmentation suggested that N-dernethyl-clarithromycin could induce HeLa cell death involved in a mechanism of apoptosis. The caspase inhibitors z-VAD-frnk, z-DEVD-fmk, z-LEHD-fmk effectively enhanced N-demethyl-clarithromycin-induced cell viability, while the z-IETD-fmk almost had no effect. Caspase-3 was activated followed by the degradation of caspase-3 substrates, ICAD and PARE N-demethyl-clarithromycin up-regulated the expression ratio of mitochondrial proteins Bax/Bcl-2 and significantly increased the expression of p53 protein. It also could cause the lost of mitochondrial membrane potential and down-regulated SIRT1 protein expression. ERK, JNK and p38 MAPK were activiated and the cell death were partially increased by ERK inhibitor (PD98059), JNK MAPK inhibitor (SP600125) and p38 MAPK inhibitor (SB203580). Simultaneously, the activation of protein kinase B (PKB/Akt) was also decreased in N-demethyl-clarithromycin-treated HeLa ceils. Moreover, EMD-621 induced IκBαdegradation and tyrosine kinase inhibitor genistein also augmented the cell death. These results indicated that N-demethyl-clarithromycin-induced apoptosis of HeLa cells might involve a mitochondrial-related caspase pathway.
引文
1. WHO, Global action against cancer now. WHO, 2005.
    2.项永兵.中国恶性肿瘤高发现场点资料的分析和利用.中国肿瘤2005,14:562-569。
    3.陈泽涛,董倩.抗癌中药与细胞凋亡研究.山东中医药大学学报1999,23:74-77。
    4.孙忠实,朱珠.抗肿瘤药物的新进展.中国医院用药评价与分析2004,4:53-55。
    5. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26: 239-257.
    6.彭黎明,王曾礼.细胞凋亡的基础与临床.北京:人民卫生出版社2000,1-152。
    7.冯建芳,章静波.程序性细胞死亡及细胞凋亡.生理科学进展1995,26:373-378。
    8.彭远英,彭正松,喻可芳.凋亡细胞的超微结构变化.细胞生物学杂志2003,25:280-283。
    9.刘丽芳,吴人亮,吴翠环.细胞胀亡(oncogenisis):一种不同于凋亡(apoptosis)的死亡方式.国外医学分子生物学分册2002,24:285-288。
    10. Guimaraes AC, Linden R. Programmed cell deaths: apoptosis and alternative death styles. Eur J Biochem 2004, 271: 1638-1650.
    11.袁长青,丁振华.Caspase的活化及其在细胞凋亡中的作用.生理科学进展2002,33:220-224。
    12. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteins. J Biol Chem 1999, 274: 20049-20052.
    13. Salvesen GS, Dixit VM. Caspase: intracellular signaling by proteolysis. Cell 1997, 91: 443-446.
    14. Thomberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312-1316.
    15. Chang HY, Yang XL. Proteases for cell suicide: functions and regulation ofcaspases. Microbiol Mol Biol Rev 2000, 64: 821-846.
    16. Reed JC. Mechanisms ofapoptosis. American J Pathol 2000, 157:1415-1430.
    17. Hsu SY, Hsueh AJW. Tissue-Specific Bcl-2 Protein Parmers in Apoptosis: An Ovarian Paradigm. Physiol Rev 2000, 80: 593-614.
    18. Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated Dnase that degrades DNA during apoptois, and inhibitor ICAD. Nature 1998, 391:43-50.
    19. Tsujimoto Y, Shimizu S. Bcl-2 family: life-or-death switch. FEBS Lett 2000, 466: 6-10.
    20. Zhang L, Yu J, Park BH, et al. Role of BAX in the apoptotic response to anticancer agents. Science 2000, 290: 989-992.
    21. Gross A, Jockel J, Wei MC, et al. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO (Eur Mol Biol Organ) J 1998, 17: 3878-3885.
    22. Wei MC, Zong WX, Cheng EHY, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001; 292:727-730.
    23. Yinn XM, Oltval ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 1994, 369:321-323.
    24. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998: 281; 1322-1326.
    25. Goping IS, Gross A, Lavoie JN, et al. Regulated targeting of BAX to mitochondria. J Cell Biol 1998, 143: 207-215.
    26. Pastorino JG, Chen ST, Tafani M, et al. The overexpression of Bax produces cell death upon induction of the mitochondrial mermeability transition. J Biol Chem 1998, 273: 7770-7775.
    27. Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood 2001, 1: 2603-2614.
    28. Rudner J, Jendrossek V, Belka C. New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum. Apoptosis 2002, 7: 441-447.
    29. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis. Science 2003, 300:135-139.
    30. Chang L, Karin M, Mammalian MAP kinase signalling cascades. Nature 2001, 410 (6824): 37-40.
    31. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions [J]. Biochem J 2000, 351(2):289-305.
    32. Wang S, Shi X. Mechanism of Cr (Ⅵ)-induced p53 activation: the role ofphosphorylation, mdm2 and ERK. Carcinogenesis 2001, 22: 757-762.
    33. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998, 74: 49-139.
    34. Squires MS, Nixon PM, Cook SJ. Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1. Biochem J 2002, 366: 673-680.
    35. Pumiglia KM, Decker SJ. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc NatlAcad Sci USA 1997, 94: 448-452.
    36. Downward J: Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003, 3:11-22.
    37. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer.Nature 2002, 417: 949-954.
    38. Lunghi P, Tabilio A, Dall'Aglio PP, et al. Down-modulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia. 2003, 17: 1783-1793.
    39. Fleming y, Armstrong CG, Mortice N, et al. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JN-K) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochem J 2000, 352: 145-154.
    40. Buschmann T, Potapova O, Bar-Shira A, et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 2001, 21: 2743-2754.
    41. Fuchs SY. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 12(17): 2658-2663.
    42. Noguchi K, Kitanaka C, Yamana H. et al. Regulation of c-myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J. Biol. Chem.1999, 274(46): 32580-32587.
    43. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298: 1911-1912.
    44. Toumier C, Hess P, Yang DD et al. Requirement of JNK for stress-induced activation of the cytochrome C-mediated death pathway. Science 2000, 288(5467): 870-874.
    45. Inoshita S, Takeda K, Hatai T, et al. Phosphorylation and inactivation ofmyeloid cell leukemia 1 by JNK in response to oxidative stress. J. Biol. Chem.2002, 277: 43730-43734.
    46. Behrens A, Jochum W. Sibilia M, Wagner EF Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene, 2000, 19: 2657-63.
    47. Hidding U, Mielke K, Waetzig V, et al. The c-Jun N-tenninal kinases in cerebral microglia: immunological functions in the brain. Biochem.Pharmacol 2002, 64: 781-788.
    48. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal 2000, 12:1-13.
    49. Enslen H, Raingeaud J, Davis RJ. Selective activation of p38 mitogen-activated protein (MAP). kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 1998, 273: 1741-1748.
    50. Martin-Blanco E. p38 MAPK signalling cascades: ancient roles and new functions. Bioessays 2000, 22: 637-645.
    51. English JM, Cobb MH. Pharmacological inhibitors of MAPK pathways. Trends Pharrnacol. Sci 2002, 23: 40-45.
    52. Kommann M, Ishiwata T, KleeffJ, et al. Fas and Fas-ligand expression in human pancreatic cancer. Ann Surg 2000, 231(3):368-379.
    53. Buee-Scherrer V, Goedert M: Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Lett 2002, 515:151-154.
    54. Mody N, Campbell D G, Mortice N, et al. An analysis of the phosphorylation and activation of extracellular-signal-regulated protein kinase 5 (ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochem. J 2003, 372: 567-575.
    55. Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, Gelfand EW, Johnson GL: MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. J Biol Chem 2001, 276: 5093-5100.
    56. Mulloy R, Salinas S, PhilipsA, Hipskind RA.Activation. ofcyclin D1 expression by ERK5 cascade. Oncogene 2003, 22: 5387-5398.
    57. Hayashi M, Tapping RI, Chao TH, et al. BMK1 mediates growth factor-induced cell proliferation. through direct cellular activation of serum and glucocorticoid-, inducible kinase. J Biol Chem 2001, 276: 8631-8634.
    58. Nicol RL. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J 2001,20: 2757-2767.
    59. Yuki S, Masanori Y, Shoji K, et al. BMK1 is activated in glomemli of diabetic rats and in mesangial cells by high glucose conditions. Kidney International 2004, 65:1749-1760.
    60. Haupt S, Berger M, Goldberg Z, et al. Apoptosis-the p53 network. J Cell Sci 2003, 116: 4077-4085.
    61. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003, 11: 577-590.
    62. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995, 80: 293-299.
    63. Karpinich NO, Tafani M, Rothman RJ, et al. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem 2002, 277:16547-16552.
    64. Xiang H, Kinoshita Y, Knudson CM, et al. Bax involvement in p53-mediated neuronal cell death. J Neurosci 1998, 18: 1363-1373.
    65. Schuler M, Bossy-Wetzel E, Goldstein JC, et al. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 2000, 275: 7337-7342.
    66. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998, 281: 1674-1677.
    67. Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct Activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303:1010-1014.
    68. Bouvard V, Zaltchouk T, Vacher M, et al. Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and wall/p21, before and following ionising irradiation in mice. Oncogene 2000, 19: 649-660.
    69. Bennett M, Macdonald K, Chan SW, et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998, 282: 290-293.
    70. Persons DL, Yazlovitskaya EM, Pelling JC. Effect of Extracellular Signal-regulated Kinase on p53 accumulation in response to Cisplatin. J Biol Chem 2000, 275: 35778-35785.
    71. Sanchez-Prieto R, Rojas JM, Taya Y, et al. A role for the p38 Mitogen-activated Protein Kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res 2000, 60: 2464-2472.
    72. Fuchs SY, Adler V, Pincus MR., et al. MEKK1/JNK signaling stabilizes and activates p53. PNAS (Pro Natl Acad Sci USA)1998,95;10541-10546.
    73.姜泊.细胞凋亡的基础与临床.北京:人民军医出版社,1999;3-40。
    74. Baeuerle PA, Henkel T. Function and activation of NF-kappaB in the immune system. Annu Rev Immunol 1994, 12: 141-179.
    75. Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, et al. Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int Immunopharmaco1 2005, 5:185-193.
    76. Ducut Sigala JL, Borrero V, Young DB, Shevchenko A, Mercurio F, et al. Activation of transcription factor NF-κB requires ELKS, an IκB kinase regulatory subunit. Science 2004, 304:1963-1967.
    77. Blackwell TS, Chdstman JW. The role of nuclear factor-κB in cytokine gene regulation. Am J Respir Cell Mol Biol 1998, 17: 3-9.
    78.吴乃虎.基因工程原理(下).科学出版社,2001;448。
    79. Downward J. Targeting RAS signaling pathways in cancer therapy. Nature Rev Cancer. 2003, 3: 11-22.
    80. Pelengari S, Khan M, Evan G. c-Myc: more than just a matter of life and death. Nature Rev Cancer. 2002; 2: 764-776.
    81. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004, 430: 686-689.
    82. Vaziri H, Dessain SK, Eaton EN, Imai SI, Frye RA, Pandita TK, et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deactylase. Cell. 2001, 107: t49-159.
    83. Cohen HY, Miller C, Bitterman K J, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004, 305: 390-392.
    84. Weiss JN, Korge P, Honda HM, et al. Role of the mitochondrial permeability transition in myocardial disease. Circulation Res 2003, 93: 292-286.
    85.蔡循,陈国强,陈竺等.线粒体跨膜电位与细胞凋亡.生物化学与生物物理进展.2001,28:3-6。
    86. Douglas RG, Reed JC. Mitochondria and Apoptosis. Science 1998, 281: 1309-1312.
    87. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004, 305: 626-629.
    88. Heiden MG, Thompson CB. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature Cell Biology 1999, 1: E209-216.
    89. Antonsson B, Conti F, Ciavatta AM, et al. Inhibition of Bax Channel-Forming Activity by Bcl-2. Science 1997, 277: 370-372.
    90. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998, 281: 1305-1308.
    91. Orlinick JR, Vaishnaw AK, Elkon KB. Structure and function of Fas/Fas ligand. Int Rev Immunol 1999, 18: 293-308.
    92. Nagata S.Apoptosis by death factor. Cell 1997, 88: 355-365.
    93. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998, 94: 491-501.
    94. Buczynski G, Grove B, Nomura A, et al. Inactivation of two Dictyosteliumdiscoideum genes, DdPIK1 and DdPIK2, ncodingproteins related to mammalian phosphatidylinositide 3-kinases, results in defects in endocytosis, lysosome to postlysosometransport, and actin cytoskeleton organization. J Cell Biol 1997, 136: 1271-1286.
    95. Vanhaesebroeck B, Waterfield MD. Signaling by distinct classes ofphosphoinositide 3-kinases. Exp Cell Res 1999, 253: 239-254.
    96. Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signaling through phosphoinositide 3-kinases: The lipidstake centre stage. Curt Opin Cell Biol 1999, 11: 219-225.
    97. Hsu MJ, Lee S, Lee ST, Lin W. Signaling mechanism of enhanced neutrophil phagocytosis and chemotaxis by the polysaccharide purified from Ganoderma lucidum. Brit J Pharmacol 2003, 139: 289-298.
    98. Tohru Y, Osamu I, Hajime NYDC, Mikinori, K. Roles of p38 MAPK, PKC and PI3-K in the signaling pathways of NADPH oxidase activation and phagocytosis in bovine polymorphonuclear leukocytes. FEBS Lett 2000, 467: 253-258.
    99. Besson A, Yong VW. Involvement of p21~(wafl/Cipl) in protein kinase C alpha-induced cell cycle progression. Mol Cell Biol 2000, 20: 4580-4590.
    100. Rocha AB, Marts DRA, Regner A, et al. Targeting protein kinase C: new therapeutic opportunities against high-grade malignat gliomas? Oncologist 2002, 7: 17-33.
    101. Marais R, Light Y, Mason C, et al. Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 1998, 280:109-112.
    102. Vrana JA, Grant S. Synergistic induction of apoptosis in human leukemia cells (U937) exosed to bryostatin-1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade. Blood 2001, 97:2105-2114.
    103. Zhuang S, Hirai S, Mizuno K, et al. Involvement of protein kinase C in the activation of extracellular signal-regulated kinase 1/2 by UVC irradiation. Biochem Biophys Res Commun 1997, 240: 273-278.
    104. Auvinen M. Cell transformation, invasion, and angiogenesis: a regulatory role for omithine decarboxylase and polyamines? J Natl Cancer Inst. 1997, 89: 533-537,
    105. Barrett CM, Lewis FL, Roaten JB, et al. Novel extranuclear-target anthracyclines override the antiapoptotic functions of Bcl-2 and target protein kinase C pathways to induce apoptosis. Mol Cancer Ther 2002, 1: 469-481.
    106. Haldar S, Jena N, Croce CM. Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA. 1995, 92: 4352-4356.
    107. Kitarnura Y, Miyamura A, Takata K. et al. Possible involvement of both endoplasmic reticulum-and mitochondria-dependent pathways in thapsigargin-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Pharmacol Sci 2003, 92: 228-236.
    108. Ganeshaguru K, Wickeremasinghe RG, Jones DT, et al. Action of the selective protein kinase C inhibitor PKC412 on B-chronic lymphocytic leukemia cells in vitro. Haematologia 2002, 87:167-176.
    109.程书权。大环内酯类抗生素的抗肿瘤作用现代研究.国外医药(抗生素分册)2005,26(2):64-67。
    110.程书权,马红甫.。大环内酯类抗生素的药理与非抗感染临床应用.医药导报2003,22(8):511-514。
    111.程书权。红霉素类药物在非感染性疾病中的应用尝试.国外医学(内科分册)1999,26(11):488-490。
    112. Williams JD. Non-antimicrobial activities of macrolides[J]. Int J Antimicrob Agent 2001,18 (Suppl 1):S89-91.
    113. Hofsli E, Nissen-Meyer J. Effect of erythromycin and tumour necrosis factor on the drag resistance of multidmg-resistant cells: reversal of drag resistance by erythromycin [J].Int J Cancer 1989, 43(3): 520-525.
    114. Wang L, Kitaichi K, Hui CS, et al. Reversal of anticancer drag resistance by macroide antibiotics in vitro and in vivo [J].Clin Exp Pharmocol Physiol 2000, 27(8): 587-593.
    115. Aoki K, Kawai H, Sato H. Suppressive effect of erythromycin on LPS-induced NF-kappa B activation in mouse lung[J]. Jpn J antibiot 2003, 56(Suppl A): 106-108.
    116. Hamada K, Mikasa K, Yunou Y, et al. Adjuvant effect of clarithromycin on chemotherapy for murine lung cancer[J].Chemotherapy 2000, 46(1): 49-61.
    117. Yatsunami J, Fukuno Y, Nagata M, et al. Roxithromycin and clarithromycin, 14-membered ring macrolides, potentiate the antitumor activity of cytotoxic agents against mouse B 16 melanoma cells [J]. Cancer Lett 1999, 147(1~2): 17-24.
    118. Yatsunami J, Hayashi S.Fourteen-membered ring macrolides as anti-angiogenic compounds[J]. Anticancer Res 2001, 21 (6B): 4253-4258.
    119. Woltering EA, Lewis JM, Maxwell P J, et al. Development of a novel in vitro human tissue-based angiogenesis assay to evaluate the effect of antiangiogenic drugs[J]. Ann Surg, 2003, 237(6): 790-800.
    120. Sassa K, Mizushima Y, fujishita T, et al. Therapeutic effect of clarithromycin on a transplanted tumor in rats[J]. Antimicrob Agents Chemother 1999, 43(1):67-72.
    121. Inoue K. Macrolide antibiotics inhibit invasion of human lung carcinoma ceils in vitro. J Saltama Meal Sch 2001, 28(4): 225-229.
    122. Parsonnet J, Forman D. Helicobacter pylori infection and gastric cancer-for want of more outcomes [J]. JAMA 2004, 291(2): 244-245.
    123. Parsonnet J, Isaacson PG. Bacterial infection and MALT lymphoma [J].N Engl J Meal 2004, 350(3): 213-215.
    124.程书权。红霉素硬化疗法在非感染疾病中的应用现状[J] .现代诊断与治疗,2004,15(3):172-174。
    125. Nonaka M, Pawankar R, Tomiyama S, et al. A macrolide antibiotic, roxithromycin inhibits the growth of nasal polyp fibroblasts [J]. Am J Rhinol 1999, 13(4): 267-272.
    126. Cervin A, Kalm O, SandkulI P, et al. One-year low-dose erythromycin treatment of persistent chronic sinusitis after sinus surgery:clinical outcome and effects on mucociliary parameters and nasal nitric oxide[J].Otolaryngol Heart Neck Surg 2002, 126(5): 481-489.
    127. Fischbach W, Goebeler-Kolve ME, Dragosics B, et al. Long term outcome of patients with gastric marginal zone B cell lymphoma of mucosa associated lymphoid tissue (MALT) following exclusive Helicobacter pylori eradication therapy: experience from a large prospective series[J].Gut 2004, 53(1):34-37.
    128. Olmos JM, Cruz JM, Fernandez F, et al. Definitive treatment of Helicobacter pylori infection in MALT low degree gastric lymphoma [J].Rev Clin Esp 2003, 203(12): 615-616.
    129. Nishiyama Y, Koyama S, Andoh A, et al. Gastric inflammatory fibroid polyp treated with Helicobacter pylori eradication therapy[J]. Intern Med 2003, 42(3): 263-267.
    130. Carvalho P, Knight LL, Olson RD, et al. Effects of erythromycin on the rabbit pleura:its potential role as a pleural sclerosant[J]. Am J Respir Crit Care Med 1995, 151(4): 1228-1232.
    131. Lau WC, Gurbel PA, Watkins PB, et al. Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon ofclopidogrel resistance[J].Circulation 2004, 109(2): 166-171.
    132. Schmidt LE, Rasmussen A, Kirkegaard P, et al. Relationship between postoperative erythromycin breath test and early morbidity in liver transplant recipients[J].Transplantation 2003, 76(2): 358-363.
    133. Dally H, Bartsch H, Jager B, et al. Genotype relationships in the CYP3A locus in Caucasians.Cancer Lett 2004, 207(1): 95-99.
    134. Mikasa K. Study of effects and mechanisms of macrolide as biological response modifier for lung cancer treatment [J]. J Antibiot 2000, 53(4): 253-260.
    135. Sakamoto M, Mikasa K, Majima T, et al. Usefulness of clafithromycin in paitents with unresectable non-small-cell lung cancer-clinical evaluation of those who survived for a long time and those succumbed in a short period [J]. Jpn J Antibiot 2000, 53(Suppl A): 56-59.
    136.吴岚,张为革,赵丽娟等。十二元环红霉素衍生物对T淋巴细胞增殖和细胞周期的影响。沈阳药科大学学报2005,22(9):390-394。
    1.苗劲蔚.宫颈癌联合放化疗的研究进展.北京医学2003,25:127-129.
    2.杜景卫,杨明峰,苏延友等。灰树花多糖体内抗S180肉瘤实验研究。山东中医杂志2006,25(3):193-195。
    3. Takano F, Tanaka T, Tsukamoto W, et al. Isolation of (+)-catenin and (-)-epicatenin from Actinidia arguta as bone marrow cell proliferation promoting compounds. Planta Med 2003, 69: 321-326.
    4. Zhang y, Zhang QH, Wu LJ, et aI. Atypical apoptosis in L929 cells induced by evodiame isolated from Evodia Rutaecarpa. J Asian Nat Prod Res 2004, 6: 19-27.
    5. Kitamura Y, Miyamura A, Takata K, et al. Possible Involvement of Both Endoplasmic Reticulumand Mitoehondria-Dependent Pathways in hapsigargin-Induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells. J Pharmacol Sci 2003, 92:228-236.
    6. Kirn YM, Talanian RV, Billiar TR, et al. Nitric oxid inhibits apoptosis by preventing increase on caspase-3-1ike activity via two distinct mechanisms. J Biol Chem 1997, 272:31138-31148.
    7. Yelford WG, King LE, Fraker PJ. Rapid quantitation of apoptosis in pure and heterogeneous cell populations using flow cytometry [J]. J Imrnunol Methods 1994, 172(1): 1-16.
    8. Vermes I, Haanen C, Steffens HN, et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V [J]. J Immunol Meth 1995, 184: 39-51.
    9. Engeland V, ramaekers FC, Schutte B, et al. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 1996, 24:131-139.
    10. Sayen MR, Gustafsson Asa B, Sussman MA, et al. Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol 2003, 284:562-570.
    11. Kirchgessner AL, Liu MT, Alcantara F. Excitotoxicity in the Enteric Nervous System. J Neurosci 1997, 17:8804-8816.
    12. Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 Mitogen-activated protein kinase cascade in human neutrophils stimulated by IL-1β. J Immunol 2001, 167: 5940-5947.
    13. Rizzardini M, Lupi M, Bemasconi S, et al. Mitochondrial dysfunction and death in motor meurons exposed to the glutathione-depleting agent ethacrynic acid. J Neuro Sci 2003, 207: 51-58.
    14. Rego AC, Vesce S, nicholls DG. The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Diff. 2001, 8: 995-1003.
    15. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430: 686-689.
    16. Vaziri H, Dessain SK, Eaton EN, et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deactylase. Cell 2001, 107: 149-159.
    17. Songyang Z, Baltimore D, Cantley LC, et al. Interleukin 3-dependent survival by the Akt protein kinase. Proc NatlAcad Sci. U.S.A. 1997, 94:11345-11350.
    18. Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997, 275: 661-665.
    19. Ahn JH, Park SM, Cho HS, et al. Non-apoptotic signaling pathways activated by soluble Fas ligand in serum-starved human fibroblasts. J Biol Chem 2001, 276: 47100-47106.
    20. Rocha AB, Marts DRA, Regner A, et al. Targeting protein kinase C: new therapeutic opportunities against high-grade malignat gliomas? Oncologist 2002, 7: 17-33.
    21. Kornitzer D, Ciechanover A. Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 2000, 182:1-11.
    22. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 1998, 17: 7151-7160.
    23. Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998, 8: 397-403.
    24. Baldwin Jr, AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996, 14: 649-683.
    25. Zandi E, Karin M. Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex. Mol Cell Biol 1999, 19: 4547-4551.
    26. Bouvard V, Zaitchouk T, Vacher M, et al. Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and wafl/p21, before and following ionising irradiation in mice. Oncogene 2000, 19: 649-660.
    27. Bennett M, Macdonald K, Chan SW, et al. Cell surface trafficking ofFas: a rapid mechanism of p53-mediated apoptosis. Science 1998, 282: 290-293.
    28. Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptos is. Science 2004, 303:1010-1014.
    29. Assefa Z, Vantieghem A, Garmyn M, et al. p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet b radiation-induced apoptosis. J Biol Chem 2000, 275: 21416-21421.
    30. Zhuang S, Demirs JT, and Kochevar IE. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem 2000, 275: 25939-25948.
    31. Davison K, Mann KK, Waxman S, et al, JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood 2004, 103: 3496-3502.
    32. Toumier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000, 288: 870-874.
    33. Chauhan D, Li GL, Hideshima T, et al. JNK-dependent release of mitochondrial protein, smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 2003, 278: 17593-17596.
    34. Aoki H, Kang PM, Hampe J, et al. Direct activation of mitochondrial apoptosis machinery by c-jun n-terminal kinase in adult cardiac myocytes. J Biol Chem 2002, 277: 10244-10250.
    35. Zhang J, Gao JX, Salojin K, et al. Regulation of Fas ligand expression during activation-induced cell death in T cells by p38 mitogen-activated protein kinase and c-jun NH_2-terminal kinase. J Exp Med 2000, 191: 1017-1030.
    36. Singhal PC, Bhaskaran M, Patel J, et al. Role of p38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis. J Immunol 2002, 168: 4025-4033.
    37. Mansouri A, Ridgway LD, Korapati AL, et al. Sustained activation of JNK/p38 MAPK pathways in response to Cisplatin leads to Fas Ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 2003, 278: 19245-19256.
    38. Wang XT. Martindale JL and Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000, 275: 39435-39443.
    39. Yang SE, Hsieh MT, Tsai TH, et al. Effector mechanism ofmagnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. Br J Pharmacol 2003, 138: 193-201.
    40. Frank TS, Svoboda-Newman SM, His ED, et al. Comparison of methods for extracting DNA from formalin fixed paraf-fin sections for nonisotopic PCR[J]. Diagn Mol Pathol 1996, 5(3): 220-224.
    41. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives[J]. Biochim Biophys Acta 1998, 1378(2): F115-177.
    1.徐文华,葛银林,徐宏伟等。VEGF基因表达抑制对胃腺癌细胞SGC-7901增殖的影响。世界华人消化杂志2006,14(7):655-659。
    2. Takano F, Tanaka T, Tsukamoto W, et al. Isolation of (+)-catenin and (-)-epicatenin from Actinidia arguta as bone marrow cell proliferation promoting compounds. Planta Med 2003, 69: 321-326.
    3. Zhang Y, Zhang QH, Wu LJ, et al. Atypical apoptosis in L929 cells induced by evodiame isolated from Evodia Rutaecarpa. J Asian Nat Prod Res 2004, 6:19-27.
    4. Kim YM, Talanian RV, Billiar TR, et al. Nitric oxid inhibits apoptosis by preventing increase on caspase-3-1ike activity via two distinct mechanisms. J Biol Chem 1997, 272:31138-31148.
    5. Telford WG, King LE, Fraker PJ. Rapid quantitation of apoptosis in pure and heterogeneous cell populations using flow cytometry [J]. J Immunol Methods 1994, 172(1): 1-16.
    6. Vermes I, Haanen C, Steffens HN, et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V [J]. J Immunol Meth 1995, 184: 39-51.
    7. Engeland V, ramaekers FC, Schutte B, et al. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 1996, 24: 131-139.
    8. Sayen MR, Gustafsson Asa B, Sussman MA, et al. Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol 2003, 284:562-570.
    9. Kirchgessner AL, Liu MT, and Alcantara F. Excitotoxicity in the Enteric Nervous System. J Neurosci 1997, 17:8804-8816.
    10. Madhujith T, Izydorczyk M, Shahidi F. Antioxidant properties ofpearley fractions. J Agric Food Chem 2006, 54(19): 3283-3289.
    11. Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 Mitogen-activated protein kinase cascade in human neutrophils stimulated by IL-1β. J Immunol 2001, 167: 5940-5947.
    12. Rizzardini M, Lupi M, Bernasconi S, et al. Mitochondrial dysfunction and death in motor meurons exposed to the glutathione-depleting agent ethacrynic acid. J Neuro Sci 2003, 207:51-58.
    13. Rego AC, Yesce S, nicholls DG. The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Diff. 2001, 8: 995-1003.
    14. Goossens V, Stange G, Moens K, et al. Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal 1999, 1: 285-295.
    15. Strelow BA, Bemardo K, Adam-Klages S, et al. Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med 2000, 192:601-611.
    16. Tafani M, Schneider TG, Pastorino JG, et al. Cytochrome c-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition. Am J Pathol 2000, 156: 2111-2121.
    17. Kevin KW. Calpain and caspase: can you tell the difference. JINS 2000, 23(1): 20-27.
    18. Bouvard V, Zaitchouk T, Vacher M, et al. Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and wafl/p21, before and following ionising irradiation in mice. Oncogene 2000, 19: 649-660.
    19. Bennett M, Macdonald K, Chan SW, et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998, 282: 290-293.
    20. Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303:1010-1014.
    21. Assefa Z, Vantieghem A, Garmyn M, et al. p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet b radiation-induced apoptosis. J Biol Chem 2000, 275:21416-21421.
    22. Zhuang S, Demirs JT, Kochevar IE. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem 2000, 275: 25939-25948.
    23. Davison K, Mann KK, Waxman S, et al. JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood 2004, 103: 3496-3502.
    24. Toumier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000, 288: 870-874.
    25. Chauhan D, Li GL, Hideshima T, et al. JNK-dependent release of mitochondrial protein, smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 2003, 278: 17593-17596.
    26. Aoki H, Kang PM, Hampe J, et al. Direct activation of mitochondrial apoptosis machinery by c-jun n-terminal kinase in adult cardiac myocytes. J B iol Chem 2002, 277:10244-10250.
    27. Zhang J, Gao JX, Salojin K, et al. Regulation ofFas ligand expression during activation-induced cell death in T cells by p38 mitogen-activated protein kinase and c-jun NH_2-terminal kinase. J Exp Med 2000, 191: 1017-1030.
    28. Singhal PC, Bhaskaran M, Patel J, et al. Role of p38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis. J Immunol 2002, 168: 4025-4033.
    29. Mansouri A, Ridgway LD, Korapati AL, et al. Sustained activation ofJNK/p38 MAPK pathways in response to Cisplatin leads to Fas Ligand induction and cell death in ovarian carcinoma cells.J Biol Chem 2003, 278: 19245-19256.
    30. Wang XT, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000, 275: 39435-39443.
    31. Yang SE, Hsieh MT, Tsai TH, et al. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. Br J Pharmacol 2003, 138: 193-201.
    32. Frank TS, Svoboda-Newman SM, His ED, et al. Comparison of methods for extracting DNA from formalin fixed paraf-fin sections for nonisotopic PCR[J]. Diagn Mol Pathol 1996, 5(3): 220-224.
    33. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives[J]. Biochim Biophys Acta 1998, 1378(2): F115-177.
    1.吴岚,张为革,赵丽娟等。十二元环红霉素衍生物对T淋巴细胞增殖和细胞周期的影响。沈阳药科大学学报2005,22(9):390-394.
    2. Takano F, Tanaka T, Tsukamoto W, et al. Isolation of (+)-catenin and (-)-epicatenin from Actinidia arguta as bone marrow cell proliferation promoting compounds. Planta Med 2003, 69: 321-326.
    3. Zhang Y, Zhang QH, Wu L J, et al. Atypical apoptosis in L929 cells induced by evodiame isolated from Evodia Rutaecarpa. J Asian Nat Prod Res 2004, 6:19-27.
    4. Kitamura Y, Miyamura A, Takata K, et al. Possible Involvement of Both Endoplasmic Reticulumand Mitochondria-Dependent Pathways in hapsigargin-Induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells. J Pharmacol Sci 2003, 92:228-236.
    5. Sayen MR, Gustafsson Asa B, Sussman MA, et al. Calcineurin tmnsgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol 2003, 284:562-570.
    6. Kirchgessner AL, Liu MT, Alcantara F. Excitotoxicity in the Enteric Nervous System. J Neurosci 1997, 17:8804-8816.
    7. Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 Mitogen-activated protein kinase cascade in human neutrophils stimulated by IL-1β. J Immunol 2001, 167: 5940-5947.
    8. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD,Schuler M, Green DR. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303:1010-1014.
    9. Burger MM, Harris C. UICC Study Group on basic and clinical cancer research: apoptosis in normal and tumor cells, Int J Cancer 1995, 60: 590-592.
    10. Bouvard V, Zaitchouk T, Vacher M, et al. Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and wafl/p21, before and following ionising irradiation in mice. Oncogene 2000, 19: 649-660.
    11. Bennett M, Macdonald K, Chan SW, et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998, 282: 290-293.
    12. Chipuk J-E, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303:1010-1014.
    13. Assefa Z, Vantieghem A, Garmyn M, et al. p38 mitogen-activated protein kinase regulates a novel, caspase-independeut pathway for the mitochondrial cytochrome c release in ultraviolet b radiation-induced apoptosis. J Biol Chem 2000, 275: 21416-21421.
    14. Zhuang S, Demirs JT, and Kochevar IE. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem 2000, 275: 25939-25948.
    15. Davison K, Mann KK, Waxman S, et al. JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood 2004, 103: 3496-3502.
    16. Toumier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000, 288: 870-874.
    17. Chauhan D, Li GL, Hideshima T, et al. JNK-dependent release of mitochondrial protein, smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 2003, 278:17593-17596.
    18. Aoki H, Kang PM, Hampe J, et al. Direct activation of mitochondrial apoptosis machinery by c-jun n-terminal kinase in adult cardiac myocytes. J Biol Chem 2002, 277: 10244-10250.
    19. Zhang J, Gao JX, Salojin K, et al. Regulation ofFas ligand expression during activation-induced cell death in T cells by p38 mitogen-activated protein kinase and c-jun NH_2-terminal kinase. J Exp Med 2000, 191: 1017-1030.
    20. Singhal PC, Bhaskaran M, Patel J, et al. Role of p38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis. J Immunol 2002, 168: 4025-4033.
    21. Mansouri A, Ridgway LD, Korapati AL, et al. Sustained activation of JNK/p38 MAPK pathways in response to Cisplatin leads to Fas Ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 2003, 278: 19245-19256.
    22. Wang XT, Martindale JL and Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000, 275: 39435-39443.
    23. Yang SE, Hsieh MT, Tsai TH, et al. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. Br J Pharmacol 2003, 138: 193-201.
    24. Frank TS, Svoboda-Newman SM, His ED, et al. Comparison of methods for extracting DNA from formalin fixed paraf-fin sections for nonisotopic PCR[J]. Diagn Mol Pathol 1996, 5(3): 220-224.
    25. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives[J]. Biochim Biophys Acta 1998, 1378(2): F115-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700