添加氧化铝对LSGM组织和力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1994年Ishihara和Goodenough发现Sr,Mg掺杂的LaGaO_3具有较高的氧离子电导率以来,很多科研工作者对这一新型电解质材料进行了研究,研究表明Sr,Mg掺杂的LaGaO_3(LSGM)基钙钛矿型氧化物在中温(600~800℃)和较宽的氧分压范围内呈现出较高的氧离子电导率和稳定性,是一种很有发展前途的中温电解质材料。但是在实际应用中,人们发现较差的力学性能导致这种材料难以得到广泛的应用。Yasuda等人的研究表明,在LaGaO_3基体中分散加入2wt%氧化铝可以在不降低电解质的电导率的同时大幅度的提高材料的机械性能。本文在此基础上,用不同粒度的氧化铝分散加入到基体中,并分别与没加氧化铝的材料进行比较,研究加入的氧化铝的粒度对力学性能提高的影响,并对材料的显微组织分析进行了分析。
     本课题通过固相反应法制备了LSGM1520粉体,在其中均匀掺杂两种粒度的氧化铝,最终烧结制得电解质材料。对所制备的材料进行XRD物相分析,采用扫描电镜进行显微组织分析和能谱分析。此外,研究了材料的抗弯强度、断裂韧性和硬度。
     XRD分析结果显示,三种材料都为两相结构(LaGaO_3+LaSrGa_3O_7)。氧化铝的添加使得杂相的含量略有增加,氧化铝进入了主相和杂相晶格之中。对所制备的材料进行SEM分析可知,添加细氧化铝材料的晶粒尺寸最小,相分布最为均匀,未添加氧化铝材料的晶粒粗大,杂相分布偏析,添加粗氧化铝的材料的显微结构介于两者之间。对应的添加细氧化铝材料的抗弯强度最高,粗氧化铝添加的抗弯强度次之,未添加氧化铝材料的抗弯强度最差。
Sr- and Mg-doped lanthanum gallate(LSGM) first synthesized by Ishihara and Goodenough appears high oxygen ionic conductivity, which has been widely investigated by many scientists. The results show that Sr- and Mg-doped LaGaO_3 was one of the most promising electrolyte candidates for intermediate-temperature solid oxide fuel cells because of its high and exclusive oxygen ionic conductivity at 873-1073K and excellent stability over a broad range of oxygen partial pressure. But the weak mechanical properties of these LaGaO3 -based materials limited their practical application. As was pointed out in Isamu Yasuda's paper, the mechanical strength has been greatly improved without deleteriously affecting conductivity by dispersing 2wt% alumina into the matrix of LSGM. Then in this work, the effects of alumina with different particulate size dispersion on mechanical properties were investigated.In this work, the powder of Sr- and Mg-doped LaGaO_3 material was prepared by conventional solid state reactive firing, alumina with 7μm and 200nm was dispersed respectively. Room-temperature X-ray diffractometry was performed on the sintered samples , the surface and fracture surface of specimen were observed by SEM. Fracture strength , fracture toughness and hardness were researched.The phase structure of three materials were two-phase region, cubic-perovskite and LaSrGa_3O_7, determined from XRD. The weight ratio of LaSrGa_3O_7 increases a little with the alumina dispersion. Alumina was dissolved into crystal lattice of LSGM. The grain size of electrolyte material dispersed with sub-micron alumina was minimum, the value of material dispersed with micron alumina was medial and the grain size of material without alumina was maximum.
引文
[1] 吴浠.燃料电池及其发展概况[J].动力工程,2001, 21:1172—1175.
    [2] 姚如志,刘治中,刘晓.燃料电池技术进展[J].能源进展,2001,22:99—101.
    [3] 彭茂公.加快我国燃料电池的研究进展[J].云南冶金,2000,29:46-51.
    [4] 衣宝廉.燃料电池——高效、环境友好的发电方式[M].北京:化学工业出版社,2000:428-515.
    [5] Meng G Y, Liu W Y, Peng D K.New solid state fuel cells——green power source for 21st century[M].In: Meng G Y, Liu W Y, Peng D k, eds.97th Xiangshan Sci Conf on New SSFCs.Hefei: Anhui Sci.& Tech.Press, 1998, 1-16.
    [6] Besstte N F, George R A, Electrical performance of Westinghouse's air electrode supported solid oxide fuel cell, in Proc, of 2nd Internal.fuel cell Conference, Kobe, Japan.1996: 267-270.
    [7] Minh N Q, Ceramic fuel cells[J].J Am Ceram Soc, 1993, 76: 563-588
    [8] 安特罗伯夫LI.理论电化学,吴仲达译[M].北京:高等教育出版社,1982:6-22
    [9] 刘世友,李京萍.燃料电池的开发与展望[J].新能源,1999,21(2):39-41
    [10] Sukbvinder D S, et al.Proceedings of first European Solid Oxide Fuel Cells Forum[M], Edited by Bossel U, 1994, 399-410.
    [11] 江义,李文钊,王世中.高温固体氧化物燃料电池(SOFC)进展[J].化学进展,1997.9:387-396
    [12] Wen T L, Wang D Q, Lu Z F, et al.800W-class planar solid oxide fuel cell stack, Program and Book of Abstracts-First Sino-German workshop on fuel cells.Dalian, China: 2002.O-152
    [13] Drenckhahn W, Greiner H, Ivers-Tiffee E.Materials for solid oxide high temperature cells.Power Journal, 1994, 4: 36-38
    [14] Knudsen P, Bagger C, Mogensen M.Combining science and practice in the Danish 'DK-SOFC' program[J].J.Power Sources, 1994, 49: 291-298
    [15] Dixon J M, LaGrange L D, Merten U, et al.Electrical resistivity of stabilized zirconia at elevated temperature[J].J.Electrochem.Sot., 1963, 110: 276-280
    [16] Park Jong Hee, Blumenthal Robert N.Electronic transport in 8mol% Yttria-Zirconia.[J].J.Electrochem.Soc., 1989, 136(10): 2867-2876
    [17] 景晓燕,李茹民,张密林.SOFC用固体电解质薄膜制备方法进展[J].应用科技,2000,27(2):19-21
    [18] Mori M, Abe T, Itob H, et al.Influence of microstructure on the ionic conductivity of yttris-stabilized zirconia electrolyte[J].Solid State Ion, 1994, 74: 152-164
    [19] Badwal S P S, Drennan J.Microstructure/conductivity relationship in the scandia-zirconia system [J]. Solid State Ion, 1992,53:769-776
    [20] Yamamoto O,Kawahara T,Takeda Y et al. Science and Technology of Zirconia V, Eds;Badwal S. P. S.,1993: Technomic Publishing Company, INS, Pennington,NJ,USA:733
    [21] Toshiyuki M, Takayasu I, Hiroshi Y. Application of a crystallographic index for improvement of the electrolytic properties of the CeO_2-Sm_2O_3 system [J]. J. Electrochem. Soc, 1999,146(2): 4380-4385
    [22] N. M. Sammes, G. A. Tompsett, F. Aldinger, et al.. Bismuth based oxide electrolytes -structure and ionic conductivity [J]. J. Euro. Ceram. Soc, 1999,19: 180-187
    [23] Chiba R, Ishii T, Yoshimura F. Study on the properties of YSZ electrolyte made by plaster casting method and the applications in solid oxide fuel cells [J]. Solid State Ion, 1996,91:249-257
    [24] Christie G M, Berkel F P F van. Intermediate-temperature SOFCs with thin Ce_(0.8)Y_(0.2)O_(1.9)films prepared by screen-printing [J]. Solid State Ion, 1996,83:17-25
    [25] Badwal S P S, Forger K, Status of solid fuel cell development in Australia,in Proc.of the 4th Internal Symp. on SOFC, (ed. Dokiya.)[M]. The Electrochemical Soc. Inc., New Jersey, 1995:20-23
    [26] Rao, C. N. R., Subba Rao. Phase transformations and electrical properties of bismuth sesquioxide [J]. Journal of Physical Chemise, 1964,328:44-68
    [27] Ishihara T, Matsuda H, Takita Y. Doped LaGaO_3 perovskite type oxide ionic conductor [J]. Chem. Soc, 1994,116: 3801-3803
    [28] M. Feng, J.B. Goodenough, A superior oxide-ion conductor. European Journal of the Solid Inorganic Chemistry. 1994,31:663-672
    [29] Lybbye D, Poulsen F W, Mogensen M. Conductivity of A-and B-site doped LaAlO_3, LaGaO_3, LaScO_3 and LaInO_3 perovskite [J]. Solid State Ion., 2000,128:91-103
    [30]Huang P N, Petric A. Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium [J]. J. Electrochem. Soc, 1996,143: 1644-1647
    [31] Shin Kim, Ki Tae Lee, Hong Lim Lee. Phase relationship of barium and magnesium doped LaGaO_3 perovskite oxides [J]. Materials Letters, 2002, 52: 42-349
    [32] R. Subasri, Tom Mathews, O.M. Sreedharan. Microwave assisted synthesis and sintering of La_(0.8)Sr_(0.2)Ga_(0.83)Mg_(0.17)O_(2.815) [J]. Materials Letters, 2003, 57: 1792-1797
    [33] John B. Goodenough. Ceramic solid electrolytes [J]. Solid State Ionics, 1997, 94: 17-25
    [34] Weihua Yao, Zilong Tang, Zhongtai Zhang, etal.. Inter-relationship between crystal symmetry and ionic conductivity in doped LaGaO_3 [J]. Materials Science and Engineering ,2003,B99: 309-312
    [35] S.C.Singhal.Solid oxide fuel cells for stationary, mobile, and military applications[J].Solid State Ion., 2002, 152: 405-410
    [36] Man Feng, John B.Goodenough, Keqin Huang.Fuel cells with doped lanthanum gallate electrolyte[J].J.Power Sources, 1996, 63: 47-51
    [37] Ishihara T, Matssuda H, Takita Y.Doped LaGaO_3 perovskite type oxide as a new oxide ionic conductor[J].J.Am.Chem.Sot., 1994, 116: 3801-3809
    [38] Djurado E, Labeau M., Second phase in doped lanthanum gallate perovskites[J].J.Eur.Ceram.Sot., 1998, 18: 1397-1404
    [39] Stevenson, J.W., Armstrong, T.R., McCready, D.E., Pederson, L.R.and Weber, W.J., Processing and electrical properties of alkaline earth-doped lanthanum gallate.J.Electrochem.Soc., 1997, 144: 3613-3620.
    [40] Huang, K., Feng, M.and Goodenough, J.B., Sol-gel synthesis of a new oxide-ion conductor Sr- and Mg-doped LaGaO_3 perovskite.J.Am.Ceram.Soc., 1996, 79: 1100-1104.
    [41] Huang, K.and Goodenough, J.B., Wet chemical synthesis of Sr and Mg-doped LaGaO_3, a perovskite-type oxide-ion conductor.J.Sol.State Chem., 1998, 136: 274-283.
    [42] A.Taranco'n, G.Dezanneau, J.Arbiol, F.Peiro', J.R.Morante.Synthesis of nanocrystalline materials for SOFC applications by acrylamide polymerization.Journal of Power Sources, 2003, 118: 256-264
    [43] 郑文君,武丽艳,彭定坤.La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)的柠檬酸盐法制备和表征[J].无机材料学报,2001,16:358-362
    [44] 贺天民,丛立功,纪嫒,等.用柠檬酸盐合成La_(0.8)Sr_(0.2)Ga_(0.85)Mg_(0.1)O_(3-δ)及其性能[J].硅酸盐学报,2003,31:907-912
    [45] Cong L G, He T M, Ji Y.Synthesis and characterization of IT-electrolyte with perovskite structure La_(0.8)Sr_(0.2)Ga_(0.85)Mg_(0.1)O_(3-δ) by glycine-nitrate combustion method[J].J.Alloys Comp., 2003, 348: 325-331
    [46] Peter Majewski, Michael Rozumek, Cuneyt et al.Processing of (La, Sr)(Ga, Mg)O_3 solid electrolyte[J].J.Electrochem.Soc., 2002, 8: 65-71
    [47] Huang K Q, .Tichy R S, Goodenough J B.Superior perovskite oxide-ion conductor: strontium and magnesium-doped LaGaO_3[J].J.Am.Ceram.Soc., 1996, 81(10): 2565-2575.
    [48] 汪灿.Sr、Mg掺杂的功能陶瓷成分、结构和电导率的研究,合肥工业大学硕士学位论文 TF124
    [49] P.B.Avakyan, M.D.Nersesyan, and A.G.Merzhanov.Combustion method: an efficient tool for easy synthesis of ceramic.J.Am.Ceram.Soc.Bull.1996, 75: 50-61
    [50] Z.A.Munir.The development of intermediate-temperature solid oxide fuel cells.Ceram.Bull, 1988, 67: 342-347
    [51] J.F.Crider, Processing and electrical properties of doped-LaGaO_3 by combustion method.Ceram.Eng.Sci.Proc., 1982, 31: 519-524
    [52] Chyi-Ching Hwang, Tsung-Yung Wu, Jun Wan, Jih-Sheng Tsai.Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders.Materials Science and Engineering, 2004, 111: 49-56
    [53] L.A.Chick, L.R.Pederson, G.D.Maupin, J.L.Bates, L.E.Thomas, G.J.Exarhos.Electronic conduction and stability of solid electrolytes based on lanthanum gallates.Mater.Letter, 1990, 10: 6-11
    [54] 尧巍华,唐子龙,张中太.LaGaO_3基固体电解质在SOFC中的应用[J].硅酸盐学报,2002,30:347-351
    [55] 王德,丛立功,贺强.湿化学法合成钙钛矿结构中温电解质La_(0.8)Sr_(0.2)Ga_(0.85)Mg_(0.1)O_3-δ及其性能研究.中国稀土学报,2004,4:238-241
    [56] Riccardo Polini, Arianna Pamio, Enrico Traversa.Effect of synthetic route on sintering behavior, phase purity and conductivity of Sr- and Mg-doped LaGaO_3 perovskites.J.Eur.Ceram.Soc., 2004, 24: 1365-1370
    [57] O.Schulz, M.Martin.Preparation and characterisationof La_(1-x)Sr_xGa_(1-y) Mg_yO_(3-(x+y)/2)for the investigation of cation diffusion processes.Solid State Ionics, 2000, 135: 549-555
    [58] K.Huang, J.B.Goodenough, Superior oxygen ion conductivity of Lanthanum Gallate doped with Strontium and MagnesiumJ.Alloys Comp., 2000, 454: 303-304
    [59] R.Subasri, Tom Mathews, O.M.Sreedharan.Microwave assisted synthesis and sintering of La_(0.8)Sr_(0.2)Ga_(0.83)Mg_(0.17)O_(2.815).Materials Letters, 2003, 57: 1792-1797
    [60] S.V.Kesapragada, S.B.Bhaduri, S.Bhaduri, P.Singh.Densification of LSGM electrolytes using activated microwave sintering.J.Power Sources, 2003, 124: 499-504
    [61] V.P.Gorelov, D.I.Bronin, Ju.V.Sokolova, H.Nafe, F.Aldinger.The effect of doping and processing conditions on properties of La_(1-x)Sr_xGa1-yMg_yO_(3-α)[J].J.Euro.Ceram.Soc., 2001, 21: 2311-2317.
    [62] Isamu Yasuda Yoshio Matsuzaki, Takahiro Yamakawa, Toshiyuki Koyama.Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates.Solid State Ionics, 2000, 135: 381-388
    [63] K.Huang, R.S.Tiehy, John B.Goodenough.Superior Perovskite Oxide-Ion Conductor;Strontium- and Magnesium-Doped LaGaO_3: I, Phase Relationships and Electrical Properties[J].J.Am.Ceram.Sot., 1998, 81: 2565-2575.
    [64] Riccardo Polini, Arianna Pamio, Enrico Traversa.Effect of synthetic route on sintering behavior, phase purity and conductivity of Sr- and Mg-doped LaGaO_3 perovskites[J].J.Euro.Ceram.Soc., 2004, 24: 1365-1370
    [65] K.Yamaji, T.Horita, M.Ishikawa, N.Sakai.Chemical stability of the La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(2.85) electrolyte in a reducing atmosphere[J].Solid State Ionics, 1999, 121: 217-224.
    [66] S.Baskaran, C.A.Lewinsohn, Y-S.Chou, M.Qian, J.W.Stevenson, T.R.Armstrong.Mechanical properties of alkaline earth-doped lanthanum gallate[J].J.Mater.Sci., 1999, 34: 3913-3922.
    [67] J.Drennan, V.Zelizko, D.Hay, F.T.Ciacchi, S.Rajendran and S.P.S.Badwal.Characterisation, conductivity and mechanical properties of the oxygen-ion conductor La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-x)[J].J.Mater.Chem., 1997, 7: 79-83.
    [68] N.M.Sammes, F.M.Keppeler, H.Nafe, and F.Aldinger.Mechanical Properties of Solid-Synthesized Strontium- and Magnesium-Doped Lanthanum Gallate[J].J.Am.Ceram.Soc., 1998, 81: 3104-3108.
    [69] I.Yasuda, Y.Matsuzaki, T.Yamakawa, T.Koyama.Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates[J].Solid State Ionics, 2000, 135: 381-388.
    [70] J.Wolfenstine, P.Huang, A.Petrie.Creep behavior of doped lanthanum gallate versus cubic zirconia[J].Sol.State Ionics, 1999, 118: 257-259.
    [71] J.Wolfenstine.Rate-controlling species for creep of the solid-state electrolyte: doped lanthanum gallate[J].Solid State Ionics, 1999, 126: 293-298.
    [72] 苗春省.X射线定量相分析方法及应用,地质出版社,1988:17
    [73] 袁玉鹏.锶镁掺杂镓酸镧基电解质的化学制备、力学性能及热震性的研究,合肥工业大学硕士学位论文.48—54
    [74] 龚江宏.陶瓷材料断裂力学,清华大学出版社,2001:134
    [75] 金志浩等.工程陶瓷材料,四川交通大学出版社,2000:196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700