乳铁蛋白对铜绿假单胞菌的杀菌作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分乳铁蛋白对铜绿假单胞菌生长和毒力因子表达的调节及其机制
     目的研究乳铁蛋白对铜绿假单胞菌的杀菌性以及毒力因子表达和生物被膜形成的作用,同时探讨铁离子对其作用的影响。
     方法分别将乳铁蛋白溶液、FeCl_3溶液及乳铁蛋白与FeCl_3混合溶液分别加入到铜绿假单胞菌培养基(OD_(600)=0.05)中,以倍比稀释平板培养法检测活菌数评价其杀菌活性;以氯仿、盐酸萃取法定量检测绿脓菌素;以刚果红弹性蛋白检测弹性蛋白酶活性;结晶紫法定量检测生物被膜;以结晶紫染色法,在光镜下观察生物被膜形态。
     结果乳铁蛋白对铜绿假单胞菌具有杀菌活性,同时抑制绿脓菌素生成、弹性蛋白酶活性和生物被膜形成,其作用与浓度成正相关;FeCl_3促进铜绿假单胞菌生长,增加绿脓菌素生成和弹性蛋白酶活性,并进生物被膜形成;乳铁蛋白与铁结合后其杀菌性减弱,对绿脓菌素生成、弹性蛋白酶活性和生物被膜形成的抑制作用减弱。
     结论乳铁蛋白对铜绿假单胞菌具有杀菌活性,能抑制毒力因子的表达,其作用受铁离子的影响,可能部分地与其铁螯合能力有关。
     第二部分铁螯合剂对铜绿假单胞菌生长和毒力因子表达的调节及其机制
     目的研究铁螯合剂8-羟基喹啉、甲磺酸去铁胺对铜绿假单胞菌的杀菌性以及毒力因子表达和生物被膜形成的影响。
     方法分别将8-羟基喹啉溶液、甲磺酸去铁胺溶液及各自与FeCl_3混合溶液分别加入到铜绿假单胞菌培养基(OD_(600)=0.05)中,以倍比稀释平板培养法检测活茵数评价其杀菌活性;以氯仿、盐酸萃取法定量检测绿脓菌素;以刚果红弹性蛋白检测弹性蛋白酶活性;结晶紫法定量检测生物被膜;以结晶紫染色法,在光镜下观察生物被膜形态。RT-PCR法检测相关基因mRNA的表达。
     结果8-羟基喹啉、甲磺酸去铁胺均表现为抑制细菌生长、绿脓菌素合成、弹性蛋白酶活性和生物被膜形成,同时促进荧光素的表达;8-羟基喹啉螯合铁后对细菌生长、绿脓菌素合成、弹性蛋白酶活性和生物被膜形成的抑制作用增强,而甲磺酸去铁胺则反而促进细菌生长、绿脓菌素合成、弹性蛋白酶活性和生物被膜形成。
     结论铁螯合剂对铜绿假单胞菌的作用与其和铁的螯合能力和结构有关。铁饱和8-羟基喹啉可能通过新的机制对铜绿假单胞菌发挥作用。
     第三部分乳铁蛋白源性多肽和乳铁蛋白肽嵌合体对铜绿假单胞菌的作用
     目的研究乳铁蛋白源性多肽和乳铁蛋白肽嵌合体对铜绿假单胞菌的杀菌性以及毒力因子表达和生物被膜形成的影响。
     方法分别将LFcin溶液、LFampin溶液、LFchimera溶液及LFcin与LFampin混合溶液分别加入到铜绿假单胞菌培养基(OD_(600)=0.05)中,以倍比稀释平板培养法检测活菌数评价其杀菌活性;以氯仿、盐酸萃取法定量检测绿脓菌素;以刚果红弹性蛋白检测弹性蛋白酶活性;结晶紫法定量检测生物被膜;以结晶紫染色法,在光镜和荧光显微镜下观察生物被膜形态。
     结果LFcin、LFampin、LFchimera对铜绿假单胞菌具有杀菌活性,能抑制毒力因子的表达和生物被膜的形成,而且LFchimera的作用强于其组成多肽LFcin、LFampin及其混合物。
     结论乳铁蛋白源性多肽和乳铁蛋白肽嵌合体,尤其是LFchimera对铜绿假单胞菌具有良好的抗菌活性,有望用于治疗铜绿假单胞菌感染。
PartⅠThe effect of lactoferrin and iron on the viability andexpression of virulence factors in Pseudomonas aeruginosa
     Objective To study the bactericidal activity of lactoferrin against Pseudomonasaeruginosa,and its effect on the expression of virulence factors and biofilm formation,atthe same time to explore the influence of iron on its activity.
     Methods Lactoferrin solution,FeC13 solution and lactoferrin plus FeC13 solution werediluted into a refolding solvent and added into the culture medium of Pseudomonasaeruginosa for evaluating the bactericidal activity respectively;pyocyanine quantificationassay was performed by extraction with chloroform and hydrochloric acid orderly;theelastase activity was detected by using Elastin Congo Red;biofilm quantification assay wasperformed by staining with crystal violet and spectrophotometer assay;biofilm morphologywas viewed by optical microscopy after being stained with crystal violet.
     Results Lactoferrin have shown the bactericidal activity against Pseudomonasaeruginosa,and inhibited pyocyanine production,elastase activity and biofilm formation,and these effects were positively correlated with their concentrations.FeC13 promoted thegrowth of Pseudomonas aeruginosa,and increased pyocyanine production and elastaseactivity and biofilm formation.These effects of lactoferrin were down-regulated byiron-binding.Conclusions Lactoferrin has bactericidal activity against Pseudomonas aeruginosa,caninhibit the expression of virulence factors.The effects of lactoferrin are correlated with itsiron-binding ability in part.
     PartⅡThe effect of iron chelators on the viability and expression ofvirulence factors in Pseudomonas aeruginosa
     Objective To study the bactericidal activity of 8-hydroxyquinoline(HQ)anddesferoxamine(DFO)against Pseudomonas aeruginosa,and their effects on the expressionof virulence factors and biofilm formation.
     Methods The solutions of 8-hydroxyquinoline,desferoxamine and one of them plusFeC13 were diluted into a refolding solvent and added into the culture medium ofPseudomonas aeruginosa for evaluating the bactericidal activity respectively;pyocyaninequantification assay was performed by extraction with chloroform and hydrochloric acidorderly;the elastase activity was detected by using Elastin Congo Red;biofilmquantification assay was performed by staining with crystal violet and spectrophotometerassay;biofilm morphology was viewed by optical microscopy after being stained withcrystal violet.
     Results HQ and DFO have shown the inhibition of bacterial growth,pyocyaninesynthesis,elastase activity and biofilm formation.However,iron-Saturated HQ has shownthe greater inhibition of bacterial growth,pyocyanine synthesis,elastase activity andbiofilm formation than apo-HQ,and iron-Saturated DFO has not shown the inhibition.
     Conclusions The effects of iron chelators on Pseudomonas aeruginosa are correlatedwith stability-constants for iron,and iron-Saturated HQ has greater inhibition of bacterialgrowth,pyocyanine synthesis,elastase activity and biofilm formation than apo-chelators.
     PartⅢThe effect of LF-derived peptides and LFchimera on theviability and expression of virulence factors in pseudomonasaeruginosa
     Objective To study the bactericidal activity of LF-derived peptides and LFchimeraagainst Pseudomonas aeruginosa,and their effects on the expression of virulence factorsand biofilm formation.
     Methods The solutions of LFcin,LFampin,LFchimera and LFcin plus LFampin werediluted into a refolding solvent and added into the culture medium of Pseudomonasaeruginosa for evaluating the bactericidal activity respectively;pyocyanine quantificationassay was performed by extraction with chloroform and hydrochloric acid orderly;theelastase activity was detected by using Elastin Congo Red;biofilm quantification assay wasperformed by staining with crystal violet and spectrophotometer assay;biofilm morphologywas viewed by optical microscopy after being stained with crystal violet.
     Results LFcin,LFampin,LFchimera have shown the bactericidal activity againstPseudomonas aeruginosa,and inhibited pyocyanine production,elastase activity andbiofilm formation,and these effects were positively correlated with their concentrations.The effects of LFchimera are greater significantly than LFcin,LFampin and their mixtures.Conclusions Lactoferrin-derived peptides and lactoferrin peptides chimera,especiallyLFchimera have the great antibacterial activity against Pseudomonas aeruginosa,arepromissory new compounds for a treatment for P..aeruginosa infections.
引文
1. BERTHELOT P, GRATTARD F, MAHUL P, et al. Prospective study of nosocomial colonization and infection due to Pseudomonas aeruginosa in mechanically ventilated patients [J]. Intensive Care Med, 2001, 27(3): 503-512.
    2. VAN DELDEN C, IGLEWSKI B H. Cell-to-cell signaling and Pseudomonas aeruginosa infections [J]. Emerg Infect Dis, 1998, 4(4): 551-560.
    3. DE VOS D, LIM A, JR., PIRNAY J P, et al. Analysis of epidemic Pseudomonas aeruginosa isolates by isoelectric focusing of pyoverdine and RAPD-PCR: modern tools for an integrated anti-nosocomial infection strategy in burn wound centres [J]. Burns, 1997, 23(5): 379-386.
    4. MARRA A R, BAR K, BEARMAN G M, et al. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa [J]. J Infect, 2006, 53(1): 30-35.
    5. BERGEN G A, SHELHAMER J H. Pulmonary infiltrates in the cancer patient. New approaches to an old problem [J]. Infect Dis Clin North Am, 1996,10(2): 297-325.
    6. DUNN M, WUNDERINK R G. Ventilator-associated pneumonia caused by Pseudomonas infection [J]. Clin Chest Med, 1995,16(1): 95-109.
    7. GOVAN J R, DERETIC V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia [J]. Microbiol Rev, 1996, 60(3): 539-574.
    8. RAN H, HASSETT D J, LAU G W. Human targets of Pseudomonas aeruginosa pyocyanin [J]. Proc Natl Acad Sci U S A, 2003,100(24): 14315-14320.
    9. DE BENTZMANN S, ROGER P, DUPUIT F, et al. Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells [J]. Infect Immun, 1996, 64(5): 1582-1588.
    10. FELDMAN M, BRYAN R, RAJAN S, et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection [J]. Infect Immun, 1998, 66(1): 43-51.
    11. WICK M J, HAMOOD A N, IGLEWSKI B H. Analysis of the structure-function relationship of Pseudomonas aeruginosa exotoxin A [J]. Mol Microbiol, 1990, 4(4): 527-535.
    12. WOODS D E, IGLEWSKI B H. Toxins of Pseudomonas aeruginosa: new perspectives [J]. Rev Infect Dis, 1983, 5 Suppl 4(S715-722.
    13. VIDAL D R, GARRONE P, BANCHEREAU J. Immunosuppressive effects of Pseudomonas aeruginosa exotoxin A on human B-lymphocytes [J]. Toxicon, 1993, 31 (1): 27-34.
    14. NICAS T I, FRANK D W, STENZEL P, et al. Role of exoenzyme S in chronic Pseudomonas aeruginosa lung infections [J]. Eur J Clin Microbiol, 1985, 4(2): 175-179.
    15. NICAS T I, BRADLEY J, LOCHNER J E, et al. The role of exoenzyme S in infections with Pseudomonas aeruginosa [J]. J Infect Dis, 1985,152(4): 716-721.
    16. READ R C, ROBERTS P, MUNRO N, et al. Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating [J]. J Appl Physiol, 1992, 72(6): 2271-2277.
    17. PRITHIVIRAJ B, BAIS H P, WEIR T, et al. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans [J]. Infect Immun, 2005, 73(9): 5319-5328.
    18. LAU G W, HASSETT D J, RAN H, et al. The role of pyocyanin in Pseudomonas aeruginosa infection [J]. Trends Mol Med, 2004,10(12): 599-606.
    19. TAKENAKA S, IWAKU M, HOSHINO E. Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis [J]. J Infect Chemother, 2001, 7(2): 87-93.
    20. HART R C, KADIS S, CHAPMAN W L, JR. Nutritional iron status and susceptibility to Proteus mirabilis pyelonephritis in the rat [J]. Can J Microbiol, 1982, 28(6): 713-717.
    21. PUSCHMANN M, GANZONI A M. Increased resistance of iron-deficient mice to salmonella infection [J]. Infect Immun, 1977, 17(3): 663-664.
    22. OPPENHEIMER S J. Iron and its relation to immunity and infectious disease [J]. J Nutr, 2001,131(2S-2): 616S-633S; discussion 633S-635S.
    23. FIELD L H, HEADLEY V L, PAYNE S M, et al. Influence of iron on growth, morphology, outer membrane protein composition, and synthesis of siderophores in Campylobacter jejuni [J]. Infect Immun, 1986, 54(1): 126-132.
    24. BULLEN J J, LEIGH L C, ROGERS H J. The effect of iron compounds on the virulence of Escherichia coli for guinea-pigs [J]. Immunology, 1968,15(4): 581-588.
    25. ROBINS-BROWNE R M, PRPIC J K. Effects of iron and desferrioxamine on infections with Yersinia enterocolitica [J]. Infect Immun, 1985, 47(3): 774-779.
    26. WRIGHT A C, SIMPSON L M, OLIVER J D. Role of iron in the pathogenesis of Vibrio vulnificus infections [J]. Infect Immun, 1981,34(2): 503-507.
    27. DEBOY J M, 2ND, WACHSMUTH I K, DAVIS B R. Hemolytic activity in enterotoxigenic and non-enterotoxigenic strains of Escherichia coli [J]. J Clin Microbiol, 1980,12(2): 193-198.
    28. CROSA J H. A plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum specifies an iron-sequestering system [J]. Nature, 1980, 284(5756): 566-568.
    29. BROOKS H J, O'GRADY F, MCSHERRY M A, et al. Uropathogenic properties of Escherichia coli in recurrent urinary-tract infection [J]. J Med Microbiol, 1980, 13(1): 57-68.
    30. WILLIAMS P H. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli [J]. Infect Immun, 1979, 26(3): 925-932.
    31. NEILANDS J B. Microbial iron compounds [J]. Annu Rev Biochem, 1981, 50(715-731.
    32. WEINBERG E D. Iron withholding: a defense against infection and neoplasia [J]. Physiol Rev, 1984, 64(1): 65-102.
    33. AISEN P, LISTOWSKY I. Iron transport and storage proteins [J]. Annu Rev Biochem, 1980, 49(357-393.
    34. COX C D, RINEHART K L, JR., MOORE M L, et al. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeniginosa [J]. Proc Natl Acad Sci U S A, 1981,78(7): 4256-4260.
    35. DEMANGE P, BATEMAN A, MERTZ C, et al. Bacterial siderophores: structures of pyoverdins Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino acid [J]. Biochemistry, 1990, 29(50): 11041-11051.
    36. BRISKOT G, TARAZ K, BUDZIKIEWICZ H. [Pyoverdin-type siderophores from Pseudomonas aeniginosa] [J]. Z Naturforsch [C], 1986, 41(5-6): 497-506.
    37. ANKENBAUER R, SRIYOSACHATI S, COX C D. Effects of siderophores on the growth of Pseudomonas aeniginosa in human serum and transferrin [J]. Infect Immun, 1985, 49(1): 132-140.
    38. VISCA P, CIERVO A, SANFILIPPO V, et al. Iron-regulated salicylate synthesis by Pseudomonas spp [J]. J Gen Microbiol, 1993,139(9): 1995-2001.
    39. COX C D, ADAMS P. Siderophore activity of pyoverdin for Pseudomonas aeniginosa [J]. Infect Immun, 1985, 48(1): 130-138.
    40. COX C D, GRAHAM R. Isolation of an iron-binding compound from Pseudomonas aeruginosa [J]. J Bacteriol, 1979,137(1): 357-364.
    41. LEONI L, CIERVO A, ORSI N, et al. Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity [J]. J Bacteriol, 1996,178(8): 2299-2313.
    42. OCHSNER U A, VASIL A I, VASIL M L. Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters [J]. J Bacteriol, 1995, 177(24): 7194-7201.
    43. HEINRICHS D E, POOLE K. PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor [J]. J Bacteriol, 1996,178(9): 2586-2592.
    44. MIYAZAKI H, KATO H, NAKAZAWA T, et al. A positive regulatory gene, pvdS, for expression of pyoverdin biosynthetic genes in Pseudomonas aeruginosa PAO [J]. Mol Gen Genet, 1995, 248(1): 17-24.
    45. CUNLIFFE H E, MERRIMAN T R, LAMONT I L. Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor [J]. J Bacteriol, 1995,177(10): 2744-2750.
    46. HEINRICHS D E, POOLE K. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa [J]. J Bacteriol, 1993,175(18): 5882-5889.
    47. BJORN M J, SOKOL P A, IGLEWSKI B H. Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures [J]. J Bacteriol, 1979,138(1): 193-200.
    48. BJORN M J, IGLEWSKI B H, IVES S K, et al. Effect of iron on yields of exotoxin A in cultures of Pseudomonas aeruginosa PA-103 [J]. Infect Immun, 1978, 19(3): 785-791.
    49. FRANK D W, STOREY D G, HINDAHL M S, et al. Differential regulation by iron of regA and toxA transcript accumulation in Pseudomonas aeruginosa [J]. J Bacteriol, 1989,171(10): 5304-5313.
    50. FRANK D W, IGLEWSKI B H. Kinetics of toxA and regA mRNA accumulation in Pseudomonas aeruginosa [J]. J Bacteriol, 1988,170(10): 4477-4483.
    51. LORY S. Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa [J]. J Bacteriol, 1986,168(3): 1451-1456.
    52. GRANT C C, VASIL M L. Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa [J]. J Bacteriol, 1986,168(3): 1112-1119.
    53. PRINCE R W, STOREY D G, VASIL A I, et al. Regulation of toxA and regA by the Escherichia coli fur gene and identification of a Fur homologue in Pseudomonas aeruginosa PA103 and PA01 [J]. Mol Microbiol, 1991, 5(11): 2823-2831.
    54. YE B, ZHENG Y Q, WU W H, et al. Iron chelator daphnetin against Pneumocystis carinii in vitro [J]. Chin Med J (Engl), 2004,117(11): 1704-1708.
    55. IBRAHIM A S, GEBERMARIAM T, FU Y, et al. The iron chelator deferasirox protects mice from mucormycosis through iron starvation [J]. J Clin Invest, 2007, 117(9): 2649-2657.
    56. SONTAG B, GERLITZ M, PAULULAT T, et al. Oxachelin, a novel iron chelator and antifungal agent from Streptomyces sp. GW9/1258 [J]. J Antibiot (Tokyo), 2006, 59(10): 659-663.
    57. ORSI N. The antimicrobial activity of lactoferrin: current status and perspectives [J]. Biometals, 2004,17(3): 189-196.
    58. WARD P P, CONNEELY O M. Lactoferrin: role in iron homeostasis and host defense against microbial infection [J]. Biometals, 2004,17(3): 203-208.
    59. BAKER H M, ANDERSON B F, BRODIE A M, et al. Anion binding by transferrins: importance of second-shell effects revealed by the crystal structure of oxalate-substituted diferric lactoferrin [J]. Biochemistry, 1996, 35(28): 9007-9013.
    60. SHUGARS D C, WATKINS C A, COWEN H J. Salivary concentration of secretory leukocyte protease inhibitor, an antimicrobial protein, is decreased with advanced age [J]. Gerontology, 2001, 47(5): 246-253.
    61. ARNOLD R R, BREWER M, GAUTHIER J J. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms [J]. Infect Immun, 1980, 28(3): 893-898.
    62. MUNOZ A, MARCOS J F. Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides [J]. J Appl Microbiol, 2006,101(6): 1199-1207.
    63. KUWATA H, YIP T T, TOMITA M, et al. Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin [J]. Biochim Biophys Acta, 1998,1429(1): 129-141.
    64. BELLAMY W, TAKASE M, WAKABAYASHI H, et al. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin [J]. J Appl Bacteriol, 1992, 73(6): 472-479.
    65. BELLAMY W, TAKASE M, YAMAUCHI K, et al. Identification of the bactericidal domain of lactoferrin [J]. Biochim Biophys Acta, 1992,1121(1-2): 130-136.
    66. VAN DER KRAAN M I, GROENINK J, NAZMI K, et al. Lactoferrampin: a novel antimicrobial peptide in the Nl-domain of bovine lactoferrin [J]. Peptides, 2004, 25(2): 177-183.
    67. LONGHI C, CONTE M P, BELLAMY W, et al. Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells [J]. Med Microbiol Immunol, 1994,183(2): 77-85.
    68. HANEY E F, LAU F, VOGEL H J. Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin [J]. Biochim Biophys Acta, 2007,1768(10): 2355-2364.
    69. LEON-SICAIROS N, CANIZALEZ-ROMAN A, DE LA GARZA M, et al. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus [J]. Biochimie, 2009, 91(1): 133-140.
    70. BOLSCHER J G, ADAO R, NAZMI K, et al. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides [J]. Biochimie, 2009, 91(1): 123-132.
    1. ORSI N. The antimicrobial activity of lactoferrin: current status and perspectives [J]. Biometals, 2004,17(3): 189-196.
    2. WARD P P, CONNEELY O M. Lactoferrin: role in iron homeostasis and host defense against microbial infection [J]. Biometals, 2004,17(3): 203-208.
    3. TACHEZY J, KULDA J, BAHNIKOVA I, et al. Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin [J]. Exp Parasitol, 1996, 83(2): 216-228.
    4. BERTHELOT P, GRATTARD F, MAHUL P, et al. Prospective study of nosocomial colonization and infection due to Pseudomonas aeruginosa in mechanically ventilated patients [J]. Intensive Care Med, 2001, 27(3): 503-512.
    5. VAN DELDEN C, IGLEWSKI B H. Cell-to-cell signaling and Pseudomonas aeruginosa infections [J]. Emerg Infect Dis, 1998, 4(4): 551-560.
    6. DE VOS D, LIM A, JR., PIRNAY J P, et al. Analysis of epidemic Pseudomonas aeruginosa isolates by isoelectric focusing of pyoverdine and RAPD-PCR: modern tools for an integrated anti-nosocomial infection strategy in burn wound centres [J]. Burns, 1997, 23(5): 379-386.
    7. MARRA A R, BAR K, BEARMAN G M, et al. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa [J]. J Infect, 2006, 53(1): 30-35.
    8. AMMONS M C, WARD L S, FISHER S T, et al. In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol [J]. Int J Antimicrob Agents, 2009, 33(3): 230-236.
    9. REID D W, CARROLL V, O'MAY C, et al. Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis [J]. Eur Respir J, 2007, 30(2): 286-292.
    10. ALKAWASH M, HEAD M, ALSHAMI I, et al. The effect of human lactoferrin on the MICs of doxycycline and rifampicin for Burkholderia cepacia and Pseudomonas aeruginosa strains [J]. J Antimicrob Chemother, 1999,44(3): 385-387.
    11. RAN H, HASSETT D J, LAU G W. Human targets of Pseudomonas aeruginosa pyocyanin [J]. Proc Natl Acad Sci U S A, 2003,100(24): 14315-14320.
    12. VAN DER KRAAN M I, GROENINK J, NAZMI K, et al. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin [J]. Peptides, 2004, 25(2): 177-183.
    13. ESSAR D W, EBERLY L, HADERO A, et al. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications [J]. J Bacteriol, 1990, 172(2): 884-900.
    14. BEATSON S A, WHITCHURCH C B, SARGENT J L, et al. Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa [J]. J Bacteriol, 2002,184(13): 3605-3613.
    15. SMITH K M, BU Y, SUGA H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs [J]. Chem Biol, 2003,10(1): 81-89.
    16. ECKHART L, FISCHER H, BARKEN K B, et al. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus [J]. Br J Dermatol, 2007,156(6): 1342-1345.
    17. MERRITT J H, KADOURI D E, O'TOOLE G A. Growing and analyzing static biofilms [J]. Curr Protoc Microbiol, 2005, Chapter l(Unit 1B 1.
    18. TOMITA M, BELLAMY W, TAKASE M, et al. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin [J]. J Dairy Sci, 1991, 74(12): 4137-4142.
    19. REID D W, O'MAY C, RODDAM L F, et al. Chelated iron as an anti-Pseudomonas aeruginosa biofilm therapeutic strategy [J]. J Appl Microbiol, 2009,106(3): 1058.
    20. MUSK D J, JR., HERGENROTHER P J. Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung [J]. J Appl Microbiol, 2008,105(2): 380-388.
    21. BJORN M J, SOKOL P A, IGLEWSKI B H. Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures [J]. J Bacteriol, 1979,138(1): 193-200.
    22. BRUMLIK M J, STOREY D G. Zinc and iron regulate translation of the gene encoding Pseudomonas aeruginosa elastase [J]. Mol Microbiol, 1992, 6(3): 337-344.
    23. OCHSNER U A, VASIL A I, VASIL M L. Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters [J]. J Bacteriol, 1995, 177(24): 7194-7201.
    24. LITWIN C M, CALDERWOOD S B. Role of iron in regulation of virulence genes [J]. Clin Microbiol Rev, 1993, 6(2): 137-149.
    25. CORNELIS P, AENDEKERK S. A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa [J]. Microbiology, 2004,150(Pt 4): 752-756.
    1. YE B, ZHENG Y Q, WU W H, et al. Iron chelator daphnetin against Pneumocystis carinii in vitro [J]. Chin Med J (Engl), 2004, 117(11): 1704-1708.
    2. IBRAHIM A S, GEBERMARIAM T, FU Y, et al. The iron chelator deferasirox protects mice from mucormycosis through iron starvation [J]. J Clin Invest, 2007, 117(9): 2649-2657.
    3. SONTAG B, GERLITZ M, PAULULAT T, et al. Oxachelin, a novel iron chelator and antifungal agent from Streptomyces sp. GW9/1258 [J]. J Antibiot (Tokyo), 2006, 59(10): 659-663.
    4. BERGEN G A, SHELHAMER J H. Pulmonary infiltrates in the cancer patient. New approaches to an old problem [J]. Infect Dis Clin North Am, 1996,10(2): 297-325.
    5. DUNN M, WUNDERINK R G. Ventilator-associated pneumonia caused by Pseudomonas infection [J]. Clin Chest Med, 1995,16(1): 95-109.
    6. GOVAN J R, DERETIC V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia [J]. Microbiol Rev, 1996, 60(3): 539-574.
    7. VAN DER KRAAN M I, GROENINK J, NAZMI K, et al. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin [J]. Peptides, 2004, 25(2): 177-183.
    8. ESSAR D W, EBERLY L, HADERO A, et al. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications [J]. J Bacteriol, 1990, 172(2): 884-900.
    9. BEATSON S A, WHITCHURCH C B, SARGENT J L, et al. Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa [J]. J Bacteriol, 2002,184(13): 3605-3613.
    10. SMITH K M, BU Y, SUGA H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs [J]. Chem Biol, 2003,10(1): 81-89.
    11. ECKHART L, FISCHER H, BARKEN K B, et al. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus [J]. Br J Dermatol, 2007,156(6): 1342-1345.
    12. MERRITT J H, KADOURI D E, O'TOOLE G A. Growing and analyzing static biofilms [J]. Curr Protoc Microbiol, 2005, Chapter 1(Unit 1B 1.
    13. BRAUN V. Iron uptake mechanisms and their regulation in pathogenic bacteria [J]. Int J Med Microbiol, 2001, 291(2): 67-79.
    14. NEILANDS J B. Microbial iron compounds [J]. Annu Rev Biochem, 1981, 50(715-731.
    15. COX C D, RINEHART K L, JR., MOORE M L, et al. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa [J]. Proc Natl Acad Sci U S A, 1981, 78(7): 4256-4260.
    16. DEMANGE P, BATEMAN A, MERTZ C, et al. Bacterial siderophores: structures of pyoverdins Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino acid [J]. Biochemistry, 1990, 29(50): 11041-11051.
    17. BRISKOT G, TARAZ K, BUDZIKIEWICZ H. [Pyoverdin-type siderophores from Pseudomonas aeruginosa] [J]. Z Naturforsch [C], 1986, 41(5-6): 497-506.
    18. ANKENBAUER R, SRIYOSACHATI S, COX C D. Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin [J]. Infect Immun, 1985, 49(1): 132-140.
    19. BJORN M J, SOKOL P A, IGLEWSKI B H. Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures [J]. J Bacteriol, 1979,138(1): 193-200.
    20. BJORN M J, IGLEWSKI B H, IVES S K, et al. Effect of iron on yields of exotoxin A in cultures of Pseudomonas aeruginosa PA-103 [J]. Infect Immun, 1978, 19(3): 785-791.
    21. FRANK D W, STOREY D G, HINDAHL M S, et al. Differential regulation by iron of regA and toxA transcript accumulation in Pseudomonas aeruginosa [J]. J Bacteriol, 1989,171(10): 5304-5313.
    22. FRANK D W, IGLEWSKI B H. Kinetics of toxA and regA mRNA accumulation in Pseudomonas aeruginosa [J]. J Bacteriol, 1988,170(10): 4477-4483.
    23. LORY S. Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa [J]. J Bacteriol, 1986,168(3): 1451-1456.
    24. GRANT C C, VASIL M L. Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa [J]. J Bacteriol, 1986,168(3): 1112-1119.
    25. BANIN E, LOZINSKI A, BRADY K M, et al. The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent [J]. Proc Natl Acad Sci U S A, 2008,105(43): 16761-16766.
    26. KANEKO Y, THOENDEL M, OLAKANMI O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity [J]. J Clin Invest, 2007,117(4): 877-888.
    1. BERTHELOT P, GRATTARD F, MAHUL P, et al. Prospective study of nosocomial colonization and infection due to Pseudomonas aeruginosa in mechanically ventilated patients [J]. Intensive Care Med, 2001, 27(3): 503-512.
    2. VAN DELDEN C, IGLEWSKI B H. Cell-to-cell signaling and Pseudomonas aeruginosa infections [J]. Emerg Infect Dis, 1998, 4(4): 551-560.
    3. DE VOS D, LIM A, JR., PIRNAY J P, et al. Analysis of epidemic Pseudomonas aeruginosa isolates by isoelectric focusing of pyoverdine and RAPD-PCR: modern tools for an integrated anti-nosocornial infection strategy in burn wound centres [J]. Burns, 1997, 23(5): 379-386.
    4. MARRA A R, BAR K, BEARMAN G M, et al. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa [J]. J Infect, 2006, 53(1): 30-35.
    5. RAN H, HASSETT D J, LAU G W. Human targets of Pseudomonas aeruginosa pyocyanin [J]. Proc Natl Acad Sci U S A, 2003,100(24): 14315-14320.
    6. PRITHIVIRAJ B, BAIS H P, WEIR T, et al. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans [J]. Infect Immun, 2005, 73(9): 5319-5328.
    7. LAU G W, HASSETT D J, RAN H, et al. The role of pyocyanin in Pseudomonas aeruginosa infection [J]. Trends Mol Med, 2004,10(12): 599-606.
    8. TAKENAKA S, IWAKU M, HOSHINO E. Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis [J]. J Infect Chemother, 2001, 7(2): 87-93.
    9. DEFEZ C, FABBRO-PERAY P, BOUZIGES N, et al. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection [J]. J Hosp Infect, 2004, 57(3): 209-216.
    10. HSUEH P R, TSENG S P, TENG L J, et al. Pan-drug-resistant Pseudomonas aeruginosa causing nosocomial infection at a university hospital in Taiwan [J]. Clin Microbiol Infect, 2005,11(8): 670-673.
    11. HANEY E F, LAU F, VOGEL H J. Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin [J]. Biochim Biophys Acta, 2007,1768(10): 2355-2364.
    12. MUNOZ A, MARCOS J F. Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides [J]. J Appl Microbiol, 2006, 101(6): 1199-1207.
    13. KUWATA H, YIP T T, TOMITA M, et al. Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin [J]. Biochim Biophys Acta, 1998,1429(1): 129-141.
    14. BELLAMY W, TAKASE M, YAMAUCHI K, et al. Identification of the bactericidal domain of lactoferrin [J]. Biochim Biophys Acta, 1992,1121(1-2): 130-136.
    15. BELLAMY W, TAKASE M, WAKABAYASHI H, et al. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin [J]. J Appl Bacteriol, 1992, 73(6): 472-479.
    16. ORSI N. The antimicrobial activity of lactoferrin: current status and perspectives [J]. Biometals, 2004,17(3): 189-196.
    17. VAN DER KRAAN M I, GROENINK J, NAZMI K, et al. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin [J]. Peptides, 2004, 25(2): 177-183.
    18. LONGHI C, CONTE M P, BELLAMY W, et al. Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells [J]. Med Microbiol Immunol, 1994,183(2): 77-85.
    19. LEON-SICAIROS N, CANIZALEZ-ROMAN A, DE LA GARZA M, et al. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus [J]. Biochimie, 2009, 91(1): 133-140.
    20. BOLSCHER J G, ADAO R, NAZMI K, et al. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides [J]. Biochimie, 2009, 91(1): 123-132.
    21. ESSAR D W, EBERLY L, HADERO A, et al. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchange ability of the two anthranilate synthases and evolutionary implications [J]. J Bacteriol, 1990,172(2): 884-900.
    22. BEATSON S A, WHITCHURCH C B, SARGENT J L, et al. Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa [J]. J Bacteriol, 2002,184(13): 3605-3613.
    23. SMITH K M, BU Y, SUGA H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs [J]. Chem Biol, 2003,10(1): 81-89.
    24. ECKHART L, FISCHER H, BARKEN K B, et al. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus [J]. Br J Dermatol, 2007,156(6): 1342-1345.
    25. MERRITT J H, KADOURI D E, O'TOOLE G A. Growing and analyzing static biofilms [J]. Curr Protoc Microbiol, 2005, Chapter 1(Unit 1B 1.
    26. DIETRICH LE, PRICE-WHELAN A, PETERSEN A, et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa [J]. Mol Microbiol, 2006, 61(5): 1308-1321.
    27. SCHMIDTCHEN A, HOLST E, TAPPER H, et al. Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth [J]. Microb Pathog, 2003, 34(1): 47-55.
    28. PRESTON M J, SEED P C, TODER D S, et al. Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections [J]. Infect Immun, 1997, 65(8): 3086-3090.
    29. MARIENCHECK W I, ALCORN J F, PALMER S M, et al. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D [J]. Am J Respir Cell Mol Biol, 2003, 28(4): 528-537.
    30. KUWATA H, YIP T T, YIP C L, et al. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry [J]. Biochem Biophys Res Commun, 1998,245(3): 764-773.
    31. BOLSCHER J G, ADAO R, NAZMI K, et al. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides [J]. Biochimie, 2008,
    32. LEON-SICAIROS N, CANIZALEZ-ROMAN A, DE LA GARZA M, et al. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus [J]. Biochimie, 2008,
    33. HAUKLAND H H, ULVATNE H, SANDVIK K, et al. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm [J]. FEBS Lett, 2001, 508(3): 389-393.
    34. LEON-SICAIROS N, LOPEZ-SOTO F, REYES-LOPEZ M, et al. Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme [J]. Clin Med Res, 2006, 4(2): 106-113.
    35. GAMBELLO M J, IGLEWSKI B H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression [J]. J Bacteriol, 1991,173(9): 3000-3009.
    36. SINGH P K. Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation [J]. Biometals, 2004,17(3): 267-270.
    37. BERLUTTI F, AJELLO M, BOSSO P, et al. Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans [J]. Biometals, 2004,17(3): 271-278.
    38. LI Y, SUN H, MA X, et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus [J]. Proc Natl Acad Sci U S A, 2003, 100(9): 5443-5448.
    39. DE KIEVIT T R, GILLIS R, MARX S, et al. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns [J]. Appl Environ Microbiol, 2001, 67(4): 1865-1873.
    1.PIERCE A,COLAVIZZA D,BENAISSA M,et al.Molecular cloning and sequence analysis of bovine lactotransferrin[J].Eur J Biochem,1991,196(1):177-184.
    2.HAGIWARA T,SHINODA I,FUKUWATARI Y,et al.Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line,IEC-18,in the presence of epidermal growth factor[J].Biosci Biotechnol Biochem,1995,59(10):1875-1881.
    3.BELLAMY W,TAKASE M,WAKABAYASHI H,et al.Antibacterial spectrum of lactoferricin B,a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin[J].J Appl Bacteriol,1992,73(6):472-479.
    4.TOMITA M,BELLAMY W,TAKASE M,et al.Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin[J].J Dairy Sci,1991,74(12):4137-4142.
    5.BELLAMY W,TAKASE M,YAMAUCHI K,et al.Identification of the bactericidal domain of lactoferrin[J].Biochim Biophys Acta,1992,1121(1-2):130-136.
    6.ANDERSON B F,BAKER H M,NORRIS G E,et al.Structure of human lactoferrin:crystallographic structure analysis and refinement at 2.8 A resolution[J].J Mol Biol,1989,209(4):711-734.
    7.ANDERSON B F,BAKER H M,DODSON E J,et al.Structure of human lactoferrin at 3.2-A resolution[J].Proc Natl Acad Sci U S A,1987,84(7):1769-1773.
    8.ANDERSON B F,BAKER H M,NORRIS G E,et al.Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins[J].Nature,1990,344(6268):784-787.
    9.SENKOVICH O,COOK W J,MIRZA S,et al.Structure of a complex of human lactoferrin N-lobe with pneumococcal surface protein a provides insight into microbial defense mechanism [J]. J Mol Biol, 2007, 370(4): 701-713.
    10. HAUKLAND H H, VORLAND L H. Post-antibiotic effect of the antimicrobial peptide lactoferricin on Escherichia coli and Staphylococcus aureus [J]. J Antimicrob Chemother, 2001, 48(4): 569-571.
    11. VOGEL H J, SCHIBLI D J, JING W, et al. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides [J]. Biochem Cell Biol, 2002, 80(1): 49-63.
    12. KAWAI K, SHIMAZAKI K, HIGUCHI H, et al. Antibacterial activity of bovine lactoferrin hydrolysate against mastitis pathogens and its effect on superoxide production of bovine neutrophils [J]. Zoonoses Public Health, 2007, 54(3-4): 160-164.
    13. KUWATA H, YIP T T, TOMITA M, et al. Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin [J]. Biochim Biophys Acta, 1998,1429(1): 129-141.
    14. KUWATA H, YAMAUCHI K, TERAGUCHI S, et al. Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats [J]. J Nutr, 2001,131(8): 2121-2127.
    15. STEIJNS J M, VAN HOOIJDONK AC. Occurrence, structure, biochemical properties and technological characteristics of lactoferrin [J]. Br J Nutr, 2000, 84 Suppl 1(S11-17.
    16. BAKER H M, ANDERSON B F, BRODIE A M, et al. Anion binding by transferrins: importance of second-shell effects revealed by the crystal structure of oxalate-substituted diferric lactoferrin [J]. Biochemistry, 1996, 35(28): 9007-9013.
    17. OPPENHEIMER S J. Iron and its relation to immunity and infectious disease [J]. J Nutr, 2001,131(2S-2): 616S-633S; discussion 633S-635S.
    18. SHUGARS D C, WATKINS C A, COWEN H J. Salivary concentration of secretory leukocyte protease inhibitor, an antimicrobial protein, is decreased with advanced age [J]. Gerontology, 2001, 47(5): 246-253.
    19. YAMAUCHI K, TOMITA M, GIEHLT J, et al. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment [J]. Infect Immun, 1993, 61(2): 719-728.
    20. KALMAR J R, ARNOLD R R. Killing of Actinobacillus actinomycetemcomitans by human lactoferrin [J]. Infect Immun, 1988, 56(10): 2552-2557.
    21. ARNOLD R R, RUSSELL J E, CHAMPION W J, et al. Bactericidal activity of human lactoferrin: influence of physical conditions and metabolic state of the target microorganism [J]. Infect Immun, 1981, 32(2): 655-660.
    22. BORTNER C A, MILLER R D, ARNOLD R R. Bactericidal effect of lactoferrin on Legionella pneumophila [J]. Infect Immun, 1986, 51(2): 373-377.
    23. LASSITER M O, NEWSOME A L, SAMS L D, et al. Characterization of lactoferrin interaction with Streptococcus mutans [J]. J Dent Res, 1987, 66(2): 480-485.
    24. APPELMELK B J, AN Y Q, GEERTS M, et al. Lactoferrin is a lipid A-binding protein [J]. Infect Immun, 1994, 62(6): 2628-2632.
    25. OHASHI A, MURATA E, YAMAMOTO K, et al. New functions of lactoferrin and beta-casein in mammalian milk as cysteine protease inhibitors [J]. Biochem Biophys Res Commun, 2003, 306(1): 98-103.
    26. SPIK G, CODDEVILLE B, MAZURIER J, et al. Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans [J]. Adv Exp Med Biol, 1994, 357(21-32).
    27. TAKAHASHI M, TEZUKA T, KATUNUMA N. Inhibition of growth and cysteine proteinase activity of Staphylococcus aureus V8 by phosphorylated cystatin alpha in skin cornified envelope [J]. FEBS Lett, 1994, 355(3): 275-278.
    28. BERKHOUT B, VAN WAMEL J L, BELJAARS L, et al. Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides [J]. Antiviral Res, 2002, 55(2): 341-355.
    29. BELJAARS L, VAN DER STRATE B W, BARKER H I, et al. Inhibition of cytomegalovirus infection by lactoferrin in vitro and in vivo [J]. Antiviral Res, 2004, 63(3): 197-208.
    30. WAARTS B L, ANEKE O J, SMIT J M, et al. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate [J]. Virology, 2005, 333(2): 284-292.
    31. TANAKA T, KAWABATA K, KOHNO H, et al. Chemopreventive effect of bovine lactoferrin on 4-nitroquinoline 1-oxide-induced tongue carcinogenesis in male F344 rats [J]. Jpn J Cancer Res, 2000, 91(1): 25-33.
    32. FUJITA K, OHNISHI T, SEKINE K, et al. Down-regulation of 2-amino- 3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)-induced CYP1A2 expression is associated with bovine lactoferrin inhibition of MeIQx-induced liver and colon carcinogenesis in rats [J]. Jpn J Cancer Res, 2002, 93(6): 616-625.
    33. XIAO Y, MONITTO C L, MINHAS K M, et al. Lactoferrin down-regulates G1 cyclin-dependent kinases during growth arrest of head and neck cancer cells [J]. Clin Cancer Res, 2004,10(24): 8683-8686.
    34. VARADHACHARY A, WOLF J S, PETRAK K, et al. Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy [J]. Int J Cancer, 2004,111(3): 398-403.
    35. FUJITA K, MATSUDA E, SEKINE K, et al. Lactoferrin modifies apoptosis-related gene expression in the colon of the azoxymethane-treated rat [J]. Cancer Lett, 2004, 213(1): 21-29.
    36. FUJITA K, MATSUDA E, SEKINE K, et al. Lactoferrin enhances Fas expression and apoptosis in the colon mucosa of azoxymethane-treated rats [J]. Carcinogenesis, 2004, 25(10): 1961-1966.
    37. CAO R, FARNEBO J, KURIMOTO M, et al. Interleukin-18 acts as an angiogenesis and tumor suppressor [J]. FASEB J, 1999,13(15): 2195-2202.
    38. SUZUKI Y A, SHIN K, LONNERDAL B. Molecular cloning and functional expression of a human intestinal lactoferrin receptor [J]. Biochemistry, 2001, 40(51): 15771-15779.
    39. WAKABAYASHI H, MATSUMOTO H, HASHIMOTO K, et al. N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity [J]. Antimicrob Agents Chemother, 1999, 43(5): 1267-1269.
    40. ULVATNE H, SAMUELSEN O, HAUKLAND H H, et al. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis [J]. FEMS Microbiol Lett, 2004, 237(2): 377-384.
    41. SHIN K, YAMAUCHI K, TERAGUCHI S, et al. Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli O157:H7 [J]. Lett Appl Microbiol, 1998, 26(6): 407-411.
    42. ZHANG L, ROZEK A, HANCOCK R E. Interaction of cationic antimicrobial peptides with model membranes [J]. J Biol Chem, 2001, 276(38): 35714-35722.
    43. HAUG B E, SKAR M L, SVENDSEN J S. Bulky aromatic ammo acids increase the antibacterial activity of 15-residue bovine lactoferricin derivatives [J]. J Pept Sci, 2001, 7(8): 425-432.
    44. STROM M B, REKDAL O, SVENDSEN J S. The effects of charge and lipophilicity on the antibacterial activity of undecapeptides derived from bovine lactoferricin [J]. J Pept Sci, 2002, 8(1): 36-43.
    45. UETA E, TANIDA T, OSAKI T. A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils [J]. J Pept Res, 2001, 57(3): 240-249.
    46. KULLBERG B J, NETEA M G, VONK A G, et al. Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice [J]. FEMS Immunol Med Microbiol, 1999, 26(3-4): 299-307.
    47. TANAKA T, OMATA Y, SAITO A, et al. Toxoplasma gondii: parasiticidal effects of bovine lactoferricin against parasites [J]. Exp Parasitol, 1995, 81(4): 614-617.
    48. OMATA Y, SATAKE M, MAEDA R, et al. Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin [Jj. J Vet Med Sci, 2001, 63(2): 187-190.
    49. ANDERSEN J H, OSBAKK S A, VORLAND L H, et al. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts [J]. Antiviral Res, 2001, 51(2): 141-149.
    50. DI BIASE A M, PIETRANTONI A, TINARI A, et al. Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity [J]. J Med Virol, 2003, 69(4): 495-502.
    51. JENSSEN H, ANDERSEN J H, UHLIN-HANSEN L, et al. Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate [J]. Antiviral Res, 2004, 61(2): 101-109.
    52. YASIN B, PANG M, TURNER J S, et al. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides [J]. Eur J Clin Microbiol Infect Dis, 2000,19(3): 187-194.
    53. YOO Y C, WATANABE R, KOIKE Y, et al. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species [J]. Biochem Biophys Res Commun, 1997, 237(3): 624-628.
    54. YOO Y C, WATANABE S, WATANABE R, et al. Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice [J]. Jpn J Cancer Res, 1997, 88(2): 184-190.
    55. FADOK V A, DE CATHELINEAU A, DALEKE D L, et al. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts [J]. J Biol Chem, 2001, 276(2): 1071-1077.
    56. ISAMIDA T, TANAKA T, OMATA Y, et al. Protective effect of lactoferricin against Toxoplasma gondii infection in mice [J]. J Vet Med Sci, 1998, 60(2): 241-244.
    57. MAEKAWA T, FUJIHARA M, OHTSUKI K. Characterization of human lactoferricin as a potent protein kinase CK2 activator regulated by A-kinase in vitro [J]. Biol Pharm Bull, 2002, 25(1): 118-121.
    58. KANYSHKOVA T G, SEMENOV D V, BUNEVA V N, et al. Human milk lactoferrin binds two DNA molecules with different affinities [J]. FEBS Lett, 1999, 451(3): 235-237.
    59. WARD P P, MAY G S, HEADON D R, et al. An inducible expression system for the production of human lactoferrin in Aspergillus nidulans [J]. Gene, 1992, 122(1): 219-223.
    60. WARD P P, LO J Y, DUKE M, et al. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae [J]. Biotechnology (N Y), 1992, 10(7): 784-789.
    61. TIAN Z G, TENG D, YANG Y L, et al. Multimerization and fusion expression of bovine lactoferricin derivative LfcinB15-W4,10 in Escherichia coli [J]. Appl Microbiol Biotechnol, 2007, 75(1): 117-124.
    62. NUUENS J H, VAN BERKEL P H, GEERTS M E, et al. Characterization of recombinant human lactoferrin secreted in milk of transgenic mice [J]. J Biol Chem, 1997, 272(13): 8802-8807.
    63. KIM H K, CHUN D S, KIM J S, et al. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli [J]. Appl Microbiol Biotechnol, 2006, 72(2): 330-338.
    64. FENG X J, WANG J H, SHAN A S, et al. Fusion expression of bovine lactoferricin in Escherichia coli [J]. Protein Expr Purif, 2006, 47(1): 110-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700