氧糖剥夺再灌注后Hsp20的神经保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章氧糖剥夺再灌注后Hsp20的表达变化
     目的:探讨氧糖剥夺再灌注后细胞活力、细胞凋亡及Hsp20的表达变化,并观察氧糖剥夺再灌注后线粒体、高尔基体等细胞结构的变化,为下一步研究Hsp20的神经保护作用及其机制奠定基础。
     方法:小鼠脑神经瘤N2a细胞经氧糖剥夺再灌注后,采用MTT法检测细胞活力,流式细胞技术检测细胞凋亡率的变化;并采用免疫荧光技术研究高尔基体、线粒体等细胞结构的变化,采用Western blot及实时定量PCR检测Hsp20与高尔基体蛋白GM130的蛋白基因表达变化。
     结果:1.氧糖剥夺4小时并再灌注12及24小时后,N2a细胞的活力明显下降(P<0.01)。同时,氧糖剥夺4小时并再灌注6、12及24小时后,N2a细胞的凋亡率明显增高(P<0.05)。
     2.氧糖剥夺4小时并再灌注0小时及6小时后,Hsp20的蛋白及基因表达水平与基础水平比较明显下降(P<0.05)。再灌注12小时及24小时后,则回到基础水平。
     3.氧糖剥夺4小时并再灌注0小时及6小时后,丝氨酸磷酸化Hsp20蛋白与总Hsp20蛋白的比值,与基础水平比无显著性差异。再灌注12小时及24小时后,其比值则比基础水平明显增高(P<0.05)。
     4.氧糖剥夺再灌注后,高尔基体蛋白GM130的蛋白及基因表达、高尔基体形态均未见明显变化,而线粒体则发生了碎裂,相互间紧密连接消失。结论:氧糖剥夺再灌注后,N2a细胞的活力明显受损,凋亡率增高,Hsp20及磷酸化Hsp20的表达受氧糖剥夺再灌注的调节,同时线粒体发生了碎裂,但高尔基体形态及GM130的表达并未发现明显变化。
     第二章Hsp20野生型及其突变体的构建和表达
     目的:构建Hsp20野生型、Ser16磷酸化突变体Hsp20s16D及Ser16去磷酸化突变体Hsp20s16A的表达质粒,为进一步研究Hsp20的神经保护作用及其机制做好前期准备工作。
     方法:使用小鼠脑神经瘤N2a细胞抽提RNA,逆转录成cDNA后,利用特异性Hsp20引物和带突变位点的长引物进行PCR,以获得Hsp20的CDS序列,将带有酶切位点的PCR产物,连接到1pEGFP-N1表达载体中,经过酶切鉴定和测序证实其正确性。将构建好的载体转染到N2a细胞中,通过免疫荧光和免疫印迹,观察Hsp20野生型、Ser16磷酸化突变体Hsp20s16D及Ser16去磷酸化突变体Hsp20s16A表达质粒在细胞中的表达。
     结果:通过PCR法成功获得小鼠Hsp20 CDS序列,并成功连接到pEGFP-N1表达载体中,经测序和酶切鉴定正确。免疫荧光证实Hsp20野生型、Ser16磷酸化突变体Hsp20S16D及Ser16去磷酸化突变体Hsp20S16A表达分布相同,免疫印迹显示构建的Hsp20野生型和突变体能成功表达且分子量大小正确。
     结论:成功构建了Hsp20野生型、Ser16磷酸化突变体Hsp20s16D及Ser16去磷酸化突变体Hsp20s16A的表达质粒,为下一步研究Hsp20的神经保护作用及其机制奠定了基础。
     第三章Hsp20的神经保护作用及其机制
     目的:研究氧糖剥夺再灌注后Hsp20的神经保护作用并探讨其可能机制。
     方法:将构建成功的Hsp20野生型、Ser16磷酸化突变体Hsp20S16D及Serl6去磷酸化突变体Hsp20S16A的表达质粒转染小鼠脑神经瘤N2a细胞,各组细胞经历氧糖剥夺再灌注后,采用MTT法、流式细胞技术及免疫荧光技术,检测细胞活力、凋亡率及线粒体的变化,并采用Western blot技术检测Bax, Bcl-2及细胞色素C的释放变化,探讨Hsp20在保护神经细胞线粒体凋亡通路中的作用。
     结果:1.转染Hsp20野生型及Ser16磷酸化突变体Hsp20s16D的细胞经氧糖剥夺4小时并再灌注12及24小时后,与空载体相比,细胞活力增高(P<0.05),细胞凋亡率下降(P<0.01)
     2.转染Ser16去磷酸化突变体Hsp20s16A的细胞,经氧糖剥夺再灌注后,其细胞活力及细胞凋亡率与空载体组相比没有显著性差异。
     3.转染Hsp20野生型及Ser16磷酸化突变体Hsp20s16D的细胞经氧糖剥夺再灌注后,线粒体的碎裂程度明显降低,而转染Serl6去磷酸化突变体Hsp20s16A的细胞,其细胞内线粒体碎裂程度较空载体组则并未见明显区别。
     4.转染Hsp20野生型及Serl6磷酸化突变体Hsp20s16D的细胞经氧糖剥夺再灌注后,Bcl-2的表达水平增高,Bax的表达水平下降,从线粒体释放到胞浆中的细胞色素C减少(P<0.05),而转染Ser16去磷酸化突变体Hsp20S16A细胞中Bax,Bcl-2及细胞色素C的表达,与空载体组相比则没有显著性差异。
     结论:1.Hsp20在氧糖剥夺再灌注中具有神经保护作用。
     2. Hsp20在氧糖剥夺再灌注中的神经保护作用与Serl6磷酸化有关,阻断Ser16磷酸化则其不再具有神经保护作用。
     3. Hsp20的神经保护作用与保护线粒体结构稳定有关。
     4. Hsp20的神经保护作用与抑制线粒体凋亡通路有关。
Chapter I:Expression Pattern of Hsp20 in Mouse N2A Cells upon OGD/R treatment
     Objective:To elucidate alteration of cellular viability and apoptosis, morphology of mitochondria and Golgi apparatus in mouse N2A cells upon oxygen-glucose deprivation followed by reperfusion (OGD/R),as well as expression pattern of Hsp20.
     Methods:We employed OGD/R model to mimic ischemic-like conditions in vitro. Cellular viability and apoptosis were measured using the MTT assay and flow cytometry. The morphologic change of mitochondria and Golgi apparatus was determined by immunofluorescence.GM130 and Hsp20 expression levels were determined by Western blot and quantitative Real-Time PCR.
     Results:1. Treatment with OGD/R markedly reduced cellular viability in mouse N2A cells at 12-hour and 24-hour time points recovery from 4-hour OGD (P<0.01), while increased apoptosis rate at 6-hour,12-hour and 24-hour time points recovery from 4-hour OGD (P<0.05)
     2. Expressions of Hsp20 were strongly downregulated in mouse N2A cells at 0-hour and 6-hour time points recovery from 4-hour OGD (P<0.05), both at mRNA and protein levels, and they returned to basal level 12 and 24 hours after OGD treatment.
     3. The protein levels of total and phosphorylated Hsp20 decreased to approximately the same extent at the 0-hour and 6-hour recovery time points following 4 hours of OGD. However, the ratio of phosphorylated to total Hsp20 protein was significantly higher than control 12 and 24 hours after OGD treatment (P<0.05)
     4. Upon OGD/R, compared to control, expressions of GM130 and the morphology of Golgi apparatus showed no significant differences. However, OGD/R induced mitochondria fragmentation. Many filamentous mitochondria converted small and round organelles following OGD/R.
     Conclusion:Cellular viability and apoptosis, as well as morphology of mitochondria damaged greatly in mouse N2A cells upon OGD/R treatment. Meanwhile, the expression pattern of Hsp20 was regulated upon OGD/R treatment. However, expressions of GM130 and the morphology of Golgi apparatus were not affected.
     ChapterⅡ
     Construction and Expression of Hsp20 and its mutants
     Objective:To construct expression plasmids of Hsp20 and its constitutively dephosphorylated mutant Hsp20s16A, as well as the constitutively phosphorylated mutant Hsp20s16D
     Methods:Total RNA was isolated from N2a cell cultures and reverse transcription was then performed. Hsp20 was obtained by using primers with Restriction enzyme EcoR I and BamH I in 5'-Terminal. The PCR products were cloned to pEGFPNl vector using EcoR I and BamH I. After being identified by restriction enzyme digestion and sequencing, the recombinant plasmids were transfected into N2a cells. Hsp20 expression in the transfected cells was assayed by immunofluorescence and immunoblotting.
     Results:We obtained CDS sequences of Hsp20 successfully by PCR. Enzyme digestion and DNA sequencing showed that the CDS sequences of Hsp20 were correctly inserted into pEGFPN1 vector. Same expression and distribution of Hsp20 and its mutants in N2a cells were confirmed by immunofluorescence. Expressions of Hsp20 and its mutants were confirmed by immunoblotting and their molecular weights were correct.
     Conclusion:We successfully constructed expression plasmids of Hsp20 and its constitutively dephosphorylated mutant Hsp20s16A, as well as the constitutively phosphorylated mutant Hsp20S16D.
     ChapterⅢ
     The Neuroprotective Effects of Hsp20 and its Underlying Mechanism
     Objective:To elucidate the neuroprotective effects of Hsp20 against oxygen-glucose deprivation followed by reperfusion (OGD/R) and its potential mechanism.
     Methods:Mouse N2A cells were transfected with pEGFP-Hsp20, or pEGFP-Hsp20 (S16D) or pEGFP-Hsp20(S16A) for 36 h, and then treated with 12-hour reperfusion following 4-hour OGD. Cellular viability and apoptosis were measured using the MTT assay and flow cytometry. The morphologic change of mitochondria was determined by immunofluorescence. Bax, Bcl-2 and cytochrome c expression levels were determined by Western blot.
     Results:1, Compared with the control, the cellular viability was significantly higher in N2A cells transfected with pEGFP-Hsp20 or Hsp20s16D (p<0.05). N2A cells transfected with pEGFP-Hsp20 or Hsp20s16D also displayed a significant decrease in the number of apoptotic cells upon OGD/R exposure (p<0.01).
     2. pEGFP-Hsp20 (S16A)-transfected cells exhibited no significant alteration in OGD/R-induced apoptosis and cellular viability, compared with the control.
     3. N2A cells transfected with pEGFP-Hsp20 or Hsp20s16D displayed much less damage to the structure of mitochondria. However, pEGFP-Hsp20 (S16A)-transfected cells exhibited no significant difference compared with the control.
     4. N2A cells transfected with pEGFP-Hsp20 or Hsp20s16D displayed a marked decrease in the expression of Bax and an increase expression of Bcl-2. N2A cells transfected with pEGFP-Hsp20 or Hsp20s16D also inhibited cytochrome c released from mitochondria into cytosol upon OGD/R (p<0.05). However, pEGFP-Hsp20 (S16A)-transfected cells exhibited no significant alteration in OGD/R-induced expression of Bax and Bcl-2 and failed to inhibit OGD-induced cytochrome c release.
     Conclusions:1. Hsp20 displayed neuroprotective effects against oxygen-glucose deprivation followed by reperfusion.
     2. Phosphorylation of Ser16 played an important role in the neuroprotective effect of Hsp20. Otherwise, blockade of Hsp20 phosphorylation abrogated its neuroprotective effect.
     3. Neuroprotective effects of Hsp20 were mediated by recovering mitochondria from the OGD/R damage.
     4. Neuroprotective effects of Hsp20 on OGD/R were also mediated through inhibition of mitochondrial apoptotic signaling pathways.
引文
[1]Salinthone S, Tyagi M, Gerthoffer WT. Small heat shock proteins in smooth muscle. Pharmacol Ther.2008 Jul;119(1):44-54.
    [2]Arrigo AP, Simon S. Expression and functions of heat shock proteins in the normal and pathological mammalian eye. Curr Mol Med.2010 Dec;10(9):776-93.
    [3]Read DE, Gorman AM. Heat shock protein 27 in neuronal survival and neurite outgrowth. Biochem Biophys Res Commun.2009 Apr 24;382(1):6-8.
    [4]Laskowska E, Matuszewska E, Kuczynska-Wisnik D. Small heat shock proteins and protein-misfolding diseases. Curr Pharm Biotechnol.2010 Feb;11(2):146-57.
    [5]Kato K, Goto S, Inaguma Y, et al. Purification and characterization of a 20-kDa protein that is highly homologous to alpha B crystallin. J Biol Chem.1994 May 27;269(21):15302-9.
    [6]Kanno Y, Matsuno H. The possibility of novel antiplatelet peptides:the physiological effects of low molecular weight HSPs on platelets. Curr Pharm Des. 2006;12(7):887-92.
    [7]Fan GC, Chu G, Kranias EG. Hsp20 and its cardioprotection. Trends Cardiovasc Med.2005 May; 15(4):138-41.
    [8]Meeks MK, Ripley ML, Jin Z, Rembold CM. Heat shock protein 20-mediated force suppression in forskolin-relaxed swine carotid artery. Am J Physiol Cell Physiol. 2005 Mar;288(3):C633-9.
    [9]Dreiza CM, Komalavilas P, Furnish EJ, et al. The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress Chaperones.2010 Jan;15(1):1-11.
    [10]Fan GC, Ren X, Qian J, et al. Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation. 2005;111(14):1792-9.
    [11]Fan GC, Chu G, Mitton B, et al. Small heat-shock protein Hsp20 phosphorylation inhibits beta-agonist-induced cardiac apoptosis. Circ Res.2004;94(11):1474-82.
    [12]Fan GC, Zhou X, Wang X, et al. Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity. Circ Res 2008; 103(11):1270-9.
    [13]Wang X, Zingarelli B, O'Connor M, et al. Overexpression of Hsp20 prevents endotoxin-induced myocardial dysfunction and apoptosis via inhibition of NF-kappaB activation. J Mol Cell Cardiol 2009; 47(3):382-90.
    [14]Fan GC, Kranias EG. Small heat shock protein 20 (HspB6) in cardiac hypertrophy and failure. J Mol Cell Cardiol.2010 Sep 30.
    [15]Kirbach BB, Golenhofen N. Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons. J Neurosci Res.2011 Feb;89(2):162-75.
    [16]Wilhelmus MM, Boelens WC, Kox M, et al. Small heat shock proteins associated with cerebral amyloid angiopathy of hereditary cerebral hemorrhage with amyloidosis (Dutch type) induce interleukin-6 secretion. Neurobiol Aging. 2009;30(2):229-40.
    [17]Wilhelmus MM, Boelens WC, Otte-Holler I, et al. Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res.2006;1089(1):67-78.
    [18]Furnish EJ, Brophy CM, Harris VA, et al.Treatment with transducible phosphopeptide analogues of the small heat shock-related protein, HSP20, after experimental subarachnoid hemorrhage:prevention and reversal of delayed decreases in cerebral perfusion. J Neurosurg.2010 Mar;112(3):631-9.
    [19]David JC, Boelens WC, Grongnet JF. Up-regulation of heat shock protein HSP 20 in the hippocampus as an early response to hypoxia of the newborn. J Neurochem. 2006;99(2):570-81.
    [20]Niwa M, Hara A, Taguchi A, et al. Spatiotemporal expression of Hsp20 and its phosphorylation in hippocampal CA1 pyramidal neurons after transient forebrain ischemia. Neurol Res.2009;31(7):721-7.
    [21]Qian J, Ren X, Wang X, et al.Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. Circ Res.2009; 105(12):1223-31.
    [22]Gonatas NK, Stieber A, Gonatas JO. Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci.2006;246(1-2):21-30.
    [23]Hu Z, Zeng L, Xie L, et al. Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-betal in Golgi apparatus in gerbils following transient forebrain ischemia. Neurochem Res.2007;32(11):1927-31.
    [24]Perez Velazquez JL, Frantseva MV, Carlen PL. In vitro ischemia promotes glutamate-mediated free radical generation and intracellular calcium accumulation in hippocampal pyramidal neurons. J Neurosci 1997; 17(23):9085-94.
    [25]Hu Z, Chen L, Zhang J, et al. Structure, function, property, and role in neurologic diseases and other diseases of the sHsp22. J Neurosci Res.2007 Aug 1;85(10):2071-9.
    [26]Zeng L, Hu Z, Lu W, et al. Small heat shock proteins:recent advances in neuropathy. Curr Neurovasc Res.2010 May;7(2):155-66.
    [27]Gurer G, Gursoy-Ozdemir Y, Erdemli E, et al.Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathol. 2009 Oct;19(4):630-41.
    [28]Lv M, Liu Y, Zhang J, et al. Roles of inflammation response in microglia cell through Toll-like receptors 2/interleukin-23/interleukin-17 pathway in cerebral ischemia/reperfusion injury. Neuroscience.2011 Mar 10; 176:162-72.
    [29]Cui M, Wang L, Liang X, et al.Blocking TRAIL-DR5 signaling with soluble DR5 reduces delayed neuronal damage after transient global cerebral ischemia.Neurobiol Dis.2010 Aug;39(2):138-47.
    [30]Li D, Shao Z, Vanden Hoek TL, et al. Reperfusion accelerates acute neuronal death induced by simulated ischemia. Exp Neurol.2007 Aug;206(2):280-7.
    [31]Liu Z, Li P, Zhao D, et al.Anti-inflammation Effects of Cordyceps sinensis Mycelium in Focal Cerebral Ischemic Injury Rats. Inflammation.2010 Nov 16.
    [32]Xue X, Qu XJ, Yang Y, et al. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor κB p65 activation. Biochem Biophys Res Commun.2010 Dec 17;403(3-4):398-404.
    [33]Nakka VP, Gusain A, Mehta SL, et al. Molecular mechanisms of apoptosis in cerebral ischemia:multiple neuroprotective opportunities. Mol Neurobiol.2008 Feb;37(1):7-38.
    [34]Tang LH, Xia ZY, Zhao B, et al.Phosphocreatine preconditioning attenuates apoptosis in ischemia-reperfusion injury of rat brain. J Biomed Biotechnol. 2011;2011:107091.
    [35]Chu C, Xu B, Huang W. GnRH analogue attenuated apoptosis of rat hippocampal neuron after ischemia-reperfusion injury. J Mol Histol.2010 Dec;41(6):387-93.
    [36]De Celle T, Vanrobaeys F, Lijnen P, et al. Alterations in mouse cardiac proteome after in vivo myocardial infarction:permanent ischaemia versus ischaemia-reperfusion. Exp Physiol 2005; 90(4):593-606.
    [37]Boluyt MO, Brevick JL, Rogers DS, et al. Changes in the rat heart proteome induced by exercise training:Increased abundance of heat shock protein hsp20. Proteomics 2006; 6(10):3154-69.
    [38]Bjorkdahl C, Sjogren MJ, Zhou X, et al. Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles:tau and neurofilaments. J Neurosci Res.2008 May 1;86(6):1343-52.
    [39]Vinit S, Darlot F, Aoulaiche H, et al. Distinct Expression of c-Jun and HSP27 in Axotomized and Spared Bulbospinal Neurons After Cervical Spinal Cord Injury. J Mol Neurosci.2010 Dec 4.
    [40]Wilhelmus MM, Boelens WC, Otte-Holler I, et al. Small heat shock protein HspB8:its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol 2006; 111(2):139-49.
    [41]Choi MR, Jung KH, Park JH, et al.Ethanol-induced small heat shock protein genes in the differentiation of mouse embryonic neural stem cells. Arch Toxicol.2010 Sep 25.
    [42]Ecroyd H, Meehan S, Horwitz J, et al. Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. Biochem J 2007;401(1):129-41.
    [43]Rogalla T, Ehrnsperger M, Preville X, et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 1999; 274(27): 18947-56.
    [44]Jiang Z, Hu Z, Zeng L, et al.The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med.2011 Jan 15.
    [45]Zeng L, Hu Z, Lu W, et al.The study of the Golgi apparatus in blood--basic science and clinical applications.Clin Lab.2010;56(5-6):231-43.
    [46]Fan J, Hu Z, Zeng L, et al.Golgi apparatus and neurodegenerative diseases.Int J Dev Neurosci.2008 Oct;26(6):523-34.
    [47]Strosznajder R, Gadamski R, Walski M. Inhibition of poly(ADP-ribose) polymerase activity protects hippocampal cells against morphological and ultrastructural alteration evoked by ischemia-reperfusion injury.Folia Neuropathol. 2005;43(3):156-65.
    [48]Vijayalakshmi K, Alladi PA, Ghosh S, et al.Evidence of endoplasmic reticular stress in the spinal motor neurons exposed to CSF from sporadic amyotrophic lateral sclerosis patients. Neurobiol Dis.2011 Mar;41(3):695-705.
    [49]Fujita Y, Ohama E, Takatama M, et al. Fragmentation of Golgi apparatus of nigral neurons with alpha-synuclein-positive inclusions in patients with Parkinson's disease. Acta Neuropathol.2006 Sep;112(3):261-5.
    [50]Hu Z, Zeng L, Huang Z, et al. The study of Golgi apparatus in Alzheimer's disease. Neurochem Res.2007 Aug;32(8):1265-77.
    [51]Yin KJ, Deng Z, Hamblin M, et al. Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci.2010 May 5;30(18):6398-408.
    [52]Ran R, Pan R, Lu A, et al. A novel 165-kDa Golgin protein induced by brain ischemia and phosphorylated by Akt protects against apoptosis. Mol Cell Neurosci. 2007 Nov;36(3):392-407.
    [53]Zhao J, Li L, Ling C, et al.Marine compound Xyloketal B protects PC 12 cells against OGD-induced cell damage.Brain Res.2009 Dec 11;1302:240-7.
    [54]Li L, Zhang B, Tao Y, et al. DL-3-n-butylphthalide protects endothelial cells against oxidative/nitrosative stress, mitochondrial damage and subsequent cell death after oxygen glucose deprivation in vitro.Brain Res.2009 Sep 22;1290:91-101.
    [55]Pandya JD, Sullivan PG, Pettigrew LC. Focal Cerebral Ischemia and Mitochondrial Dysfunction in the TNFa-Transgenic Rat. Brain Res.2011 Feb 4.
    [56]Ye R, Zhang X, Kong X, et al.Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience. 2011 Jan 8.
    [57]Nicolaou P, Knoll R, Haghighi K, et al. Human mutation in the anti-apoptotic heat shock protein 20 abrogates its cardioprotective effects. J Biol Chem 2008; 283(48):33465-71.
    [58]Dohke T, Wada A, Isono T, et al. Proteomic analysis reveals significant alternations of cardiac small heat shock protein expression in congestive heart failure. J Card Fail.2006 Feb;12(1):77-84.
    [59]Jayakumar J, Suzuki K, Sammut IA, et al. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation 2001; 104(12 Suppl 1):1303-7.
    [60]Zhu YH, Ma TM, Wang X. Gene transfer of heat-shock protein 20 protects against ischemia/reperfusion injury in rat hearts. Acta Pharmacol Sin 2005; 26(10): 1193-200.
    [61]Fan GC, Yuan Q, Song G, et al. Small heat-shock protein Hsp20 attenuates beta-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1. Circ Res 2006; 99(11):1233-42.
    [62]Wang X, Zhao T, Huang W, et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells 2009;27(12):3021-31.
    [63]Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat shock protein 20. Circulation 2009; 119(17):2357-66.
    [64]Greenwood SM, Mizielinska SM, Frenguelli BG, et al. Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J Biol Chem 2007; 282(36):26235-44.
    [65]Racay P, Tatarkova Z, Chomova M, et al. Mitochondrial calcium transport and mitochondrial dysfunction after global brain ischemia in rat hippocampus. Neurochem Res 2009; 34(8):1469-78.
    [66]Liu RR, Murphy TH. Reversible cyclosporin A-sensitive mitochondrial depolarization occurs within minutes of stroke onset in mouse somato sensory cortex in vivo:a two-photon imaging study. J Biol Chem 2009; 284(52):36109-17.
    [67]Qi J, Hong ZY, Xin H, et al.Neuroprotective effects of leonurine on ischemia/reperfusion-induced mitochondrial dysfunctions in rat cerebral cortex. Biol Pharm Bull.2010;33(12):1958-64.
    [68]Loh KP, Qi J, Tan BK, et al. Leonurine protects middle cerebral artery occluded rats through antioxidant effect and regulation of mitochondrial function. Stroke.2010 Nov;41(11):2661-8.
    [69]Baliga SS, Jaques-Robinson KM, Hadzimichalis NM, et al. Acetaminophen reduces mitochondrial dysfunction during early cerebral postischemic reperfusion in rats. Brain Res.2010 Mar 10;1319:142-54.
    [70]Agudo-Lopez A, Miguel BG, Fernandez I, et al. Involvement of mitochondria on neuroprotective effect of sphingosine-1-phosphate in cell death in an in vitro model of brain ischemia.Neurosci Lett.2010 Feb 12;470(2):130-3.
    [71]Wu C, Fujihara H, Yao J, et al. Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke.2003 Jul;34(7):1803-8.
    [72]Halestrap AP. Calcium, mitochondria and reperfusion injury:a pore way to die. Biochem Soc Trans 2006; 34(Pt 2):232-7.
    [73]Christophe M, Nicolas S. Mitochondria:a target for neuroprotective interventions in cerebral ischemia-reperfusion.Curr Pharm Des 2006; 12(6):739-57.
    [74]Wang X, Figueroa BE, Stavrovskaya IG, et al. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 2009; 40(5):1877-85.
    [75]Sun Y, Deng T, Lu N, et al. B-type natriuretic peptide protects cardiomyocytes at reperfusion via mitochondrial calcium uniporter. Biomed Pharmacother.2010 Mar;64(3):170-6.
    [76]Ghosh S, Das N, Mandal AK, et al. Mannosylated liposomal cytidine 5' diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome c release in aged rat brain.Neuroscience.2010 Dec 29;171(4):1287-99.
    [77]Hwang IK, Yoo KY, Kim DW, et al.Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damage. Free Radic Biol Med.2010 May 1;48(9):1242-51.
    [78]Li JS, Zhang W, Kang ZM, et al. Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by inhibition of apoptosis via mitochondrial pathway in rat brain. Neuroscience 2009; 159(4):1309-15.
    [79]Gupta S, Knowlton AA. Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 2002; 106(21):2727-33.
    1 Salinthone S, Tyagi M, Gerthoffer WT. Small heat shock proteins in smooth muscle. Pharmacol Ther.2008;119(1):44-54.
    2 Kanno Y, Matsuno H. The possibility of novel antiplatelet peptides:the physiological effects of low molecular weight HSPs on platelets. Curr Pharm Des. 2006;12(7):887-92.
    3 Ghayour-Mobarhan M, Rahsepar AA, Tavallaie S, Rahsepar S, Ferns GA. The potential role of heat shock proteins in cardiovascular disease:evidence from in vitro and in vivo studies. Adv Clin Chem.2009;48:27-72.
    4 Calderwood SK, Ciocca DR. Heat shock proteins:stress proteins with Janus-like properties in cancer. Int J Hyperthermia.2008;24(1):31-9.
    5 Jee B, Katoch VM, Awasthi SK. Dissection of relationship between small heat shock proteins and mycobacterial diseases. Indian J Lepr.2008;80(3):231-45.
    6 David JC, Boelens WC, Grongnet JF. Up-regulation of heat shock protein HSP 20 in the hippocampus as an early response to hypoxia of the newborn. J Neurochem.2006;99(2):570-81.
    7 Windisch BK, LeVatte TL, Archibald ML, Chauhan BC. Induction of heat shock proteins 27 and 72 in retinal ganglion cells after acute pressure-induced ischaemia. Clin Experiment Ophthalmol.2009;37(3):299-307.
    8 Kalesnykas G, Tuulos T, Uusitalo H, Jolkkonen J. Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience.2008;155(3):937-47.
    9 Popp A, Jaenisch N, Witte OW, Frahm C. Identification of ischemic regions in a rat model of stroke. PLoS One.2009;4(3):e4764.
    10 Urbach A, Bruehl C, Witte OW. Microarray-based long-term detection of genes differentially expressed after cortical spreading depression. Eur J Neurosci. 2006;24(3):841-56.
    11 Piao CS, Kim SW, Kim JB, Lee JK.Co-induction of alphaB-crystallin and MAPKAPK-2 in astrocytes in the penumbra after transient focal cerebral ischemia. Exp Brain Res.2005;163(4):421-9.
    12 Niwa M, Hara A, Taguchi A, Aoki H, Kozawa O, Mori H. Spatiotemporal expression of Hsp20 and its phosphorylation in hippocampal CA1 pyramidal neurons after transient forebrain ischemia. Neurol Res.2009;31(7):721-7.
    13 Badin RA, Lythgoe MF, van der Weerd L, Thomas DL, Gadian DG, Latchman DS. Neuroprotective effects of virally delivered HSPs in experimental stroke. J Cereb Blood Flow Metab.2006;26(3):371-81.
    14 An JJ, Lee YP, Kim SY, et al. Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J.2008;275(6):1296-308.
    15 Stetler RA, Cao G, Gao Y, et al. Hsp27 protects against ischemic brain injury via attenuation of a novel stress-response cascade upstream of mitochondrial cell death signaling.J Neurosci.2008;28(49):13038-55.
    16 Whitlock NA, Lindsey K, Agarwal N, Crosson CE, Ma JX. Heat shock protein 27 delays Ca2+-induced cell death in a caspase-dependent and-independent manner in rat retinal ganglion cells. Invest Ophthalmol Vis Sci. 2005;46(3):1085-91.
    17 Whitlock NA, Agarwal N, Ma JX, Crosson CE. Hsp27 upregulation by HIF-1 signaling offers protection against retinal ischemia in rats.Invest Ophthalmol Vis Sci.2005;46(3):1092-8.
    18 Yasui H, Asanuma T, Watanabe Y, Waki K, Inanami O, Kuwabara M. Oral administration of Antioxidant Biofactor (AOBtrade mark) ameliorates ischemia/reperfusion-induced neuronal death in the gerbil. Bio factors. 2007;29(2-3):113-21.
    19 van Noort JM, Verbeek R, Meilof JF, Polman CH, Amor S. Autoantibodies against alpha B-crystallin, a candidate autoantigen in multiple sclerosis, are part of a normal human immune repertoire. Mult Scler.2006;12(3):287-93.
    20 Sinclair C, Mirakhur M, Kirk J, Farrell M, McQuaid S. Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis:an immunohistochemical study utilizing tissue microarrays. Neuropathol Appl Neurobiol.2005;31(3):292-303.
    21 Ousman SS, Tomooka BH, van Noort JM, et al. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature. 2007;448(7152):474-9.
    22 Kim H, Moon C, Ahn M, et al. Heat shock protein 27 upregulation and phosphorylation in rat experimental autoimmune encephalomyelitis. Brain Res. 2009;1304:155-63.
    23 Wanschitz J, Ehling R, Loscher WN, et al. Intrathecal anti-alphaB-crystallin IgG antibody responses:potential inflammatory markers in Guillain-Barre syndrome. J Neurol.2008;255(6):917-24.
    24 Yonekura K, Yokota S, Tanaka S, et al. Prevalence of anti-heat shock protein antibodies in cerebrospinal fluids of patients with Guillain-Barre syndrome. J Neuroimmunol.2004;156(1-2):204-9.
    25 Bidmon HJ, Gorg B, Palomero-Gallagher N, et al. Heat shock protein-27 is upregulated in the temporal cortex of patients with epilepsy. Epilepsia. 2004;45(12):1549-59.
    26 Cremer CM, Palomero-Gallagher N, Bidmon HJ, Schleicher A, Speckmann EJ, Zilles K. Pentylenetetrazole-induced seizures affect binding site densities for GABA, glutamate and adenosine receptors in the rat brain. Neuroscience. 2009;163(1):490-9.
    27 Lively S, Brown IR. Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem. 2008; 107(5):1335-46.
    28 Bidmon HJ, Gorg B, Palomero-Gallagher N, et al. Bilateral, vascular and perivascular glial upregulation of heat shock protein-27 after repeated epileptic seizures. J Chem Neuroanat.2005;30(1):1-16.
    29 Xi ZQ, Sun JJ, Wang XF, et al. HSPBAP1 is found extensively in the anterior temporal neocortex of patients with intractable epilepsy. Synapse. 2007;61(9):741-7.
    30 Sarnat HB, Flores-Sarnat L. Alpha-B-crystallin as a tissue marker of epileptic foci in paediatric resections. Can J Neurol Sci.2009;36(5):566-74.
    31 Bjorkdahl C, Sjogren MJ, Zhou X, et al. Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles:tau and neurofilaments. J Neurosci Res.2008;86(6):1343-52.
    32 Wilhelmus MM, Otte-Holler I, Wesseling P, de Waal RM, Boelens WC, Verbeek MM. Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer's disease brains. Neuropathol Appl Neurobiol. 2006;32(2):119-30.
    33 Chen S, Brown IR. Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones. 2007;12(1):51-8.
    34 Wilhelmus MM, Boelens WC, Otte-Holler I, et al. Small heat shock protein HspB8:its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol.2006;111(2):139-49.
    35 Wilhelmus MM, Boelens WC, Kox M, et al. Small heat shock proteins associated with cerebral amyloid angiopathy of hereditary cerebral hemorrhage with amyloidosis (Dutch type) induce interleukin-6 secretion. Neurobiol Aging. 2009;30(2):229-40.
    36 Alexandrov PN, Zhao Y, Pogue Al, et al. Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. J Alzheimers Dis.2005;8(2):117-27.
    37 King M, Nafar F, Clarke J, Mearow K. The small heat shock protein Hsp27 protects cortical neurons against the toxic effects of beta-amyloid peptide. J Neurosci Res.2009;87(14):3161-75.
    38 Lee S, Carson K, Rice-Ficht A, Good T. Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity. Protein Sci.2005;14(3):593-601.
    39 Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, de Waal RM, Verbeek MM. Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res.2006;1089(l):67-78.
    40 Sahara N, Maeda S, Yoshiike Y, et al. Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. J Neurosci Res.2007;85(14):3098-108.
    41 Jin Y, Fan Y, Yan EZ, Liu Z, Zong ZH, Qi ZM. Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacol Sin.2006;27(10):1309-16.
    42 Wang J, Martin E, Gonzales V, Borchelt DR, Lee MK. Differential regulation of small heat shock proteins in transgenic mouse models of neurodegenerative diseases. Neurobiol Aging.2008;29(4):586-97.
    43 Wang J, Xu G, Li H, et al. Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration:alphaB-crystallin modulates aggregation. Hum Mol Genet.2005;14(16):2335-47.
    44 Krishnan J, Lemmens R, Robberecht W, Van Den Bosch L.Role of heat shock response and Hsp27 in mutant SOD 1-dependent cell death.Exp Neurol. 2006;200(2):301-10.
    45 Dierick I, Irobi J, Janssens S, et al. Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response.Hum Mutat.2007;28(8):830.
    46 An JJ, Lee YP, Kim DW, et al. Transduced HSP27 protein protects neuronal cell death by enhancing FALS-associated SOD1 mutant activity. BMB Rep. 2009;42(3):136-41.
    47 Patel YJ, Payne Smith MD, de Belleroche J, Latchman DS. Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD 1-mutant-induced cell death in mammalian neuronal cells. Brain Res Mol Brain Res.2005;134(2):256-74.
    48 Sharp PS, Akbar MT, Bouri S, Senda A, et al. Protective effects of heat shock protein 27 in a model of ALS occur in the early stages of disease progression. Neurobiol Dis.2008;30(1):42-55.
    49 Krishnan J, Vannuvel K, Andries M, et al. Over-expression of Hsp27 does not influence disease in the mutant SOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Neurochem.2008;106(5):2170-83.
    50 Outeiro TF, Klucken J, Strathearn KE, et al. Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun.2006;351(3):631-8.
    51 Zhang L, Chang M, Li H, et al. Proteomic changes of PC 12 cells treated with proteasomal inhibitor PSI. Brain Res.2007; 1153:196-203.
    52 Yew EH, Cheung NS, Choy MS, et al. Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses:a microarray analysis. J Neurochem. 2005;94(4):943-56.
    53 Gorman AM, Szegezdi E, Quigney DJ, Samali A. Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC 12 cells. Biochem Biophys Res Commun.2005;327(3):801-10.
    54 Liao PC, Lin HY, Yuh CH, Yu LK, Wang HD. The effect of neuronal expression of heat shock proteins 26 and 27 on lifespan, neurodegeneration, and apoptosis in Drosophila. Biochem Biophys Res Commun.2008;376(4):637-41.
    55 Zourlidou A, Gidalevitz T, Kristiansen M, et al. Hsp27 overexpression in the R6/2 mouse model of Huntington's disease:chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet.2007; 16(9):1078-90.
    56 Perrin V, Regulier E, Abbas-Terki T, et al. Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington's disease. Mol Ther. 2007;15(5):903-11.
    57 Chen W, Kuizon S, Chiou BL, Bolton DC, Pullarkat RK, Junaid MA. Differential expression of small heat shock protein 27 (Hsp27) in Ataxia telangiectasia brains. Neurochem Res.2009;34(9):1658-67.
    58 Chang WH, Cemal CK, Hsu YH, et al. Dynamic expression of Hsp27 in the presence of mutant ataxin-3. Biochem Biophys Res Commun. 2005;336(1):258-67.
    59 Chang WH, Tien CL, Chen TJ, Nukina N, Hsieh M. Decreased protein synthesis of Hsp27 associated with cellular toxicity in a cell model of Machado-Joseph disease. Neurosci Lett.2009;454(2):152-6.
    60 Tsai HF, Lin SJ, Li C, Hsieh M. Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochem Biophys Res Commun.2005;334(4):1279-86.
    61 Friedman MJ, Li S, Li XJ. Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection. J Biol Chem. 2009;284(41):27944-51.
    62 Dierick I, Baets J, Irobi J, et al. Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies:a genotype-phenotype correlation study. Brain.2008;131(Pt 5):1217-27.
    63 Houlden H, Laura M, Wavrant-De Vrieze F, Blake J, Wood N, Reilly MM. Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology.2008;71(21):1660-8.
    64 James PA, Rankin J, Talbot K. Asymmetrical late onset motor neuropathy associated with a novel mutation in the small heat shock protein HSPB1 (HSP27). J Neurol Neurosurg Psychiatry.2008;79(4):461-3.
    65 Chung KW, Kim SB, Cho SY, et al. Distal hereditary motor neuropathy in Korean patients with a small heat shock protein 27 mutation. Exp Mol Med. 2008;40(3):304-12.
    66 Kijima K, Numakura C, Goto T, et al. Small heat shock protein 27 mutation in a Japanese patient with distal hereditary motor neuropathy. J Hum Genet. 2005;50(9):473-6.
    67 Tang B, Liu X, Zhao G, et al. Mutation analysis of the small heat shock protein 27 gene in chinese patients with Charcot-Marie-Tooth disease. Arch Neurol. 2005;62(8):1201-7.
    68 Zhai J, Lin H, Julien JP, Schlaepfer WW. Disruption of neurofilament network with aggregation of light neurofilament protein:a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1. Hum Mol Genet.2007;16(24):3103-16.
    69 Ackerley S, James PA, Kalli A, French S, Davies KE, Talbot K. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum Mol Genet.2006;15(2):347-54.
    70 Tradewell ML, Durham HD, Mushynski WE, Gentil BJ. Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of charcot-marie-tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J Neuropathol Exp Neurol.2009;68(6):642-52.
    71 Tang BS, Zhao GH, Luo W, et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet. 2005;116(3):222-4.
    72 Fontaine JM, Sun X, Hoppe AD, et al. Abnormal small heat shock protein interactions involving neuropathy-associated HSP22 (HSPB8) mutants. FASEB J. 2006;20(12):2168-70.
    73 Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J. HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet.2005;14(12):1659-69.
    74 Doran P, Martin G, Dowling P, Jockusch H, Ohlendieck K. Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Proteomics.2006;6(16):4610-21.
    75 Doran P, Wilton SD, Fletcher S, Ohlendieck K. Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm. Proteomics.2009;9(3):671-85.
    76 Sharp P, Krishnan M, Pullar O, Navarrete R, Wells D, de Belleroche J. Heat shock protein 27 rescues motor neurons following nerve injury and preserves muscle function. Exp Neurol.2006; 198(2):511-8.
    77 Dodge ME, Wang J, Guy C, Rankin S, Rahimtula M, Mearow KM. Stress-induced heat shock protein 27 expression and its role in dorsal root ganglion neuronal survival. Brain Res.2006;1068(1):34-48.
    78 Hirata K, Kanemaru T, Minohara M, Togo A, Kira J. Accumulation of stress-related proteins within the glomeruli of the rat olfactory bulb following damage to olfactory receptor neurons. Arch Histol Cytol.2008;71(4):265-77.
    79 Raz-Prag D, Zeng Y, Sieving PA, Bush RA. Photoreceptor protection by adeno-associated virus-mediated LEDGF expression in the RCS rat model of retinal degeneration:probing the mechanism. Invest Ophthalmol Vis Sci. 2009;50(8):3897-906.
    80 Hebb MO, Myers TL, Clarke DB. Enhanced expression of heat shock protein 27 is correlated with axonal regeneration in mature retinal ganglion cells. Brain Res. 2006;1073-1074:146-50.
    81 Munemasa Y, Kwong JM, Caprioli J, Piri N. The role of alphaA-and alphaB-crystallins in the survival of retinal ganglion cells after optic nerve axotomy. Invest Ophthalmol Vis Sci.2009;50(8):3869-75.
    82 Kretz A, Schmeer C, Tausch S, Isenmann S. Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol Dis.2006;21(2):421-30.
    83 Schmeer C, Gamez A, Tausch S, Witte OW, Isenmann S. Statins modulate heat shock protein expression and enhance retinal ganglion cell survival after transient retinal ischemia/reperfusion in vivo. Invest Ophthalmol Vis Sci. 2008;49(11):4971-81.
    84 Tanabe K, Takai S, Matsushima-Nishiwaki R, Kato K, Dohi S, Kozawa O. Alpha2 adrenoreceptor agonist regulates protein kinase C-induced heat shock protein 27 phosphorylation in C6 glioma cells.J Neurochem. 2008;106(2):519-28.
    85 Losem-Heinrichs E, Gorg B, Redecker C, et al. 1alpha,25-dihydroxy-vitamin D3 in combination with 17beta-estradiol lowers the cortical expression of heat shock protein-27 following experimentally induced focal cortical ischemia in rats. Arch Biochem Biophys.2005;439(1):70-9.
    86 Hong Z, Zhang QY, Liu J, et al. Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth. J Proteome Res.2009;8(6):2768-87.
    87 Yi JH, Park SW, Brooks N, Lang BT, Vemuganti R. PPARgamma agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Res.2008;1244:164-72.
    88 Shi GX, Jin L, Andres DA. Pituitary adenylate cyclase-activating polypeptide 38-mediated Rin activation requires Src and contributes to the regulation of HSP27 signaling during neuronal differentiation. Mol Cell Biol. 2008;28(16):4940-51.
    89 Park HK, Park EC, Bae SW, et al. Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein 27 in patients with acute coronary syndrome. Circulation.2006;114(9):886-93.
    90 Martin-Ventura JL, Nicolas V, Houard X,et al. Biological significance of decreased HSP27 in human atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(6):1337-43.
    91 Rayner K, Chen YX, McNulty M,et al. Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circ Res.2008;103(2):133-41.
    92 Kang SH, Lee JH, Choi KH, Rhim BY, Kim K. Roles of ERK and NF-kappaB in Interleukin-8 Expression in Response to Heat Shock Protein 22 in Vascular Smooth Muscle Cells. Korean J Physiol Pharmacol.2008;12(4):171-6.
    93 Tyson EK, Macintyre DA, Smith R, Chan EC, Read M. Evidence that a protein kinase A substrate, small heat-shock protein 20, modulates myometrial relaxation in human pregnancy. Endocrinology.2008;149(12):6157-65.
    94 Hashimoto R, Yumoto M, Watanabe M, Konishi M, Haraoka J, Miki T. Differential effects of an expected actin-tropomyosin binding region of heat shock protein 20 on the relaxation in skinned carotid artery and taenia cecum from guinea pig.J Smooth Muscle Res.2009;45(1):63-74.
    95 Flynn CR, Brophy CM, Furnish EJ,et al. Transduction of phosphorylated heat shock-related protein 20, HSP20, prevents vasospasm of human umbilical artery smooth muscle. J Appl Physiol.2005;98(5):1836-45.
    96 Wang X, Zhao T, Huang W, et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors.Stem Cells.2009;27(12):3021-31.
    97 Dimberg A, Rylova S, Dieterich LC, et al. alphaB-crystallin promotes tumor angiogenesis by increasing vascular survival during tube morphogenesis.Blood. 2008;111(4):2015-23.
    98 Kase S, He S, Sonoda S, Kitamura M, et al. AlphaB crystallin regulation of angiogenesis by modulation of VEGF.Blood.2009 Dec 18.
    99 Trott D, McManus CA, Martin JL, Brennan B, Dunn MJ, Rose ML. Effect of phosphorylated hsp27 on proliferation of human endothelial and smooth muscle cells. Proteomics.2009;9(12):3383-94.
    100 Chen HF, Xie LD, Xu CS. Role of heat shock protein 27 phosphorylation in migration of vascular smooth muscle cells. Mol Cell Biochem. 2009;327(1-2):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700