以碳氢化合物为燃料的中温固体氧化物燃料电池阳极和电解质的制备和性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种高效、洁净的新型能源技术,有望在不久的将来满足世界快速增长的能源需求,改善能源结构,进而对全球环境产生巨大积极的影响。随着SOFC技术的不断开发和完善,商业化进程不断推进,面对着传统的SOFC在高温(1000℃左右)下运行带来了诸多材料和技术方面的问题,以及氢能燃料作为SOFC燃料的局限性,研究人员越来越认识到降低操作温度和使用碳氢化合物作为燃料的重要性。降低操作温度可以通过开发高电导率的电解质材料、降低电解质厚度和提高电极性能来实现,而通过电极结构的修饰、优化和开发新型电极材料,进而获得高催化活性和抗积碳的阳极,则是SOFC使用碳氢燃料的必由之路.
     本论文工作紧紧围绕这两大主题展开,一方面从制备高烧结活性和高电导率,适合作为中、低温SOFC的电解质材料入手,在深入研究该材料电性能的基础上,成功将其应用于SOFC,并通过低成本的工艺条件实现了电解质薄膜化,在中、低温下取得了较好的电池性能.另一方面,也是本论文工作的中心,则是通过构建阳极几何微结构模型,从理论和实验两方面对氧化铈修饰阳极进行了优化,并证实了优化后的单电池在碳氢化合物燃料中的成功运行。与此同时,开发了一种新型的不含离子导电相阳极,该阳极显示了不亚于传统电子-离子混合导电复合阳极的性能,以此的单电池在中、低温条件下也展示了较传统阳极单电池更稳定的性能和开路电压(OCV)。
     论文的第一章简单介绍了SOFC的操作原理,综述了SOFC各关键材料,重点讨论了SOFC的电解质和以碳氢燃料相关的阳极材料的最新研究进展,在概述了SOFC的发展现状和趋势的基础上,确立了本论文的研究目标和研究内容。
     第二章采用优化的碳酸盐共沉淀方法制备了氧化钐掺杂氧化铈(SDC)粉体,在系统研究该粉体的烧结性能和电性能的基础上,成功制备了以此作为电解质的单电池.主要结果如下:
     1)与文献中类似方法相比,采用较稀浓度的溶液和较低的温度,通过碳酸盐共沉淀方法制备了纳米尺寸的Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)电解质粉体,实验结果显示这种由球形粒子组成的SDC粉体具有较高的比表面和较高的烧结活性,在1100℃烧结5小时能达到98%的致密度。而电导率测试结果证实由该粉体制备的SDC陶瓷样品具有较高的离子电导率(600℃总电导率为0.022 S cm~(-1))和较低的电导活化能(0.66 eV),是一种很有前景的中、低温SOFC电解质材料.
     2)采用共压共烧技术制备了以上述SDC粉体为电解质薄膜的单电池,并在500-600℃温度范围内以湿H_2为燃料得到了较好的电池性能,600℃最大功率密度达到400 mW cm~(-2)。考虑到电解质厚度为~75μm的事实,这种电池显示出与本实验室常用的GNP法制备的~40μm电解质的单电池相当的性能。同时单电池也显示出较好的长期稳定性。
     3)借助ZsimpWin软件,利用砖层模型,将阻抗谱中晶粒和晶界电阻从总电阻中解析出来,并分别研究了晶界和晶粒的电性质。实验结果显示总电导率和电导活化能处在目前不同方法制备的SDC粉体的最优水平,烧结温度对总电导率有影响,在1300℃取得最大电导率:较高的总电导率可能是来自于较小的晶界贡献;晶粒的电导迁移焓和缔合焓也随着烧结温度而改变,前者的减小和后者的增加均与品格常数随烧结温度增加而增加的事实相关。
     论文第三章首先通过构建阳极几何微结构模型以及掺杂氧化铈浸渍金属镍(Ni)阳极骨架的修饰阳极制备和相关单电池测试,从理论和实验两方面证实了一种阳极微结构修饰方法。该方法能够提高阳极三相线(TPB),进而改善电池性能。并通过微结构参数设计和调整,取得了一系列单电池最高功率密度的优化结果。由于该阳极中SDC在Ni粒子表面的有效覆盖和修饰,隔断了Ni粒子与碳氢化合物的直接接触,能够最大程度的抑制积碳.同时SDC本身具备优异的电化学催化氧化能力,因此我们从设计和实验上都证实了碳氢化合物作为燃料在该阳极电池中的直接利用,主要结果如下:
     1)根据随机堆积球原理、粒子配位数方法和渗流理论,构建了离子导电相粒子修饰电子导体相粒子的阳极几何微结构模型。基于单层覆盖假设,模型计算显示,在0.30-0.53的孔隙率范围内,TPB长度随修饰粒子的覆盖度增加而增加;而孔隙率的增加提高了可供覆盖的骨架粒子表面,使得能够获得的最大单层修饰量增加,从而最大TPB增加.在超过最大修饰量以后,多层覆盖发生,阻碍了气体的传输,反而TPB降低。模型计算结果证明通过联合阳极衬底孔隙率和修饰量两个微结构参数,能够对TPB进行优化,在研究范围内获得最长的TPB。
     2)以Ni作为电子导电相粒子,SDC作为离子导电相粒子,采用离子浸渍法在NiO粒子骨架上进行了SDC粒子的浸渍制备了SDC修饰阳极,并以此阳极为支撑体,采用共压共烧工艺制备了SDC薄膜单电池。在600℃,H_2为燃料下表征了电池性能。由于阴极制备工艺的一致性,可以用电池的最大功率密度作为衡量阳极性能的指标。实验结果与模型预测一致,当阳极造孔剂量为10 Wt.%,20 Wt.%和30 Wt.%时(对应于还原前孔隙率0.31,0.42和0.54),最大功率密度的最大值分别为571,631和723 mW cm~(-2),对应的SDC浸渍量分别为508,564和648 mgcm~(-3)。这种方法为电极优化提供了一种思路,也加速了固体氧化物燃料电池的中、低温化进程。
     3)利用阳极优化的实验结果,以加入20 Wt.%造孔剂的阳极衬底,SDC浸渍量为564 mg cm~(-3)的SDC修饰阳极为主要对象,研究了对应单电池在直接碳氢化合物燃料中的应用.在低碳燃料纯CH_4中,与传统阳极电池相比,SDC修饰阳极电池显示出稳定的长期放电行为,550℃,600℃和650℃时电池最大功率密度分别为177,379和653 mW cm~(-2)。CH_4的湿润程度对电池OCV稳定性影响较大。在高碳液态燃料iso-octane中,SDC修饰阳极电池也显示出与文献报道中同种燃料下用Ru作为修饰剂的阳极单电池相当的性能和更高的OCV,在240小时以上的放电过程中没有明显的性能衰减。经39,120和232小时长期测试后的最大功率密度分别为397,369和346 mW cm~(-2)。阻抗谱显示在此期间电极界面极化电阻几乎不变,意味着最大功率密度稍微的下降主要来自于OCV的变化。这可能是由于阳极内部不足以破坏阳极微结构的少量积碳导致的。燃料组分和测试条件对电池稳定性有着较大影响,说明通过改善O_2/iso-octane比例以及维持电池在更长时间内放电能够获得更好的长期输出性能。
     第四章开发了一种高性能的中、低温Ni/Sm_2O_3阳极.与传统Ni/SDC阳极不同的是,由于Sm_2O_3可忽略的离子导电性,这种阳极可认为是非离子导电的。这必然意味着该阳极的TPB仅仅限于电解质/阳极的物理界面,从而导致阳极体内较低的TPB。即便如此,该阳极显示出不低于Ni/SDC阳极的性能,在600℃湿氢气为燃料下Ni/Sm_2O_3阳极对应的单电池最高功率密度分别为540 mW cm~(-2),高于Ni/SDC阳极对应的单电池的471 mW cm~(-2).XRD和电子能谱分析(EDX)结果显示Sm_2O_3并没在阳极体内与Ni反应,也没在电解质/阳极界面处明显扩散形成更高离子导电相的固溶体,说明阳极的高性能可能来自于Sm_2O_3本身较高的氧化催化能力和这种电极独特的微结构和粒子形貌.不仅如此,与Ni/SDC阳极相比,这种阳极也展示了氢气条件下较稳定的OCV和一定程度上在碳氢燃料中直接使用的能力.
Solid oxide fuel cells(SOFCs) is an energy conversion device which produces electricity by electrochemical combination a fuel and an oxidant with high efficiency and cleanness characteristics.As a new technique,it will fulfill the increasing need of electricity,improve the current energy structure,and impact the whole world environment actively in the near future.With the development of SOFCs and its commercialization implementation,there exist two main issues for SOFCs so far that are material and technique problems related to high temperature operation(~1000℃) as well as the limit for hydrogen fuels with respect to efficiency,storage and transportation,etc.It is crucial,therefore,to reduce the operation temperature and use hydrocarbon as the fuels for SOFCs.Decreasing the thickness of electrolyte, developing novel electrolyte with higher ionic conductivity and new electrodes with higher performance are the major approaches to lower operating temperature to 500-800℃.For direct utilization of hydrocarbon,it is necessary to fabricate the highly catalytic anode with the capability to resistant to carbon deposition by modifying and optimizing the electrode microstructure,and developing the novel electrode materials.
     This thesis aims to lower the operation temperature and directly use hydrocarbon as the fuels for SOFCs.On the one hand,we focus on the fabrication of the electrolytes with high sinterability as well as high ionic conductivity for intermediate/ low temperature SOFCs.On the basis of investigating the electrical properties of the electrolyte materials in depth,we prepared and characterized the single cells using it as the electrolyte membrane via single and cost-effective approach,and achieved the good performance at 500-600℃.As one of the cores of this thesis,on the other hand, we optimized theoretically and experimentally the ceria-modified anodes by modeling for anode geometric microstructure and conducting the corresponding experiments. Moreover,successful direct utilization of hydrocarbon on the optimized single cells with these anodes was demonstrated.Finally,a novel anode without ionic conductivity was developed which showed performance not lower than that of the conventional composite anode with mixed electron-ion conduction.The single cells with this anode exhibited more stable performance and open circuit voltage,compared with those with the conventional anode.
     In chapter 1,the SOFC principle was briefly introduced at first.The key component materials for SOFCs were reviewed,especially on the latest progress for the electrolyte materials and the anode materials related to hydrocarbon fuels.Based on highlighting the present development status and direction for SOFCs,proposal on the thesis work was thus presented in this chapter.
     In chapter 2,samaria-doped ceria powders were prepared via an optimized carbonate coprecipitation method.Besides studying systematically the sinterability and electrical properties,the single cells with these powders as the electrolyte were fabricated and characterized.The main achievements are summarized as follows:
     1) Nano-sized Ce_(0.8)Sm_(0.2)O_(1.9)(SDC) powders were prepared via a carbonate coprecipitation method with more dilute solution and lower process temperature, compared with those reported in the literatures with similar methods.SDC powders consisted of spherical particles possessed high specific area and high sinterability,which could reach 98%of the theoretical density when they were sintered at 1100℃for 5 h.In addition,SDC ceramics derived from these powders had high ionic conductivity(the total conductivity was 0.022 S cm~(-1) at 600℃) and the low activation energy for conduction(0.66 eV),hence SDC powders suggested that it was a potential electrolyte for intermediate/low temperature SOFCs.
     2) The single cells with SDC powders as the electrolyte were fabricated via a co-pressing and co-firing technique.The peak power density was 400 mW cm~(-2) at 600℃using humidified H_2 as the fuel.Considering the fact that the thickness of the electrolyte was~75μm,the cell showed comparable performance with that usually fabricated in our laboratory,in which the electrolyte powder was derived from glycine-nitrate process(GNP) and the thickness of the electrolyte was~40μm.Furthermore,the cells demonstrated good stability for power generation.
     3) The contributions of grain interior and grain boundary were resolved from the total resistance in AC impedance spectra via ZsimpWin software and brick-layer model,and their electrical properties were investigated,respectively.Analysis results showed thatⅰ) the total conductivity and the activation energy for it lied on the top level of SDC powders reported via different preparation methods.The effect of sintering temperature on the total conductivity was significant and the maximum values were achieved with those sintered at 1300℃for 5 h;ⅱ) high total conductivity should be associated with the small contribution of the grain boundary,ⅲ) the motion enthalpy for the grain interior decreased while the association enthalpy increased with increasing the sintering temperature up to 1300℃,which might be possibly originated from the increase in lattice parameters with the temperature.
     In chapter 3,an anode microstructure modification process was demonstrated in both theory and experiments by building up an anode geometric micro model, fabricating the anode with doped ceria impregnated nickel framework as well as characterizing the single cells related to this type of anode.By this process,the triple-phase boundary(TPB) in the anode could be dramatically increased,resulting in the improvement of the cell performance.A series of peak power density values were obtained with designing and modulating the microstructure parameters.Moreover, due to the effective covering and modification from SDC particles on the surface of nickel particles,the contact between nickel and hydrocarbon is blocked so that carbon deposition would be suppressed to maximum extent.Combining the electrochemical oxidation catalytic activity of SDC themselves,the single cells with the modified anode were experimentally demonstrated to be stable operated with direct utilization of hydrocarbon fuels.The main achievements are summarized as follows:
     1) Based on random packing sphere principle,coordination number method as well as percolation theory,an anode geometric micro model was developed where ion-conducting-phase particles modified electron-conducting-phase particles.With the assumption of mono-layer covering,the TPB length increased with the coverage of modified particles in the porosity range of 0.30-0.53.The elevated porosity increased the surface of the particles as the framework for modification, enabling the maximum monolayer modification loading to increase,resulted in the increase in the maximum TPB length.When exceeded the maximum monolayer modification loading,multilayer covering occurred and it will decrease the TPB length by blocking gas diffusion.In sum,the TPB length could be optimized by improving microstructure parameters such as the porosity and the loading.
     2) SDC modified anodes were fabricated via an ion impregnation method where nickel was as electron conducting framework and SDC as ionic conductor.In addition,the single cells were fabricated with SDC modified anode.The cell performance was characterized with humidified H_2 as the fuel at 600℃.Due to the consistence of the cathode fabricating process for all single cells,the peak power density could be employed to evaluate the anodic performance.The experimental results were in good agreement with model prediction.The highest peak power densities of the cells whose anode prepared with 10,20 and 30 wt.% pore former(the porosities were 0.31,0.42 and 0.54 respectively) were 571,631 and 723 mW cm~(-3) respectively at 600℃,corresponding to SDC loading of 508, 564 and 648 mg cm~(-3).The modified method provided some insight into the optimization of the electrode,and accelerated the proceeding for lowering operation temperature in SOFCs.
     3) The optimized single cells with SDC modified anodes were investigated when hydrocarbons were used as the fuels.In pure methane,the cells exhibited stable power generation compared with that with the conventional anode.The peak power densities were 177,379 and 653 mW cm~(-2) at 550,600 and 650℃, respectively.OCV showed enhanced steady in humidified methane than dry methane.When heavy hydrocarbon iso-octane was applied as the fuel,the cells with SDC modified anodes showed comparable performance and higher OCVs compared those with Ru as the anode catalyst reported in the literature using the same fuels.The power density decreased slightly over 240 h as discharged under constant voltage of 0.5 V.The peak power densities were 397,369 and 346 mW cm~(-2) after 39,120 and 232 h operation.The interfacial polarization resistances were unvaried during this period,suggested that the SDC modified anode was stable for the direct utilization of octane,and slight degeneration in the performance was associated mainly with the loss of OCV,which was possibly derived from a little carbon deposition within the SDC-coated anode where the level is so low that it almost has no effect to cause severe damage to the anode. The fuel composition and operation conditions had remarkably influence on the cell durability,implied that the stability of the fuel cells could be further improved by varying the iso-octane/O_2 ratio and conducting a continuous operation.
     In chapter 4,a high performance Ni/Sm_2O_3 anode was developed for intermediate/low temperature SOFCs.Unlike the conventional Ni/SDC anode,this anode was considered to be non-ionic conductive due to the negligible ionic conductivity of Sm_2O_3.This meant TPB in the anode should be constricted to the physical interface between the electrolyte and anode so that the anode bulk possessed far small TPB.Even so,the single cells with Ni/Sm_2O_3 anodes showed peak power density of 542 mW cm~(-2) at 600℃,comparable to,if not higher than those with the Ni-SDC anodes when the same cathodes and electrolytes were applied.XRD results and EDX analysis demonstrated Sm2O3 did not react with Ni and there is no obvious solid-state diffusion occurred between ceria and samaria at the electrolyte/anode interface,suggested that the high performance in Ni/Sm_2O_3 anode was possibly due to the catalytic property of Sm_2O_3 as well as the unique microstructure and particle morphology in the anode.In addition,compared with that with Ni/SDC anode, Ni/Sm_2O_3 anode exhibited stable OCV with H_2 and the capability to directly use hydrocarbons as the fuel to some extent.
引文
[1]N.Q.Mirth,Journal of the American Ceramic Society 76(1993)563-588.
    [2]S.P.S.Badwal and K.Foger,Ceramics International 22(1996)257-265.
    [3]B.C.H.Steele and A.Heinzel,Nature 414(2001)345-352.
    [4]S.C.Singhal,Solid State Ionics 152(2002)405-410.
    [5]S.C.Singhal and K.Kendall,Elservier(2003).
    [6]K.D.Kreuer,Annual Review of Materials Research 33(2003)333-359.
    [7]K.D.Kreuer,S.J.Paddison,E.Spohr and M.Schuster,Chemical Reviews 104(2004)4637-4678.
    [8]S.W.Zha,C.R.Xia and G.Y.Meng,Journal of Applied Electrochemistry 31(2001)93-98.
    [9]高建峰,中温固体氧化物燃料电池阴极材料及电极过程研究,博士学位论文(2003).
    [10]N.Q.Minh and T.Takahashi,Science and Technology of Ceramic Fuel Cell(1995).
    [11]B.C.H.Steele,Solid State Ionics 129(2000)95-110.
    [12]V.V.Kharton,F.M.B.Marques and A.Atkinson,Solid State Ionics 174(2004)135-149.
    [13]S.P.S.Badwal,Solid State Ionics 52(1992)23-32.
    [14]S.deSouza,S.J.Visco and L.C.DeJonghe,Journal of the Electrochemical Society 144(1997)L35-L37.
    [15]X.S.Xin,Z.Lu,X.Q.Huang,X.Q.Sha,Y.H.Zhang,K.F.Chert,N.Ai,R.B.Zhu and W.H.Su,J.Power Sources 160(2006)1221-1224.
    [16]W.T.Bao,Q.B.Chang,R.Q.Yan and G.Y.Meng,Journal of Membrane Science 252(2005)175-181.
    [17]S.P.S.Badwal and K.Foger,Materials Forum 21(1997)187-224.
    [18]K.Nomura,Y.Mizutani,M.Kawai,Y.Nakamura and O.Yamamoto,Solid State Ionics 132(2000)235-239.
    [19]J.W.Fergus,Journal of Power Sources 162(2006)30-40.
    [20]H.Inaba and H.Tagawa,Solid State Iorries 83(1996)1-16.
    [21]M.Mogensen,N.M.Sammes and G.A.Tompsett,Solid State Ionics 129(2000)63-94.
    [22]O.Yamamoto,Y.Arati,Y.Takeda,N.Imanishi,Y.Mizutani,M.Kawal and Y.Nakamura,Solid State Ionics 79(1995) 137-142.
    [23]S.P.S.Badwal,F.T.Ciacchi and D.Milosevic,Solid State Ionics 136(2000)91-99.
    [24]J.Kondoh,H.Shiota,S.Kikuehi,Y.Tomii,Y.Ito and K.Kawachi,Journal of the Electrochemical Society 149(2002)J59-J72.
    [25]K.Eguehi,T.Setoguchi,T.Inoue and H.Arai,Solid State Ionics 52(1992)165-172.
    [26]H.Yahiro,K.Eguchi and H.Arai,Solid State Ionics 36(1989)71-75.
    [27]D.K.Hohnke,Solid State Ionies 5(1981)531-534.
    [28]S.Zha,C.Xia and G.Meng,Journal of Power Sources 115(2003)44-48.
    [29]T.S.Zhang,J.Ma,H.Cheng and S.H.Chan,Materials Research Bulletin 41(2006)563-568.
    [30]B.Dalslet,P.Blennow,P.V.Hendriksen,N.Bonanos,D.Lybye and M.Mogensen,Journal of Solid State Electrochemistry 10(2006)547-561.
    [31]S.Charojrochkul,K.L.Choy and B.C.H.Steele,Solid State Ionics 121(1999)107-113.
    [32]C.Rossignol,J.M.Ralph,J.M.Bae and J.T.Vaughey,Solid State Ionics 175(2004)59-61.
    [33]G.A.Tompsett,N.M.Sammes and O.Yamamoto,Journal of the American Ceramic Society 80(1997)3181-3186.
    [34]C.Hatchwell,N.M.Sammes and I.W.M.Brown,Solid State Ionics 126(1999)201-208.
    [35]B.C.H.Steele,Solid State Ionics 134(2000)3-20.
    [36] M. Sahibzada, B.C.H. Steele, K. Zheng, R.A. Rudkin and I.S. Metcalfe, Catalysis Today 38(1997)459-466.
    [37] R. Doshi, L. Von Richards, J.D. Carter, X. Wang and M. Krumpelt, Journal of the Electrochemical Society 146 (1999)1273-1278.
    [38] T. Hibino, A. Hashimoto, T. Inoue, J.I. Tokuno, S.I. Yoshida and M. Sano, Science 288(2000)2031-2033.
    [39] T. Hibino, A. Hashimoto, M. Suzuki, M. Yano, S.I. Yoshida and M. Sano, Journal of the Electrochemical Society 149 (2002).
    [40] Z. Shao and S.M. Halle, Nature 431 (2004)170-173.
    [41] M. Yano, T. Kawai, K. Okamoto, M. Nagao, M. Sano, A. Tomita and T. Hibino, Journal of the Electrochemical Society 154 (2007)B865-B870.
    [42] T. Ishihara, H. Matsuda and Y. Takita, Journal of the American Chemical Society 116(1994)3801-3803.
    [43] M. Feng and J.B. Goodenough, European Journal of Solid State and Inorganic Chemistry 31 (1994)663-672.
    
    [44] T. Ishihara, Bulletin of the Chemical Society of Japan 79 (2006)1155-1166.
    [45] P. Majewski, M. Rozumek and F. Aldinger, Journal of Alloys and Compounds 329(2001)253-258.
    [46] K. Huang, R. Tichy, J.B. Goodenough and C. Milliken, Journal of the American Ceramic Society 81 (1998)2581-2585.
    [47] J.W. Stevenson, K. Hasinska, N.L. Canfield and T.R. Armstrong, Journal of the Electrochemical Society 147(2000)3213-3218.
    [48] T. Ishihara, S. Ishikawa, K. Hosoi, H. Nishiguchi and Y. Takita, Solid State Ionics 175(2004)319-322.
    [49] B.A. Khorkounov, H. Nafe and F. Aldinger, Journal of Solid State Electrochemistry 10(2006)479-487.
    [50] T. Ishihara, Y. Tsuruta, C.Y. Yu, T. Todaka, H. Nishiguchi and Y. Takita, Journal of the Electrochemical Society 150 (2003)E17-E23.
    [51] T. Ishihara, M. Ando, M. Enoki and Y. Takita, Journal of Alloys and Compounds 408(2006)507-511.
    [52] R. Maric, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki and K. Miura,Journal of the Electrochemical Society 146 (1999)2006-2010.
    [53] K.Q. Huang, J.H. Wan and J.B. Goodenough, Journal of the Electrochemical Society 148(2001)A788-A794.
    [54] J.H. Wan, J.Q. Yan and J.B. Goodenough, Journal of the Electrochemical Society 152(2005)A1511-A1515.
    [55] T. Inagaki, F. Nishiwaki, J. Kanou, S. Yamasaki, K. Hosoi, T. Miyazawa, M. Yamada and N. Komada, Journal of Alloys and Compounds 408 (2006)512-517.
    [56] H. Ishikawa, M. Enoki, T. Ishihara and T. Akiyama, Journal of Alloys and Compounds 430(2007)246-251.
    [57] K. Choy, W. Bai, S. Clarojrochkul and B.C.H. Steele, Journal of Power Sources 71(1998)361-369.
    [58] T. Mathews, P. Manoravi, M.P. Antony, J.R. Sellar and B.C. Muddle, Solid State Ionics 135 (2000)397-402.
    [59] A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. Mcevoy, M. Mogensen, S.C.Singhal and J. Vohs, Nature Materials 3 (2004)17-27.
    [60] S. Mclntosh and R.J. Gorte, Chemical Reviews 104 (2004)4845-4865.
    [61] J.R. Rostrup-Nielsen, J. Sehested and J.K. Norskov, Advances in Catalysis, Vol 47 (2002),pp. 65-139.
    
    [62] H.H. Mobius, Journal of Solid State Electrochemistry 1 (1997)2-16.
    [63] H.S. Spacil, US Patent (1970).
    [64] S. Majumdar, T. Claar and B. Flandermeyer, Journal of the American Ceramic Society 69(1986)628-633.
    [65] S.K. Paratihar, R.N. Basu, S. Mazumder and H.S. Maiti, in:S.C. Singhal, M. Dokiya (Eds.), Proceedings of the Sixth International Symposium On Solid Oxide Fuel Cells (SOFC-VI), Honolulu, Hawaii, (1999)513.
    [66] H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa and M. Dokiya,Journal of the Electrochemical Society 144 (1997)641-646.
    [67] T. Iwata, Journal of the Electrochemical Society 143 (1996)1521-1525.
    [68] W. Huebner, H.U. Anderson, D.M. Reed, S.R. Sehlin and X. Deng, in:M. Dokiya, O.Yamamoto, H. Tagawa, S.C.Singhal (Eds.), Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), Yokohama, Japan (1995)159.
    [69] A. Tintinelli, C. Rizzo, G Giunta and A. Selvaggi, in.U. Bossel (Ed.), Proceedings of the First European Solid Oxide Fuel Cells Forum, vol. 1, Lucerne, Switzerland (1994)455.
    [70] B.C.H. Steele, in:U. Bossel (Ed.), Proceedings of the First European Solid Oxide Fuel Cells Forum, vol. 1, Lucerne, Switzerland (1994)375.
    
    [71] W. Zhu, D. Ding and C. Xia, Electrochemical and Solid State Letters 11 (2008)B83-B86.
    [72] H. Itoh, T. Yamamoto, M. Mori, N. Mori and T. Watanabe, in:B. Thorstensen (Ed.),Proceedings of the Second European Solid Oxide Fuel Cells Forum, vol. 1, Oslo,Norway (1996)453.
    [73] J.H. Lee, H. Moon, H.W. Lee, J. Kim, J.D. Kim and K.H. Yoon, Solid State Ionics 148(2002)15-26.
    [74] J.J. Haslam, A.Q. Pham, B.W. Chung, J.F. DiCarlo and R.S. Glass, Journal of the American Ceramic Society 88 (2005)513-518.
    [75] R.J. Gorte and J.M. Vohs, Journal of Catalysis 216 (2003)477-486.
    [76] E.P. Murray, T. Tsai and S.A. Barnett, Nature 400 (1999)649-651.
    [77] J.A. Liu and S.A. Barnett, Solid State Ionics 158 (2003)11-16.
    [78] Y.B. Lin, Z.L. Zhan, J. Liu and S.A. Barnett, Solid State Ionics 176 (2005)1827-1835.
    [79] M. Mogensen and K. Kammer, Annual Review of Materials Research 33 (2003)321-331.
    [80] Y. Matsuzaki and I. Yasuda, Solid State Ionics 132 (2000)261-269.
    [81] H. Koide, Y. Someya, T. Yoshida and T. Maruyama, Solid State Ionics 132(2000)253-260.
    [82] H. Itoh, T. Yamamoto, M. Mori, T. Watanabe and T. Abe, Denki Kagaku 64(1996)549-554.
    
    [83] D. Simwonis, F. Tietz and D. Sto?ver, Solid State Ionics 132 (2000)241-251.
    [84] A. Tsoga, A. Naoumidis and P. Nikolopoulos, Acta Materialia 44 (1996)3679-3692.
    [85] A. Naoumidis, A. Tsoga, P. Nikolopoulos and H. Grubmeier, in "SOFC-IV," edited by M.Dokiya, O. Yamamoto, H. Tagawa and S. C. Singhal (Electrochem.Soc, Pennington, NJ) (1995)667.
    [86] A. Gubner, H. Landes, J. Metzger, H. Seeg and R. Stubner, in: U. Stimming, S.C.Singhal, H. Tagawa, W. Lehnert (Eds.), Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), Archen, Germany (1997)844.
    [87] N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov and B. Johansson,Physical Review Letters 89 (2002) 455-461.
    
    [88] B.C.H. Steele, P.H. Middleton and R.A. Rudkin, Solid State Ionics 40-1 (1990)388-393.
    [89] I.S. Metcalfe, P.H. Middleton, P. Petrolekas and B.C.H. Steele, Solid State Ionics 57(1992)259-264.
    [90] M. Mogensen, T. Lindegaard, U.R. Hansen and G. Mogensen, Journal of the Electrochemical Society 141 (1994)2122-2128.
    
    [91] T. Tsai and S.A. Barnett, Journal of the Electrochemical Society 145 (1998)1696-1701.
    [92] O.A. Marina, C. Bagger, S. Primdahl and M. Mogensen, Solid State Ionics 123(1999)199-208.
    
    [93] S.W. Tao and J.T.S. Irvine, Nature Materials 2 (2003)320-323.
    [94] P. Vernoux, M. Guillodo, J. Fouletier and A. Hammou, Solid State Ionics 135(2000)425-431.
    [95] J. Sfeir, P.A. Buffat, P. Mockli, N. Xanthopoulos, R. Vasquez, H.J. Mathieu, J. Van herle and K.R. Thampi, Journal of Catalysis 202 (2001)229-244.
    [96] A.L. Sauvet and J.T.S. Irvine, in: J.P.P. Huijsmans (Eds.), 5th European SOFC Forum,European SOFC Forum, Switzerlan (2002)490.
    [97] J. Liu, B.D. Madsen, Z.Q. Ji and S.A. Barnett, Electrochemical and Solid State Letters 5(2002)A122-A124.
    
    [98] S.Q. Hui and A. Petric, Journal of the Electrochemical Society 149 (2002)J1-J10.
    [99] O.A. Marina, N.L. Canfield and J.W. Stevenson, Solid State Ionics 149 (2002)21-28.
    [100] S. Hui and A. Petric, Materials Research Bulletin 37 (2002)1215-1231.
    [101] S.Q. Hui and A. Petric, Journal of the European Ceramic Society 22 (2002)1673-1681.
    [102] R. Mukundan, E.L. Brosha and F.H. Garzon, Electrochemical and Solid State Letters 7(2004)A5-A7.
    [103] L. Aguilar, S.W. Zha, Z. Cheng, J. Winnick and M.L. Liu, Journal of Power Sources 135(2004)17-24.
    [104] L. Aguilar, S.W. Zha, S.W. Li, J. Winnick and M. Liu, Electrochemical and Solid State Letters 7 (2004)A324-A326.
    
    [105] Y.H. Huang, R.I. Dass, Z.L. Xing and J.B. Goodenough, Science 312 (2006)254-257.
    [106] R.J. Gorte, S. Park, J.M. Vohs and C.H. Wang, Advanced Materials 12(2000)1465-1469.
    
    [107] R.J. Gorte, J.M. Vohs and S. McIntosh, Solid State Ionics 175 (2004)1-6.
    [108] S.D. Park, J.M. Vohs and R.J. Gorte, Nature 404 (2000)265-267.
    [109] H. Kim, S. Park, J.M. Vohs and R.J. Gorte, Journal of the Electrochemical Society 148(2001).
    
    [110] S. Mclntosh, J.M. Vohs and R.J. Gorte, Electrochimica Acta 47 (2002)3815-3821.
    [111] S. Zhao and R.J. Gorte, Applied Catalysis a-General 277 (2004)129-136.
    [112] S. Mclntosh, J.M. Vohs and R.J. Gorte, Journal of the Electrochemical Society 150(2003)A470-A476.
    [113]A.Lashtabeg and S.J.Skinner,Journal of Materials Chemistry 16(2006)3161-3170.
    [114]H.Kim,C.Lu,W.L.Worrell,J.M.Vohs and R.J.Gorte,Journal of the Electrochemical Society 149(2002)A247-A250.
    [115]S.I.Lee,J.M.Vohs and R.J.Gorte,Journal of the Electrochemical Society 151(2004)A 1319-A 1323.
    [116]Z.Xie,W.Zhu,B.C.Zhu and C.R.Xia,Eiectrochimica Acta 51(2006)3052-3057.
    [117]P.R.Siater and J.T.S.Irvine,Solid State Ionics 124(1999)61-72.
    [118]P.R.Slater and J.T.S.Irvine,Solid State Ionics 120(1999)125-134.
    [119]A.Kaiser,J.L.Bradley,P.R.Slater and J.T.S.Irvine,Solid State Ionics 135(2000)519-524.
    [120]H.L.Tuller,Journal of Physics and Chemistry of Solids 55(1994)1393-1404.
    [121]B.J.Wuensch,K.W.Eberman,C.Heremans,E.M.Ku,p.Onnerud,E.M.E.Yeo,S.M.Halle,J.K.Stalick and J.D.Jorgensen,Solid State Ionics 129(2000)111-133.
    [122]M.Pirzada,R.W.Grimes,L.Minervini,J.F.Maguire and K.E.Sickafus,Solid State Ionics 140(2001)201-208.
    [123]S.Kramer,M.Spears and H.L.Tuller,Solid State Ionics 72(1994)59-66.
    [124]O.Porat,C.Heremans and H.L.Tuller,Solid State Ionics 94(1997)75-83.
    [125]P.Holtappels,F.W.Poulsen and M.Mogensen,Solid State Ionics 135(2000)675-679.
    [126]C.S.Tedmon,H.S.Spacil and S.P.Mitoff,Journal of the Electrochemical Society (1969)1170-1175.
    [127]朱威,以碳氢化合物为燃料的中温固体氧化物燃料电池的新型阳极,博士学位论文(2006).
    [128]F.Zhao,R.R.Peng and C.R.Xia,Materials Research Bulletin 43(2008)370-376.
    [129]L.W.Tai,M.M.Nasrallah,H.U.Anderson,D.M.Sparlin and S.R.Sehlin,Solid State Ionics 76(1995)259-271.
    [130]L.W.Tai,M.M.Nasrallah,H.U.Anderson,D.M.Sparlin and S.R.Sehlin,Solid State Ionics 76(1995)273-283.
    [131]M.J.L.Ostergard,C.Clausen,C.Bagger and M.Mogensen,Electrochimica Acta 40(1995)1971-1981.
    [132]V.Dusastre and J.A.Kilner,Solid State Ionics 126(1999)163-174.
    [133]H.Fukunaga,M.Koyama,N.Takahashi,C.Wen and K.Yamada,Solid State Ionics 132(2000)279-285.
    [134]T.Ishihara,M.Honda,T.Shibayama,H.Minami,H.Nishiguchi and Y.Takita,Journal of the Electrochemical Society 145(1998)3177-3183.
    [135]C.R.Xia,W.Rauch,F.L.Chen and M.L.Liu,Solid State Ionics 149(2002)11-19.
    [136]C.R.Xia and M.L.Liu,Advanced Materials 14(2002)521-+.
    [137]T.Takeda,R.Kanno,K.Tsubosaka and Y.Takeda,Electrochemistry 70(2002)969-971.
    [138]J.M.Bae and B.C.H.Steele,Journal of Electroceramics 3(1999)37-46.
    [139]I.Yasuda and T.Hikita,Journal of the Electrochemical Society 140(1993)1699-1704.
    [140]W.J.Quadakkers,J.Piron-Abellan,V.Shemet and L.Singheiser,Materials at High Temperatures 20(2003) 115-127.
    [141]http://www.roils-royce.com.
    [142]K.Kendall and M.Palin,Journal of Power Sources 71(1998)268-270.
    [143]Z.L.Zhan and S.A.Barnett,Journal of Power Sources 155(2006)353-357
    [1]徐如人,庞文琴,无机材料与制备化学,北京:高等教育出版社(2001).
    [2]严东升,谭浩然,潘振甦等,无机非金属材料科学,北京:科学出版社(1997).
    [3]J.Fleig and J.Maier,in "Ionic and Mixed Conducting Ceramics Ⅲ" edited by T.A.Ramanarayanan(The Electrochemical Society,Pennington,NJ)(1998) 166.
    [4]G.B.Balazs and R.S.Glass,Solid State Ionics 76(1995)155-162.
    [5]Z.L.Zhan,T.L.Wen,H.Y.Tu and Z.Y.Lu,Journal of the Electrochemical Society 148(2001)A427-A432.
    [6]K.Eguchi,T.Setoguchi,T.Inoue and H.Arai,Solid State Ionics 52(1992)165-172.
    [7]S.Sakka,Handbook of Sol-Gel Science and Technology Processing Characterization and Applications,Kluwer Academic Publisher(2004).
    [8]S.Pinol,M.Najib,D.M.Bastidas,A.Calleja,X.G.Capdevila,M.Segarra,F.Espiell,J.C.Ruiz-Morales,D.Marrero-Lopez and P.Nunez,Journal of Solid State Electrochemistry 8(2004)650-654.
    [9]W.Huang,P.Shuk and M.Greenblatt,Solid State Ionics 100(1997)23-27.
    [10]K.Q.Huang,M.Feng and J.B.Goodenough,Journal of the American Ceramic Society 81(1998)357-362.
    [11]J.Van Herle,T.Horita,T.Kawada,N.Sakai,H.Yokokawa and M.Dokiya,Solid State Ionics 86-88(1996)1255-1258.
    [12]S.Zha,C.Xia and G.Meng,Journal of Power Sources 115(2003)44-48.
    [13]R.Peng,C.Xia,D.Peng and G.Meng,Materials Letters 58(2004)604-608.
    [14]T.S.Zhang,P.Hing,H.T.Huang and J.Kilner,Solid State Ionics 148(2002)567-573.
    [15]方小红,中温固体氧化物燃料电池的关键材料粉体的制备及其性能表征,博士学位论文(2004).
    [16]J.G.Li,T.Ikegami and T.Mori,Acta Materialia 52(2004)2221-2228.
    [17]H.B.Li,C.R.Xia,M.H.Zhu,Z.X.Zhou and G.Y.Meng,Acta Materialia 54(2006)721-727.
    [18]A.I.Y.Tok,L.H.Luo,F.Y.C.Boey and J.L.Woodhead,Journal of Materials Research 21(2006)119-124.
    [19]T.S.Zhang,J.Ma,L.H.Luo and S.H.Chan,Journal of Alloys and Compounds 422(2006)46-52.
    [20]Y.Wang,T.Mori,J.G.Li and Y.Yajima,Science and Technology of Advanced Materials 4(2003)229-238.
    [21]C.R.Xia and M.L.Liu,Journal of the American Ceramic Society 84(2001)1903-1905.
    [22]R.Peng,C.Xia,Q.Fu,G.Meng and D.Peng,Materials Letters 56(2002)1043-1047.
    [23]C.R.Xia and M.L.Liu,Solid State Ionics 152(2002)423-430.
    [24]B.C.H.Steele,Solid State Ionics 129(2000)95-110.
    [25]M.Mogensen,N.M.Sammes and G.A.Tompsett,Solid State Ionics 129(2000)63-94.
    [26]J.M.Ralph,J.Przydatek,J.A.Kilner and T.Seguelong,Bedchte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 101(1997) 1403-1407.
    [27]G.B.Jung,T.J.Huang and C.L.Chang,Journal of Solid State Electrochemistry 6(2002)225-230.
    [28]G.H.Bogush,C.E Zukoski and J.D.Mackenzie,Ulrich D R,eds.Ultrastructure Processing of Advanced Ceramics,New York,John Wiley,.0988)477-486.
    [29]J.G.Li,T.Ikegami,Y.R.Wang and T.Mori,Journal of the American Ceramic Society 85(2002)2376-2378.
    [30]Y.R.Wang,T.Mod,J.G.Li,Y.Yajima and J.Drennan,Journal of the European Ceramic Society 26(2006)417-422.
    [31]M.Mel I,Journal of the American Ceramic Society 52(1969)443-446.
    [32]A.I.Y.Tok,L.H.Luo and F.Y.C.Boey,Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 383(2004)229-234.
    [33]D.A.Andersson,S.I.Simak,N.V.Skorodumova,I.A.Abrikosov and B.Johansson,Proceedings of the National Academy of Sciences of the United States of America 103(2006)3518-3521.
    [34]S.W.Zha,C.R.Xia and G.Y.Meng,Journal of Applied Electrochemistry 31(2001)93-98.
    [35]Y.M.Chiang,E.B.Lavik and D.A.Biota,Nanostructured Materials 9(1997)633-642.
    [36]E.Wanzenberg,F.Tietz,D.Kek,P.Panjan and D.Stover,Solid State Ionics 164(2003)121-129.
    [37]M.Liu,D.Dong,F.Zhao,J.Gao,D.Ding,X.Liu and G.Meng,Journal of Power Sources 182(2008)585-588.
    [38]F.Zhao,Z.Wang,M.Liu,L.Zhang,C.Xia and F.Chen,Journal of Power Sources 185(2008)13-18.
    [39]史美伦,交流阻抗谱原理及应用,北京:国防工业出版社(2001).
    [40]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社(2002).
    [41]W.Lai and S.M.Haile,Journal of the American Ceramic Society 88(2005)2979-2997.
    [42]S.P.Jiang,J.G.Love and S.P.S.Badwal,Electrical Properties of Oxide Materials,Tram Tech Publications,Clausthal Zellerfe(1997),pp.81-132.
    [43]付清溪,新型中温燃料电池关键材料的研究,博士学位论文(2002).
    [44]G.M.Christie and F.P.F.vanBerkel,Solid State Ionics 83(1996)17-27.
    [45]K.S.Cole and J.Cole,Chemical Physics 9(1941)11.
    [46]N.M.Beekmanns and L.Heyne,Electrochimica ACTA 21(1976)303.
    [47]H.Nafe,Solid State Ionics 13(1984)255-263.
    [48]K.Yamahara,C.P.Jacobson,S.J.Visco and L.C.De Jonghe,Electrochemical Society Proceedings, 2003-07, SOFC VII (2003)187.
    
    [49] X. Guo and J. Maier, Journal of the Electrochemical Society 148 (2001)E121 -E126.
    [50] X. Guo and R. Waser, Progress in Materials Science 51 (2006)151-210.
    [51] K.L. Kliewer and J.S. Koehler, Physical Review A140 (1965).
    [52] X.S. Xin, Z. Lu, Z.H. Ding, X.Q. Huang, Z.G Liu, X.Q. Sha, Y.H. Zhang and W.H. Su,Journal of Alloys and Compounds 425 (2006)69-75.
    [53] T.Y. Tien, Journal of Applied Physics 35 (1964)122.
    [54] Y. Liu and L.E. Lao, Solid State Ionics 177 (2006)159-163.
    [55] S.P.S. Badwal and S. Rajendran, Solid State Ionics 70 (1994)83-95.
    [56] P. Mondal, A. Klein, W. Jaegermann and H. Hahn, Solid State Ionics 118(1999)331 -339.
    [57] X. Guo, Computational Materials Science 20 (2001)168-176.
    [58] J.M. Ralph, J.A. Kilner and B.C.H. Steele, Materials Research Society Symposium -Proceedings 575 (1999)309-314.
    [59] T.S. Zhang, J. Ma, S.H. Chan, P. Hing and J.A. Kilner, Solid State Sciences 6(2004)565-572.
    [60] X. Guo, W. Sigle and J. Maier, Journal of the American Ceramic Society 86(2003)77-87.
    [61] T.S. Zhang, J. Ma, S.H. Chan and J.A. Kilner, Journal of the Electrochemical Society 151 (2004)J84-J90.
    [62] T.S. Zhang, J. Ma, Y.J. Leng, S.H. Chan, P. Hing and J.A. Kilner, Solid State Ionics 168(2004)187-195.
    
    [63] T.S. Zhang, J. Ma, J. Chan and J.A. Kilner, Solid State Ionics 176 (2005)377-384.
    [64] T. Mori, Y.R. Wang, J. Drennan, G Auchterlonie, J.G Li and T. Ikegami, Solid State Ionics 175 (2004)641-649.
    [65] V. Esposito and E. Traversa, Journal of the American Ceramic Society 91(2008)1037-1051.
    
    [66] W. Huang, P. Shuk and M. Greenblatt, Chemistry of Materials 9 (1997)2240-2245.
    [67] Y.P. Fu, S.B. Wen and C.H. Lu, Journal of the American Ceramic Society 91(2008)127-131.
    [68] V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A.Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques and J.R. Frade, Journal of Materials Science 36 (2001)1105-1117.
    
    [69] C.Y. Tian and S.W. Chan, Solid State Ionics 134 (2000)89-102.
    [70] D.Y. Wang, D.S. Park, J. Griffith and A.S. Nowick, Solid State Ionics 2 (1981)95-105.
    [1]S.P.Jiang and S.H.Chan,Journal of Materials Science 39(2004)4405-4439.
    [2]A.Atkinson,S.Barnett,R.J.Gorte,J.T.S.Irvine,A.J.Mcevoy,M.Mogensen,S.C.Singhal and J.Vohs,Nature Materials 3(2004)17-27.
    [3]N.Sata,K.Eberman,K.Eberl and J.Maier,Nature 408(2000)946-949.
    [4]Q.Gu,A.Falk,J.Q.Wu,O.Y.Lian and H.Park,Nano Letters 7(2007)363-366.
    [5]J.Vanherle,T.Horita,T.Kawada,N.Sakai,H.Yokokawa and M.Dokiya,Journal of the European Ceramic Society 16(1996)961-973.
    [6]N.Laosiripojana and S.Assabumrungrat,Chemical Engineering Science 61(2006)2540-2549.
    [7]A.Tschope,S.Kilassonia,B.Zapp and R.Birdnger,Solid State Ionics 149(2002)261-273.
    [8]A.Tschope,Journal of Electroceramics 14(2005)5-23.
    [9]T.Z.Sholklapper,H.Kurokawa,C.P.Jacobson,S.J.Visco and L.C.De Jonghe,Nano Letters 7(2007)2136-2141.
    [10]E.S.Putna,J.Stubenrauch,J.M.Vohs and R.J.Gorte,Langmuir 11(1995)4832-4837.
    [11]R.Craciun,S.Park,R.J.Gorte,J.M.Vohs,C.Wang and W.L.Worrell,Journal of the Electrochemical Society 146(1999)4019-4022.
    [12]S.P.Jiang,J.P.Zhang,L.Apateanu and K.Foger,Electrochemistry Communications 1(1999)394-397.
    [13]S.P.Jiang,Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 418(2006) 199-210.
    [14]S.P.Jiang,S.Zhang,Y.D.Zhen and A.P.Koh,Electrochemical and Solid State Letters 7(2004)A282-A285.
    [15]S.P.Jiang,W.Wang and Y.D.Zhen,Journal of Power Sources 147(2005)1-7.
    [16]S.P.Jiang,S.Zhang,Y.Da Zhen and W.Wang,Journal of the American Ceramic Society 88(2005)1779-1785.
    [17]S.P.Jiang and W.Wang,Journal of the Electrochemical Society 152(2005)A 1398-A 1408.
    [18]S.D.Park,J.M.Vohs and R.J.Gorte,Nature 404(2000)265-267.
    [19]R.J.Gorte,S.Park,J.M.Vohs and C.H.Wang,Advanced Materials 12(2000)1465-1469.
    [20]R.J.Gorte and J.M.Vohs,Journal of Catalysis 216(2003)477-486.
    [21]H.Uchida,A.Tsuno and M.Watanabe,Denki Kagaku 64(1996)686-687.
    [22]H.Uchida,N.Mochizuki and M.Watanabe,Journal of the Electrochemical Society 143(1996) 1700-1704.
    [23]H.Uchida,H.Suzuki and M.Watanabe,Journal of the Electrochemical Society 145(1998)615-620.
    [24]H.Uchida,T.Osuga and M.Watanabe,Journal of the Electrochemical Society 146(1999)1677-1682.
    [25]S.P.Yoon,J.Han,S.W.Nam,T.H.Lim and S.A.Hong,Journal of Power Sources 136(2004)30-36.
    [26]W.Zhu,C.R.Xia,J.Fan,R.R.Peng and G.Y.Meng,Journal of Power Sources 160 (2006)897-902.
    [27]C.W.Sun and U.Stimming,Journal of Power Sources 171(2007)247-260.
    [28]M.Brown,S.Primdahl and M.Mogensen,Journal of the Electrochemical Society 147(2000)475-485.
    [29]P.Holtappels,L.G.J.De Haart,U.Stimming,I.C.Vinke and M.Mogensen,Journal of Applied Electrochemistry 29(1999)561-568.
    [30]T.Horita,H.Kishimoto,K.Yamaji,Y.Xiong,N.Sakai,M.E.Brito and H.Yokokawa,Solid State Ionics 177(2006)1941-1948.
    [31]A.Bieberle,Ph.D Thesis,Swiss Federal Institute of Technology,Zurich(2000).
    [32]P.Holtappels,L.G.J.de Haart and U.Stimming,Journal of the Electrochemical Society 146(1999)1620-1625.
    [33]P.Holtappels,I.C.Vinke,L.G.J.de Haart and U.Stimming,Journal of the Electrochemical Society 146(1999)2976-2982.
    [34]M.Mogensen and S.Skaarup,Solid State Ionics 86-8(1996)1151-1160.
    [35]S.P.Jiang and S.P.S.Badwal,Solid State Ionics 123(1999)209-224.
    [36]S.P.Jiang and S.P.S.Badwal,Journal of the Electrochemical Society 144(1997)3777-3784.
    [37]F.Barbir,PEM fuel cell-theory and practice.Elsevier Academic Press(2005)36-39.
    [38]M.Ni,M.K.H.Leung and D.Y.C.Leung,Energy Conversion and Management 48(2007)1525-1535.
    [39]A.Ringuede,D.Bronine and J.R.Frade,Solid State Ionics 146(2002)219-224.
    [40]C.Wen,R.Kato,H.Fukunaga,H.Ishitani and K.Yamada,Journal of the Electrochemical Society 147(2000)2076-2080.
    [41]X.H.Deng and A.Petric,Journal of Power Sources 140(2005)297-303.
    [42]D.S.McLachlan,M.Blaszkiewicz and R.E.Newnham,Journal of the American Ceramic Society 73(1990)2187-2203.
    [43]A.Malliaris and D.T.Turner,Journal of Applied Physics 42(1971)614.
    [44]彭冉冉,中温固体氧化物燃料电池的丝网印刷法制备及其电化学性能表征,博士学位论文(2003).
    [45]S.C.Singhal,Kendall,K.High Temperature Solid Oxide Fuel Cells:Fundamentals,Design and Applications,Elsevier(2003).
    [46]J.H.Nam and D.H.Jeon,Electrochimica Acta 51(2006)3446-3460.
    [47]S.Kakac,A.Pramuanjaroenkij and X.Y.Zhou,International Journal of Hydrogen Energy 32(2007)761-786.
    [48]C.W.Tanner,K.Z.Fung and A.V.Virkar,Journal of the Electrochemical Society 144(1997)21-30.
    [49]S.Sunde,Journal of the Electrochemical Society 142(1995)L50-L52.
    [50]S.Sunde,Journal of the Electrochemical Society 143(1996)1930-1939.
    [51]J.Abel,A.A.Kornyshev and W.Lehnert,Journal of the Electrochemical Society 144(1997)4253-4259.
    [52]S.Sunde,Journal of Electroceramics 5(2000)153-182.
    [53]P.Costamagna,P.Costa and V.Antonucci,Electrochimica Acta 43(1998)375-394.
    [54]P.Costamagna,P.Costa and E.Arato,Electrochimica Acta 43(1998)967-972.
    [55]P.Costamagna,M.Panizza,G.Cerisola and A.Barbucci,Electrochimica Acta 47 (2002)1079-1089.
    
    [56] S.H. Chan and Z.T. Xia, Journal of the Electrochemical Society 148 (2001)A388-A394.
    [57] S.H. Chan, X.J. Chen and K.A. Khor, Journal of the Electrochemical Society 151(2004)A164-A172.
    
    [58] X.J. Chen, S.H. Chan and K.A. Khor, Electrochimica Acta 49 (2004)1851-1861.
    [59] Z.T. Xia, S.H. Chan and K.A. Khor, Electrochemical and Solid State Letters 7(2004)A63-A65.
    
    [60] D. Bouvard and F.F. Lange, Acta Metallurgica Et Materialia 39 (1991)3083-3090.
    [61] M. Suzuki and T. Oshima, Powder Technology 35 (1983)159-166.
    [62] M. Suzuki, K. Makino, M. Yamada and K. Linoya, International Chemical Engineering 21 (1981)482-488.
    
    [63] C.H. Kuo and P.K. Gupta, Acta Metallurgica Et Materialia 43 (1995)397-403.
    [64] C.R. Xia and M.L. Liu, Solid State Ionics 144 (2001)249-255.
    [65] M.L. Liu and H.X. Hu, Journal of the Electrochemical Society 143 (1996)L109-L112.
    [66] S. Zha, W. Rauch and M. Liu, Solid State Ionics 166 (2004)241-250.
    [67] S. Mclntosh, J.M. Vohs and R.J. Gorte, Journal of the Electrochemical Society 150(2003)A1305-A1312.
    
    [68] A.D. Franklin, Journal of the American Ceramic Society 58 (1975)465-473.
    [69] L. Zhang, S.P. Jiang, W. Wang and Y.J. Zhang, Journal of Power Sources 170(2007)55-60.
    [70] E. Wanzenberg, F. Tietz, D. Kek, P. Panjan and D. Stover, Solid State Ionics 164(2003)121-129.
    [71] F.P.F. Vanberkel, F.H. Vanheuveln and J.P.P. Huijsmans, Solid State Ionics 72(1994)240-247.
    
    [72] K. Sasaki and Y. Teraoka, Journal of the Electrochemical Society 150 (2003)A885-A888.
    [73] K. Sasaki and Y. Teraoka, Journal of the Electrochemical Society 150 (2003)A878-A884.
    [74] J.H. Koh, B.S. Kang, H.C. Lim and Y.S. Yoo, Electrochemical and Solid State Letters 4(2001)A12-A15.
    [75] B.E. Buergler, A.N. Grundy and L.J. Gauckler, Journal of the Electrochemical Society 153 (2006)A1378-A1385.
    
    [76] M. Mogensen and K. Kammer, Annual Review of Materials Research 33 (2003)321-331.
    [77] E.P. Murray, T. Tsai and S.A. Barnett, Nature 400 (1999)649-651.
    [78] S. Park, R. Craciun, J.M. Vohs and R.J. Gorte, Journal of the Electrochemical Society 146(1999)3603-3605.
    [79] B. Huang, X.F. Ye, S.R. Wang, H.W. Nie, J. Shi, Q. Hu, J.Q. Qian, X.F. Sun and T.L.Wen, Journal of Power Sources 162 (2006)1172-1181.
    [80] W. Zhu, Y.H. Yin, C. Gao, C.R. Xia and GY. Meng, Chinese Journal of Chemical Physics 19 (2006)325-328.
    
    [81] J.H. Koh, Y.S. Yoo, J.W. Park and H.C. Lim, Solid State Ionics 149 (2002)157-166.
    [82] G.J. Saunders and K. Kendall, Journal of Power Sources 106 (2002)258-263.
    [83] G.J. Saunders, J. Preece and K. Kendall, Journal of Power Sources 131 (2004)23-26.
    [84] K. Kendall, M. Slinn and J. Preece, Journal of Power Sources 157 (2006)750-753.
    [85] Z.L. Zhan and S.A. Barnett, Science 308 (2005)844-847.
    [86] Z.L. Zhan and S.A. Barnett, Journal of Power Sources 157 (2006)422-429.
    [87] Z.L. Zhan and S.A. Barnett, Journal of Power Sources 155 (2006)353-357.
    
    [88] C.W. Sun, Z. Xie, C.R. Xia, H. Li and L.Q. Chen, Electrochemistry Communications 8(2006)833-838.
    [89] O.A. Marina, C. Bagger, S. Primdahl and M. Mogensen, Solid State Ionics 123(1999)199-208.
    
    [90] S. Zhao and R.J. Gorte, Applied Catalysis a-General 277 (2004)129-136.
    [91] S. McIntosh, J.M. Vohs and R.J. Gorte, Journal of the Electrochemical Society 150(2003)A470-A476.
    [92] C. Lu, W.L. Worrell, R.J. Gorte and J.M. Vohs, Journal of the Electrochemical Society 150(2003)A354-A358.
    
    [93] S. Mclntosh, J.M. Vohs and R.J. Gorte, Electrochimica Acta 47 (2002)3815-3821.
    [94] B.C.H. Steele, P.H. Middleton and R.A. Rudkin, Solid State Ionics 40-1 (1990)388-393.
    [95] Y.H. Yin, W. Zhu, C.R. Xia, C. Gao and GY. Meng, Journal of Applied Electrochemistry 34(2004)1287-1291.
    [96] S. Mclntosh, J.M. Vohs and R.J. Gorte, Electrochemical and Solid State Letters 6(2003)A240-A243.
    
    [97] J.A. Liu and S.A. Barnett, Solid State Ionics 158 (2003)11-16.
    [98] W. Wang, S.P. Jiang, A.I.Y. Tok and L. Luo, Journal of Power Sources 159 (2006)68-72.
    [99] S. Mclntosh and R.J. Gorte, Chemical Reviews 104 (2004)4845-4865.
    [100] S.H. Jensen, A. Hauch, P.V. Hendriksen, M. Mogensen, N. Bonanos and T. Jacobsen, J.Electrochem. Soc. 154 (2007)B1325-B1330.
    [101] R. Barfod, M. Mogensen, T. Klemenso, A. Hagen, Y.L. Liu and P.V. Hendriksen,Journal of the Electrochemical Society 154 (2007)B371-B378.
    [102] http://fscimage.fishersci.com/msds/28270.htm.
    [1]S.C.Singhal,Kendall,K.High Temperature Solid Oxide Fuel Cells:Fundamentals,Design and Applications,Elsevier(2003).
    [2]N.Q.Minh,Journal of the American Ceramic Society 76(1993)563-588.
    [3]R.J.Aaberg,R.Tunold,M.Mogensen,R.W.Berg and R.Odegard,Journal of the Electrochemical Society 145(1998)2244-2252.
    [4]M.Brown,S.Primdahl and M.Mogensen,Journal of the Electrochemical Society 147(2000)475-485.
    [5]A.Hauch,S.H.Jensen,J.B.Bilde-Sorensen and M.Mogensen,Journal of the Electrochemical Society 154(2007)A619-A626.
    [6]P.Holtappels,L.G.J.De Haart,U.Stimming,I.C.Vinke and M.Mogensen,Journal of Applied Electrochemistry 29(1999)561-568.
    [7]S.Primdahl and M.Mogensen,Journal of the Electrochemical Society 144(1997)3409-3419.
    [8]S.Primdahl and M.Mogensen,Solid State Ionics 152(2002)597-608.
    [9]K.Vels Jensen,S.Primdahl,I.Chorkendorff and M.Mogensen,Solid State Ionics 144(2001) 197-209.
    [10]R.J.Gorte,H.Kim and J.M.Vohs,Journal of Power Sources 106(2002)10-15.
    [11]R.J.Gorte,S.Park,J.M.Vohs and C.H.Wang,Advanced Materials 12(2000)1465-1469.
    [12]R.J.Gorte and J.M.Vohs,Journal of Catalysis 216(2003)477-486.
    [13]H.P.He,J.M.Vohs and R.J.Gorte,Journal of the Electrochemical Society 150(2003)A 1470-A 1475.
    [14]C.Lu,S.An,W.L.Worrell,J.M.Vohs and R.J.Gorte,Solid State Ionics 175(2004)47-50.
    [15]S.Mclntosh and R.J.Gorte,Chemical Reviews 104(2004)4845-4865.
    [16]S.D.Park,J.M.Vohs and R.J.Gorte,Nature 404(2000)265-267.
    [17]H.Uchida,N.Mochizuki and M.Watanabe,Journal of the Electrochemical Society 143(1996)1700-1704.
    [18]H.Uchida,T.Osuga and M.Watanabe,Journal of the Electrochemical Society 146(1999)1677-1682.
    [19]H.Uehida,H.Suzuki and M.Watanabe,Journal of the Electrochemical Society 145(1998)615-620.
    [20]H.Uchida,S.Suzuki and M.Watanabe,Electrochemical and Solid State Letters 6(2003)A 174-A 177.
    [21]J.Sfeir,P.A.Buffat,P.Mockli,N.Xanthopoulos,R.Vasquez,H.J.Mathieu,J.Van herle and K.R.Thampi,Journal of Catalysis 202(2001)229-244.
    [22]S.W.Tao and J.T.S.Irvine,Nature Materials 2(2003)320-323.
    [23]P.Vemoux,J.Guindet and M.Kleitz,Journal of the Electrochemical Society 145 (1998)3487-3492.
    [24]Y.H.Huang,R.I.Dass,Z.L.Xing and J.B.Goodenough,Science 312(2006)254-257.
    [25]A.Atkinson,S.Barnett,R.J.Gorte,J.T.S.Irvine,A.J.Mcevoy,M.Mogensen,S.C.Singhal and J.Vohs,Nature Materials 3(2004)17-27.
    [26]S.P.Jiang and S.H.Chan,Journal of Materials Science 39(2004)4405-4439.
    [27]M.Mogensen and K.Kammer,Annual Review of Materials Research 33(2003)321-331.
    [28]J.W.Fergus,Solid State Ionics 177(2006) 1529-1541.
    [29]M.Mogensen and S.Skaarup,Solid State Ionics 86-8(1996)1151-1160.
    [30]X.G.Wang,N.Nakagawa and K.Kato,Electrochemistry 70(2002)252-257.
    [31]J.Mizusaki,H.Tagawa,K.Tsuneyoshi and A.Sawata,Journal of the Electrochemical Society 138(1991)1867-1873.
    [32]L.G.J.Dehaart,R.A.Kuipers,K.J.Devries and A.J.Burggraaf,Journal of the Electrochemical Society 138(1991) 1970-1975.
    [33]H.Fukunaga,M.Ihara,K.Sakaki and K.Yamada,Solid State Ionics 86-8(1996)1179-1185.
    [34]C.W.Tanner,K.Z.Fung and A.V.Virkar,Journal of the Electrochemical Society 144(1997)21-30.
    [35]T.Kawada,I.Anzai,N.Sakai,H.Yokokawa and M.Dokiya,in Proc.of Sym.On High Temperature Electrode Materials and Characterization,edited by D.Macdonald and A.C.Khandkar(Electrochem.Soc.,Pennington,NJ) 97-40(1991 )228.
    [36]E.V.Tsipis and V.V.Kharton,Journal of Solid State Electrochemistry 12(2008)1039-1060.
    [37]S.Z.Wang and I.Tatsumi,Acta Physico-Chimica Sinica 19(2003)844-848.
    [38]K.Eguchi,T.Setoguchi,K.Okamoto and H.Arai,in Proc.of the International Fuel Cell Conf.(Makihad,Japan)(1992)530.
    [39]M.B.Joerger and L.J.Gauckler,in "SOFC-Ⅶ," edited by H.Yokokawa and S.C.Singhal(Electrochem.Soc.,Pennington,NJ) 2001-16(2001)662.
    [40]C.J.Wen,T.Masuyama,T.Yoshikawa,J.Otomo,H.Takahashi,K.Eguchi and K.Yamada,in "SOFC-Ⅶ," edited by H.Yokokawa and S.C.Singhal(Electroehem.Soc.,Pennington,NJ) 2001-16(2001)671.
    [41]刘铭飞,中温陶瓷膜燃料电池制备科学研究与性能表征,博士学位论文(2008).
    [42]S.Z.Wang,M.Ando,T.Ishihara and Y.Takita,Solid State Ionics 174(2004)49-55.
    [43]X.Zhang,M.Robertson,S.Yick,C.Dec?es-Petit,E.Styles,W.Qu,Y.Xie,R.Hui,J.Roller,O.Kesler,R.Made and D.Ghosh,Journal of Power Sources 160(2006)1211-1216.
    [44]C.R.Xia,F.L.Chen and M.L.Liu,Electrochemical and Solid State Letters 4(2001)A52-A54.
    [45]M.L.Liu and H.X.Hu,Journal of the Electrochemical Society 143(1996)L109-L112.
    [46]Y.H.Yin,W.Zhu,C.R.Xia,C.Gao and G.Y.Meng,Journal of Applied Electrochemistry 34(2004)1287-1291.
    [47]V.T.Amorebieta and A.J.Colussi,Journal of the American Chemical Society 118(1996)10236-10241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700