双钙钛矿结构固体氧化物燃料电池阴极材料的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降低固体氧化物燃料电池(SOFC)的工作温度至500~800oC会大大降低电池的成本,加快其的商业化进程。但温度的降低也明显降低了阴极的性能。因此开发中低温高性能阴极材料具有重要意义。
     本论文主要研究了两类双钙钛矿材料LnBaCo_2O_(5+δ)和LnBaCuMO_(5+δ)(Ln是稀土元素)的物理与化学性能,论证了这类材料作为中温固体氧化物燃料电池阴极材料的可行性。
     用固相反应法制备了LnBaCo_2O_(5+δ) ( Ln=Pr, Nd, Sm, Gd ) ( LnBCO )阴极材料。LnBCO阴极材料与常用的电解质SDC和LSGM具有很好的化学兼容性。LnBCO的热膨胀系数也随稀土离子半径减小从Pr到Gd依次降低,从PBCO的21.5×10-6 K-1降到GBCO的17.6×10-6 K~(-1)。LnBCO阴极均具有高的电导率,在中温固体氧化物燃料电池(IT-SOFC)的工作温度范围内电导率均在300 S cm-1以上。700oC时LnBCO阴极在LSGM电解质上的阴极极化电阻均小于0.15Ωcm2,800oC时单电池功率密度最小值均高于661 mW cm~(-2)。
     用固相反应法制备出LnBaCuMO_(5+δ) (Ln=La, Gd;M=Fe, Co)阴极材料。LBCF,LBCC和GBCC材料均与SDC电解质化学兼容。在IT-SOFC的工作温度范围内,LBCF材料的电导率为71-157 S cm-1,LBCC材料的电导率为291-408 S cm-1,GBCC材料的电导率为20-58 S cm-1。LBCF,LBCC和GBCC三种材料在30-850oC温度范围内的平均热膨胀系数分别为17.0×10~(-6) K~(-1),18.3×10-6 K~(-1)和15.1×10-6 K~(-1)。LBCF,LBCC和GBCC三种材料在SDC电解质上的界面极化电阻在750oC时分别为0.11Ωcm~2,0.06Ωcm~2和0.13Ωcm~2,均表现出了好的阴极电催化性能。以这三种材料为阴极的单电池, 800oC时最大功率密度分别达到了557 mW cm~(-2),603 mW cm~(-2)和528 mW cm~(-2)。上述两类阴极与SDC组成的复合阴极材料也呈现出良好的性能。
A fuel cell is an energy conversion device with a high efficiency, which can convert chemical energy directly into electricity without pollution, which is a new green energy developed in the world for 21 century.
     Solid Oxide Fuel Cell (SOFC) is attracting substantial interest as it is regarded as the most efficient and versatile power generation system, in particular for distributed power generation. The current operating temperature is around 1000°C, however substantial efforts are under way to reduce the operating temperatures to 500-800°C. Lowering the operation temperature of SOFCs can not only extend the range of material selection, significantly reduce the cost of production and application, but also improve the stability and reliability for the SOFC system. However, the electrochemical activity of the cathode dramatically decreases with decreasing temperature. The cathode becomes the limiting factor in determining the overall cell performance. Therefore, the development of new electrodes with high electrocatalytic activity for the oxygen-reduction reaction is critical for intermediate-temperature (IT)-SOFCs。
     Studies showed that 112-type structure double-perovskite oxides, LnBaCo_2O_(5+δ)(Ln=rare earth),are mixed ionic and electronic conductors with Rapid oxygen ion diffusion and surface exchange kinetics, which have been attracting much attention as potential cathode material for IT-SOFCs. The samples of LnBaCo_2O_(5+δ)(LnBCO)(Ln=Pr, Nd, Sm, and Gd) were prepared by the conventional solid state reaction method. The basic physical properties of these materials were investagated. The suitability of LnBCO as cathode materials for IT-SOFCs were evaluated. The results show that LnBCO cathodes are chemically compatible with the intermediate-temperature electrolyte materials such as Sm0.2Ce0.8O1.9 (SDC) and La0.9Sr0.1Ga0.8Mg0.2O3Ωδ(LSGM). No chemical reaction of the binary-mixed LnBCO–SDC and LnBCO–LSGM systems is detected upon sintering at 1000oC for 5h. The thermal expansion coeficients (TECs) of the LnBCO cathodes are relatively high , and is similar to the other Co-based single-perovskite. The average TEC values decrease from Ln =Pr to Gd in the temperature range of 30-1000oC. The conductivity of the LnBCO samples decreases as the measuring temperature is increased, which presentes metallic-like behavior. The faster decrease in conductivity at higher temperatures could be due to the formation of significant amount of oxide ion vacancies. The formation of oxide ion vacancies is accompanied by a reduction of Co4+ to Co3+, resulting in a decrease in the charge carrier concentration and Co–O covalency. In addition, the conductivity of the samples LnBCO decreases with decreasing radius of rare earth ions. The conductivity of samples LnBCO follows the sequence:σPBCO >σNBCO >σSBCO >σGBCO. However, the lowest electrical conductivity for all the samples is still higher than 300 S cm-1 from 300 to 850oC. The polarization resistances for PBCO, NBCO, SBCO and GBCO materials on LSGM electrolyte are 0.025Ωcm2, 0.029Ωcm2, 0.031Ωcm2, 0.053Ωcm2 at 800oC, respectively. The polarization resistances of all the samples are all lower than 0.15Ωcm2 at 700oC for the LnBCO cathodes on LSGM. For LnBCO/LSGM/SDC/Ni-SDC single cell, the maximum power density are 815 mW cm-2, 775 mW cm-2, 723 mW cm-2 and 661mW cm-2 800oC, respectively. The cell performance also presents a trend which reduces in turn from Pr to Gd. This result is consistent with the polarization resistance and the conductivity of LnBCO materials. It can be seen from the SEM micrographs of the cross-section between LnBCO and LSGM electrolyte, the particle distributions in the cathode are not homogeneous and particle sizes are also larger. In addition, the half-cell and single-cell performances with SBCO cathode on SDC electrolyte were studied. The results show that the polarization resistances for SBCO cathode on SDC electrolyte are 056Ωcm2 at 800oC, 0.098Ωcm2 at 750oC and 0.190Ωcm2 at 700oC, respectively. For SBCO/SDC/NiO-SDC single cell, the maximum power density is 641 mW cm-2 at 800oC.
     LnBCO-SDC composite cathodes were also prepared and characterized. The results show that the TECs of the LnBCO cathodes can be reduced through adding SDC electrolyte into the LnBCO to form the composite cathodes. However, it is found that the addition of SDC into LnBCO results in a slight inscrease of the polarization resistance compared to the LnBCO cathodes.. The polarization resistance is still lower than 0.15Ωcm2 at 700oC. The power density of cell with composite cathode is slightly lower than that of LnBCO cathodes. The maximum and the minimum power density for LnBCO-SDC/LSGM/SDC/Ni-SDC single cell are 758 mW cm-2 and 608 mW cm-2 at 800oC, respectively.
     Double-perovskite oxides LnBaCuMO5+δhave been used as the catalyst materials and the semiconductor gas sensor materials. However, the information as the high temperature cell materials has not been reported to date. Double-perovskites cuprate materials LnBaCuMO5+δ(LnBCM)(Ln=La, Gd; M=Fe, Co) were synthesized by solid-state reaction method. The high temperature conductivity, chemical compatibility, TEC and electrochemical performance of the materials were investigated. In the IT-SOFC operating temperature ranges 500-800oC, the conductivity of the sample LBCF is 71-157 S cm-1, the conductivity of the sample LBCC is 291-408 S cm-1, which is adequate for the material to be used as a cathode in SOFCs. However, the conductivity for sample GBCC is 20-58 S cm-1, which is relatively low compared to the both materials. LBCF, LBCC and GBCC cathodes are chemically compatible with SDC electrolyte. The average TECs of the LBCF, LBCC and GBCC materials are 17.0×10-6 K-1, 18.3×10-6 K-1 and 15.1×10-6 K-1in the temperature range of 30-850oC, respectively. LBCF, LBCC and GBCC materials presents the high-electrocatalytic activity. The polarization resistances on SDC electrolyte are 0.11Ωcm2, 0.06Ωcm2 and 0.13Ωcm2 at 750oC, respectively. The power density of the cell with LBCF, LBCC and GBCC as cathodes attains 557 mW cm-2, 603 mW cm-2 and 528 mW cm-2 at 800oC, respectively. It is found from the SEM micrographs of the cross-section between LBCF(LBCC and GBCC) and SDC electrolyte, the particle distributions in the cathode are not homogeneous and particle sizes are also larger.
     In order to improve the properties of the LnBaCuCoO5+δ(Ln=La, Gd) cathode materials, and reduce the TECs. The composite cathodes of the LBCO-SDC and GBCC-SDC were prepared. The results show that the TECs of LBCC-SDC and GBCC-SDC composite cathodes reduce through adding 10wt%, 20wt%, 30wt%, 40wt% SDC to LBCO and GBCC, respectively. The TECs of the LBCC-SDC composite cathodes are 17.7×10-6 K-1, 16.0×10-6 K-1, 15.4×10-6 K-1 and 14.7×10-6 K-1 in the temperature range of 30-850oC, respectively. The TECs for GBCC-SDC composite cathodes are 14.7×10-6 K-1, 14.5×10-6 K-1, 14.1×10-6 K-1, and 13.5×10-6 K-1 over the same range, respectively. The results of the conductivity for the composite cathodes show that the conductivity decreases regularly with the increase of SDC addition. However, the conducting mechanism is the same for the both pure cathodes and the composite cathode. For LBCC cathode, the conductivity of the LBCC-SDC40 composite cathode reduces to 64 S cm–1 as the SDC addition is 40wt%. However, an exciting result is that the conductivity of the composite cathodes is still higher than 100 S cm-1 as the SDC addition is less 30wt%. For GBCC cathode,.The conductivity of compesite cathodes is 40 S cm-1 for GBCC-SDC10,30 S cm-1 for GBCC-SDC20,23 S cm-1 for GBCC-SDC30, and 17 S cm-1 for GBCC-SDC40. In addition, the polarization resistance of the composit cathodes is also improved. The optimum electrochemical performance of composite cathodes can achieve through adding 20wt% SDC into both the LBCC and GBCC cathodes. The polarization resistance is 0.028Ωcm2 for LBCC-SDC20 and 0.066Ωcm2 for GBCC-SDC20 at 750oC, respectively.
     In conclusion, to develop new cathode materials for application in IT-SOFCs, double-perovskite materials, LnBaCo2O5+δand LnBaCuMO5+δ(Ln = rare earth elements), were prepared and investigated. The results show that double-perovskite cathode is a very promising potential cathode material for application in IT-SOFCs.
引文
[1]衣宝廉,燃料电池——高效、环境友好的发电方式[M].北京:化学工业出版社,2000.
    [2]衣宝廉著,燃料电池——原理、技术、应用[M].化学工业出版社,2003.
    [3]刘建国,孙公权.燃料电池概述[J].物理学与新能源材料专题, 2004, 32(2): 79~83
    [4]韩敏芳,彭苏萍著,固体氧化物燃料电池材料及制备[M].科学出版社,2004.
    [5] SINGHAL S C, KENDALL K. High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Applications [M]. Elsevier Ltd, 2003.
    [6] SLATER P R, IRVINE J T S, ISHIHARA T, et al. The Structure of the Oxide Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 by Powder Neutron Diffraction [J]. Solid State Ionics, 1998, 107: 319-323.
    [7] ISHIHARA T, MINAMI H, MATSUDA N, et al. Intermediate Temperature Solid Oxide Fuel Cells With LaGaO3 Based Perovskite Type Electrolyte [J]. Electrochemistry and Industrial Physical Chemistry, 1996, 64: 642-648.
    [8] ISHIHARA T, SHIBAYAMA T, HONDA M, et al. Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 lectrolyte II. Improvement of Oxide Ion Conductivity and Power Density by Doping Fe for Ga Site of LaGaO3 [J]. J. Electrochem. Soc., 2000, 147: 1332-1337.
    [9] EGUCHI K, SETOGUCHI T, INOUE T, et al. Electrical Properties of Ceria-based Oxides and their Application to Solid Oxide Fuel Cells [J]. Solid State Ionics, 1992, 52: 165-172.
    [10] INOUE T, SETOGUCHI T, EGUCHI K, et al. Study of a Solid Oxide Fuel Cell with a Ceria-based Solid Electrolyte [J]. Solid State Ionics, 1989, 35: 285-291.
    [11] MARINA O A, BAGGER C, PRIMDAHL S, et al. A Solid Oxide Fuel Cell with a Gadolinia-doped Ceria Anode: Preparation and Performance [J]. Solid State Ionics, 1999, 123: 199-208.
    [12] STEELE B C H, Appraisal of Ce1?yGdyO2?y/2 electrolytes for IT-SOFC operation at 500oC [J]. Solid State Ionics, 2000, 129: 95-110.
    [13] FUYUKI Y, SHUHEI W, RYUICHIROU K, et al. Development of Synthesis Gas Production Catalyst and Process [J]. Stud. Surf. Sci. Catal., 2004, 147: 127-132.
    [14] ZHENG K, STEELE B C H, SAHIBZADA M, et al. Solid Oxide Fuel Cells Based on Ce(Gd)O2 ? x Electrolytes [J]. Solid State Ionics, 1996, 86–88: 1241-1244.
    [15] SAHIBZADA M, STEELE B C H, ZHENG K, et al. Development of Solid Oxide Fuel Cells Based on a Ce(Gd)O2?x Electrolyte Film for Intermediate Temperature Operation [J]. Catal. Today, 1997, 38: 459-466.
    [16] TSIPIS E V, KHARTON V V, FRADE J R. Mixed Conducting Components of Solid Oxide Fuel Cell Anodes [J]. J. Eur. Ceram. Soc., 2005, 25: 2623-2626.
    [17] AN S, LU C, WORRELL W L, et al. Characterization of Cu–CeO2 Direct Hydrocarbon Anodes in a Solid Oxide Fuel Cell with Lanthanum Gallate Electrolyte [J]. Solid State Ionics, 2004, 175: 135-138.
    [18] BRETT DJ L, ATKINSON A, CUMMING D, et al. Methanol as a Direct Fuel in Intermediate Temperature (500–600 ?C) Solid Oxide Fuel Cells with Copper Based Anodes[J]. Chemical Engineering Science , 2005, 60: 5649– 5662.
    [19] COSTA-NUNES O, GORTE R J, VOHS J M, Comparison of the Performance of Cu–CeO2–YSZ and Ni–YSZ Composite SOFC Anodes with H2, CO, and Syngas [J]. J. Power Sources, 2005, 141: 241-249.
    [20] KIM H, PARK S, VOHS J M, et al. Direct Oxidation of Liquid Fuels in a Solid Oxide Fuel Cell [J]. J. Electrochem. Soc., 2001, 148: A693-A695.
    [21] Wan J, Zhu J H, Goodenough J B. La0.75Sr0.25Cr0.5Mn0.5O3?δ+Cu Composite Anode Running on H2 and CH4 Fuels[J]. Solid State Ionics , 2006,177: 1211–1217.
    [22] GORTE R J, PARK S, VOHS J M, et al. Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell [J].Adv. Mater., 2000, 12: 1465-1469.
    [23] PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell [J]. Nature, 2000, 404: 265-267.
    [24] FLOT D M, IRVINE J T S. Synthesis, Electrical Properties and Thermal Analysis of Transition Metal-Doped Mg2TiO4 Spinels [J]. Solid State Ionics, 2000, 135: 513-518.
    [25] LEPE F J, FERNáNDEZ-URBáN J, MESTRES L, et al. Synthesis and ElectricalProperties of New Rare-earth Titanium Perovskites for SOFC Anode Applications [J]. J. Power Sources, 2005, 151: 74-78.
    [26] PUDMICH G, BOUKAMP B A, GONZALEZ-CUENCA M, et al. Chromite/Titanate Based Perovskites for Application as Anodes in Solid Oxide Fuel Cells [J]. Solid State Ionics, 2000, 135: 433-438.
    [27] PRIMDAHL S, HANSEN J R, GRAHL-MADSEN L, et al. Sr-Doped LaCrO3 Anode for Solid Oxide Fuel Cells [J]. J. Electrochem. Soc., 2001, 148: A74-A81.
    [28] MARINA O A, CANFIELD N L, STEVENSON J W. Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate [J]. Solid State Ionics, 2002, 149: 21-28.
    [29] HOLTAPPELS P, POULSEN F W, MOGENSEN M. Electrical Conductivities and Chemical Stabilities of Mixed Conducting Pyrochlores for SOFC Applications [J]. Solid State Ionics, 2000, 135: 675-679.
    [30] KAISER A, BRADLEY J L, SLATER P R, et al. Tetragonal Tungsten Bronze Type Phases (Sr1?xBax)0.6Ti0.2Nb0.8O3?δ: Material Characterisation and Performance as SOFC Anodes [J]. Solid State Ionics, 2000, 135: 519-524.
    [31] GIL-YONG L, RAK-HYUN S, JONG-HEE K, et al. Properties of Cu, Ni, and V Doped-LaCrO3 Interconnect Materials Prepared by Pechini, Ultrasonic Spray Pyrolysis and Glycine Nitrate Processes for SOFC [J]. J Electroceram, 2006, 17: 723-727.
    [32] ZHOU X L, MA J J, DENG F J, et al. A High Performance Interconnecting Ceramics for Solid Oxide Fuel Cells (SOFCs) [J]. Solid State Ionics, 2007, 177: 3461-3466.
    [33] NGUYEN Q M. Ceramic Fuel Cells [J]. J Am. Ceram.Soc. 1995,76: 563-88
    [34] DOSHI R, RICHARDS V L, CARTER J D, et al. Development of Solid-Oxide Fuel Cells That Operate at 500oC [J]. J. Electrochem. Soc. 1999, 146: 1273-1278.
    [35] PETROV A N, KONONCHUK O F, ANDREEV A V, et al. Crystal Structure, Electrical And Magnetic Properties of La1-xSrxCoO3-y [J]. Solid State Ionics, 1995, 80: 189-199.
    [36] CHERRY M, ISLAM M S, CATLOW C R A. Oxygen Ion Migration in Perovskite Type Oxides [J]. J. Solid State Chem., 1995, 118: 125-132.
    [37] SIMNER S P, BONNETT J R., CANFIELD N L, et al. Development of Lanthanum Ferrite SOFC Cathodes[J]. J. Power Sources, 2003, 113: 1-10
    [38] WANG W G., MOGENSEN M. High-Performance Lanthanum-Ferrite-Based Cathode for SOFC [J]. Solid State Ionics, 2005, 176: 457-462.
    [39] LENG Y J, CHAN S H, JIANG S P, et al. Low-Temperature SOFC with Thin Film GDC Electrolyte Prepared in Situ by Solid-State Reaction [J]. Solid State Ionics, 2004, 170: 9-15.
    [40] INAGAKI T, MIURA K, YOSHIDA H, et al. High-Performance Electrodes For Reduced Temperature Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte: II. La(Sr)CoO3 Cathode [J]. Journal of Power Sources, 2000, 86: 347-351.
    [41] RAJ I A, NESARAJ A S, KUMAR M, et al. On the Suitability of La0.60Sr0.40Co0.20Fe0.80O3 Cathode fFor the Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of New Materials for Electrochemical Systems, 2004, 7: 145-151.
    [42] LEI Z, ZHU Q, ZHAO L. Low Temperature Processing of Interlayer-Free La0.6Sr0.4Co0.2Fe0.8O3?δCathodes for Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of Power Sources, 2006, 161: 1169-1175.
    [43] LIU J, CO A C, PAULSON S, et al. Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes [J]. Solid State Ionics, 2006, 177: 377-387.
    [44] Xia C R, Rauch W, Chen F L, et al. Sm0.5Sr0.5CoO3 Cathodes for Low-temperature SOFCs [J]. Solid State Ionics, 2002, 149: 11-19.
    [45] LIU Y, ZHA S W, LIU M L. Nanocomposite Electrodes Fabricated by a Particle-Solution Spraying Process for Low-Temperature SOFCs [J].Chem. Mater., 2004, 16: 3502-3506.
    [46] SHAO Z P, HAILE S M. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells[J]. Nature, 2004, 431: 170-173.
    [47] KENJO T, SHIMIZU M, SASAKI K. Ln2CuO4 Air Cathodes for Solid Oxide Fuel Cells (Ln= rare earth) [J]. Electrochemical Society of Japan, 1992, 60: 700-705.
    [48] BOEHM E, BASSAT J M, DORDOR P, et al. Oxygen Diffusion and TransportProperties in Non-Stoichiometric Ln2 ? xNiO4 +δOxides [J]. Solid State Ionics, 2005, 176: 2717-2725.
    [49] BASSAT, J M, ODIER P, VILLESUZANNE A, et al. Anisotropic Ionic Transport Properties in La2NiO4+δSingle Crystals [J]. Solid State Ionics, 2004, 167: 341-347.
    [50] KHARTON V V, YAREMCHENKO A A, Tsipis E V, et al. Characterization of Mixed-conducting La2Ni0.9Co0.1O4+δMembranes for Dry Methane Oxidation [J]. Appl. Catal., A, 2004, 261: 25-35.
    [51] BOEHM E, BASSAT J M, STEIL M C, et al. Oxygen Transport Properties of La2Ni1?xCuxO4+δMixed Conducting Oxides [J]. Solid State Sci., 2003, 5:973-981.
    [52] ZHANG H, JIN J, YU G. Y, et al. Structure and Properties of La2NiO4+δOxygen Permeation Membranes [J]. J. Inorg. Mater., 2001, 16: 440-446.
    [53] MINERVINI L, GRIMES R W, KILNER J A, et al. Oxygen Migration in La2NiO4+δ[J]. J. Mater. Chem., 2000, 10: 2349-2354.
    [54] WANG S Z, JIANG Y, ZHANG Y H, et al. The Role of 8 mol % Yttria Stabilized Zirconia in the Improvement of Electrochemical Performance of Lanthanum Manganite Composite Electrodes [J]. J. Electrochem. Soc., 1998, 145(6): 1932-1939.
    [55] KENJO T, NISHIYA M. LaMnO3 Air Cathodes Containing ZrO2 Electrolyte for High Temperature Solid Oxide Fuel Cells [J]. Solid State Ionics, 1992, 57: 295-302.
    [56] ?STERG?RD M J L, CLAUSEN C, BAGGER C, et al. Manganite-zirconia Composite Cathodes for SOFC: Influence of Structure and Composition [J]. Electrochem. Acta, 1995, 40: 1971-1981.
    [57] MURRAY E P, BARNETT S A. (La,Sr)MnO3-(Ce,Gd)O2-x Composite Cathodes for Solid Oxide Fuel Cells [J]. Solid State Ionics, 2001, 143: 265-273.
    [58]卢自桂,江义,董永来,等.锰酸镧和氧化钇稳定的氧化锆复合阴极的研究[J].高等学校化学学报, 2001, 22(5): 791-795.
    [59] ADLER S B, LANE J A, STEELE B C H. Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes [J]. J. Electrochem. Soc., 1996, 143(11): 3554-3564.
    [60] DUSASTRE V, KILNER J A. Optimisation of Composite Cathode for Intermediate Temperature SOFC Application [J]. Solid State Ionics, 1999, 126: 163-174.
    [61] ESQUIROL A, KILNER J, BRANDON N. Oxygen Transport in La0.6Sr0.4Co0.2Fe0.8O3/Ce0.8Gd0.2O2-x Composite Cathode for IT-SOFCs [J]. Solid State Ionics, 2004, 175: 63-67.
    [62] LI S Y, LüZ, WEI B. et al. Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9 Composite Cathode Materials for IT-SOFC [J]. J. Alloys Compd., 2008, 448: 116-121.
    [63] CHICK L A, PEDERSON L R, MAUPIN G D, et al. Glycine–Nitrate Combustion Synthesis of Oxide Ceramic Powders [J]. Mater. Lett., 1990, 10: 6–12.
    [64] FUTAMATA M, A computer-controlled measurement system for electrical conductivity using the van der Pauw method at various temperatures [J]. Measur. Sci. Technol., 1992, 3: 919-921.
    [65] TAKEDA Y, NAKAI S, KOJIMA T, et al. Phase Relation in the System (La1?xAx)1?yMnO3+z (A=Sr and Ca) [J]. Mater. Res. Bull., 1991, 26: 153-162.
    [66] MARTIN C, MAIGNAN A, PELLOQUIN D, et al. Magnetoresistance in the Oxygen Deficient LnBaCo2O5.4 (Ln=Eu, Gd) Phases [J]. Appl. Phys. Lett., 1997, 71: 1421–1423.
    [67] MAIGNAN A, MARTIN C, PELLOQUIN D, et al. Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo2O5+δ, Closely Related to the“112”Structure [J]. J. Solid State Chem., 1999, 142: 247-260.
    [68] FAUTH F, SUARD E, CAIGNAERT V, et al. Interplay of Structural, Magnetic and Transport Properties in the Layered Co-based perovskite LnBaCo2O5 (Ln = Tb, Dy, Ho) [J]. Eur. Phys. J. B, 21 (2001) 163–174.
    [69] TASKIN A A, LAVROV A N, ANDO Y. Transport and Magnetic Properties of GdBaCo2O5+x Single Crystals: A Cobalt Oxide with Square-lattice CoO2 Planes over a Wide Range of Electron and Hole Doping [J]. Phys. Rev. B, 2005, 71: 134414.
    [70] RESPAUD M, FRONTERA C, GARCíA-MU?OZ J L, et al. Magnetic and Magnetotransport Properties of GdBaCo2O5+δ: A High Magnetic-field Study [J]. Phys. Rev. B, 2001, 64: 214401.
    [71] FRONTERA C, GARCIA-MUNOZ J L, CARRILLO A E, et al. Structural and Magnetic Study of PrBaCo2O5+δ(δ≈0.75) Cobaltite [J]. Phys. Rev. B, 2004, 70:184428.
    [72] ROY S, DUBENKO I S, KHAN M., et al. Magnetic Properties of Perovskite-derived Air-synthesized RBaCo2O5+δ(R=La—Ho) Compounds [J]. Phys. Rev. B, 2005, 71: 024419.
    [73] J?RGENSEN J E, KELLER L. Magnetic Ordering in HoBaCo2O5.5 [J]. Phys. Rev. B, 2008, 77: 024427.
    [74] KIM G, WANG S, JACOBSON A J. Oxygen Exchange Kinetics of Epitaxial PrBaCo2O5+δThin Films [J]. Appl. Phys. Lett., 2006, 88: 024103.
    [75] KIM G, WANG S, JACOBSON A J, et al. Rapid Oxygen Ion Diffusion and Surface Exchange Kinetics in PrBaCo2O5+x with a Perovskite Related Structure and Ordered A Cations [J]. J. Mater. Chem., 2007, 17: 2500–2505.
    [76] TASKIN A A, LAVROV A N, ANDO Y. Achieving Fast Oxygen Diffusion in Perovskites by Cation Ordering [J]. Appl. Phys. Lett., 2005, 86: 091910.
    [77] MAIGNAN A, MARTIN C, PELLOQUIN D, et al. Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo2O5+δ, Closely Related to the“112”Structure [J]. J. Solid State Chem., 1999, 142: 247-260.
    [78] LEE K. T, MANTHIRAM A. Characterization of Nd1–xSrxCoO3–δ(0≤x≤0.5) Cathode Materials for Intermediate Temperature SOFCs [J]. J. Electrochem. Soc., 2005, 152: A197-A204.
    [79] LEE K. T, MANTHIRAM A. Comparison of Ln0.6Sr0.4CoO3–δ(Ln=La, Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells [J]. J. Electrochem. Soc., 2006, 153: A794-A798.
    [80] TAI L W, NASRALLASH M M, Anderson H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3 [J]. Solid State Ionics, 1995, 76: 259–271.
    [81] SHAO Z P, XIONG G X, TONG J H, et al. Ba Effect in Doped Sr(Co0.8Fe0.2)O3-δon the Phase Structure and Oxygen Permeation Properties of the Dense Ceramic Membranes [J]. Separation and Purification Technology, 2001, 25: 419–429.
    [82] ZHANG K, GE L, RAN R, et al. Synthesis, Characterization and Evaluation of Cation-ordered LnBaCo2O5+d as Materials of Oxygen Permeation MembranesandCathodes of SOFCs [J]. Acta Materialia , 2008, 56: 4876–4889.
    [83]. TASKIN A A, LAVROV A N, ANDO Y. Fast Oxygen Diffusion in A-site Ordered Perovskites[J].Progress in Solid State Chemistry, 2007, 35: 481-490.
    [84] Murray E P, Sever M J, Barnett S A. Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes [J]. Solid State Ionics, 2002, 148: 27–34.
    [85] HUANG S, PENG C, ZONG Z. A High-Performance Gd0.8Sr0.2CoO3–Ce0.9Gd0.1O1.95 Composite Cathode for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Power Sources, 2008, 176: 102–106.
    [86] NIE H W, WEN T L, WANG S R. Preparation, Thermal Expansion, Chemical Compatibility, Electrical Conductivity And Polarization of A2?αA′αMO4 (A=Pr, Sm; A′=Sr; M=Mn, Ni;α=0.3, 0.6) as a New Cathode for SOFC [J]. Solid State Ionics, 2006, 177: 1929–1932.
    [87] SASAKI K, WURTH J P, GSCHWEN R, et al. Microstructure-property relations of solid oxide fuel cell cathodes and current collectors-Cathodic polarization and ohmic resistance [J]. J. Electrochem. Soc., 1996, 143: 530-543.
    [88] JIANG S P, LOVE J G, ZHANG J P, et al. The Electrochemical Performance of LSM/Zirconia–Yttria Interface as a Function of A-Site Non-stoichiometry and Cathodic Current Treatment [J]. Solid State Ionics, 1999, 121: 1-10.
    [89] BARBEY L, NGUYEN N, CAIGNAERL V, et al. Mixed Oxides of Cobalt and Copper with a Double Pyramidal Layer Structure [J]. Mater. Res. Bull., 1992, 27: 295-301.
    [90] ATANASSOVA Y.K, POPOV V N, BOGACHEV G G, et al. Raman- and Infrared-active Phonons in YBaCuFeO5: Experiment and Lattice Dynamics [J]. Phys. Rev. B, 1993, 47: 15201– 15207.
    [91] RUIZ-ARAGON M J, AMADOR U, MORáN E, et al. Neutron Diffraction Study of LnBaCuFeO5+δ, (Ln = Y, Pr) [J]. Physica C, 1994, 235-240: 1609-1610.
    [92] CAIGNAERT V, MIREBEAU I, BOURCC F, et al. Crystal and Magnetic Structure of YBaCuFeO5 [J]. J. Solid State Chem., 1995, 114: 24-35.
    [93] ER-RAKHO L, MICHEL C, LACORRE P, et al. YBaCuFeO5+δ: A NovelOxygen-deficient Perovskite with a Layer Structure [J]. J. Solid State Chem., 1988, 73: 531-535.
    [94] HUANG Q, et al. Neutron Powder Diffraction Study of the Nuclear and Magnetic Structures of the Oxygen-Deficient Perovskite YBaCuCoO5 [J]. J. Solid State Chem., 1994, 108: 80-86.
    [95] RUIZ-ARAGON M J, MORAN E, AMADOR U, et al. Low-Temperature Magnetic Structure of YBaCuFeO5 and the Effect of Partial Substitution of Yttrium by Calcium [J]. Phys. Rev. B, 1998, 58: 6291-6297.
    [96] MOMBRU A W, PRASSIDES K, CHRISTIDES C, et al. Neutron Powder Diffraction Study ( T = 4.2-300 K) and Polarization Analysis of YBaCuFeO5+δ[J]. J. Phys.: Condens. Matter, 1998, 10: 1247–1258.
    [97] KLYNDYUK A I, CHIZHOVA E A. Structure and Electrical and Transport Properties of Cation-Deficient Samples of Perovskite Ferrocuprates RBaCuFeO5+δ(R= Y, La) [J]. Physics of the Solid State, 2008, 50: 603–608.
    [98] KLYNDZIUK A, PETROV G, KURHAN S, et al. Sensor Properties of Some Perovskite-Like Metal Oxides [J]. Chem. Sens, 2004, 20: 854-855.
    [99] KLYNDYUK A I, CHIZHOVA E A, TARATYN I A, et al. Gas-Sensing Properties of YBaCu (Fe, M)O5 (M= Mn, Co, Ni) [J]. Ser.III: Khim.Tekhnol. Neorg. Veshchestv, 2005, 13: 54-58.
    [100] RENTSCHLER T. Thermal Reactivity of the Co-substituted Perovskite-related Phase YBaFeCuO5+δ[J]. Thermochim. Acta, 1996, 284: 367-378.
    [101] PARDO H, ORTIZ W A, ARAúJO-MOREIRA F M, et al. A New Structure in The ReBaCuFeO5+δSeries: LaBaCuFeO5+δStructure and Magnetic Properties in the La1?xPrxBaCuFeO5+δSystem [J]. Physica C, 1999 313: 105-114.
    [102] CAMILLE L S, JONES Y, CARDOSO C A, et al. Structural and Magnetic Study of LaBaCoCuO5+δ[J]. Phys. Rev. B, 2005, 71: 144405.
    [103] TU H Y, TAKEDA Y, IMANISHI N, et al. Ln1-xSrxCoO3(Ln=Sm,Dy) for the Electrode of Solid Oxide Fuel Cells [J]. Solid State Ionics, 1997, 100: 283-288.
    [104] WEI B, LüZ, LI S, et al. Thermal and Electrical Properties of New Cathode Material Ba0.5Sr0.5Co0.8Fe0.2O3?δfor Solid Oxide Fuel Cells [J]. Electrochemicaland Solid-State Letters, 2005, 8: A428-A431.
    [105] SKINNER S J. Recent Advances in Perovskite-type Materials for Solid Oxide Fuel Cell Cathodes [J]. Int. J. Inorg. Mater., 2001, 3: 113-121.
    [106] Steele B C H. Survey of Materials Selection for Ceramic Fuel Cells II. Cathodes and Anodes [J]. Solid State Ionics, 1996, 1223: 86–88.
    [107] BAEK S W, KIM J H, BAE J. Characteristics of ABO3 and A2BO4 (A Sm, Sr; BCo, Fe, Ni) Samarium Oxide System as Cathode Materials for Intermediate Temperature-Operating Solid Oxide Fuel Cell [J]. Solid State Ionics, 2008, 179: 1570-1574.
    [108] LV H, WU Y J, HUANG B, et al. Structure and Electrochemical Properties of Sm0.5Sr0.5Co1 ? xFexO3 ?δCathodes for Solid Oxide Fuel Cells [J]. Solid State Ionics, 2006, 177: 901-906.
    [109] LI Q, FAN Y, ZHAO H, et al. Preparation and Electrochemical Properties of a Sm2?xSrxNiO4 Cathode for an IT-SOFC [J]. J. Power Sources, 2007, 167: 64-68.
    [110] C SHIVAKUMARA, M S HEGDE ,G N SUBBANNA. Synthesis, structure and IR absorption studies of LnBaCuCoO5(Ln = rare earth) oxides[J]. Bull. Mater. Sci.1996, 19: 607-613.
    [111] KLYNDYUK I, CHIZHOVA E A, Properties of RBaCuFeO5 +δ(R = Y, La, Pr, Nd, Sm–Lu) [J]. Inorganic Materials, 2006, 42: 550–561.
    [112] WEI B, LüZ, HUANG X Q, et al. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1?xCo0.8Fe0.2O3?δ(0.3≤x≤0.7) [J]. J. Eur. Ceram. Soc., 2006, 26: 2827–2832.
    [113] WEI B, LüZ, HUANG X Q, et al. Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3?δperovskite oxide for IT-SOFC cathode [J]. Journal of Power Sources, 2008, 176: 1-8.
    [114] GONG W Q, GOPALAN S, PAL U B. Cathodic Polarization Study on Doped Lanthanum Gallate Electrolyte Using Impedance Spectroscopy [J]. Journal of Electroceramics, 2004, 13: 653–661.
    [115] QIANG F, SUN K N, ZHANG N Q, et al. Characterization of Electrical Properties of GDC Doped A-site Deficient LSCF Based Composite Cathode Using ImpedanceSpectroscopy [J]. Journal of power sources 2007, 168: 338-345.
    [116] FU C J, SUN K N, ZHANG N Q, et al. Electrochemical Characteristics of LSCF–SDC Composite Cathode for Intermediate Temperature SOFC [J]. Electrochimica Acta, 2007, 52: 4589–4594.
    [117] JIN C, LIU J. Preparation of Ba1.2Sr0.8CoO4+δK2NiF4-type Structure Oxide and Cathodic Behavioral of Ba1.2Sr0.8CoO4+δ–GDC Composite Cathode for Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of Alloys and Compounds, 2009, 474: 573–577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700