双层锰氧化物的电、磁性质及掺杂效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双层锰氧化物不仅具有一些与三维钙钛矿结构锰氧化物相似的性质,而且由于维度的降低,以及自身特别的结构,使得它又表现出了许多独特的性质。因此,它不仅为研究和认识混合价锰氧化物的本质特性提供了又一个独特的研究平台,而且通过它,可以探索一些在三维锰氧化物中观察不到的新现象。本文以双层锰氧化物La_(2-2x)Sr_(1+2x)Mn_2O_7为研究对象,选择以La_(1.4)Sr_(1.6)Mn_2O_7为母体化合物,重点对其A位和Mn位掺杂效应进行了系统地研究。主要内容和结果如下:
     介绍了混合价锰氧化物中所具有的一般性质和一些重要的理论模型与观点,接着介绍了双层锰氧化物具有自身特点的一些性质和特征,包括磁结构与相图、特殊的晶体结构、磁和电输运性质、磁电阻效应、轨道自由度等。在此基础上,提出了本论文的选题和研究内容的基本思路。
     对用固相反应法和溶胶-凝胶法来制备双层锰氧化物的最佳工艺条件进行了探索,分别用这两种方法成功制备出了高质量的样品,比较了这两种方法的优缺点。以名义组分为La4/3Sr5/3Mn2O7的样品为例,研究了烧结温度对其结构、电输运性质及磁电阻效应的影响,观察到了双层锰氧化物的电阻率随烧结温度的升高而增大的现象。用固相法成功制备出了La_(2-2x)Sr_(1+2x)Mn_2O_7( 0 .3≤x≤0.5)多晶样品,并对它们的结构、电、磁性质进行的探讨。
     在保持载流子浓度不变的前提下,特意选择Y和Ba这一小一大两种离子,对La_(1.4)Sr_(1.6)Mn_2O_7的A位进行掺杂研究,主要考察A位尺寸和失配效应对系统性质的影响。研究内容包括:La_(1.4-z)Y_zSr_(1.6)Mn_2O_7中的Y掺杂效应,La_(1.4)Sr_(1.6-y)Ba_yMn_2O_7中的Ba掺杂效应,La_(1.4-z)Y_zSr_(1.6-y)Ba_yMn_2O_7(z=y)中等量的Y和Ba共掺杂效应。结果表明,当z < 0.08、y≤0.3或者z=y < 0.08时,样品属于单相的双层结构,掺杂抑制的磁转变和绝缘体-金属转变,导致电阻率增大,转变处的磁电阻效应有所增强,当z≥0.08、y > 0.4或者z=y≥0.08时,样品不再是单相,而是出现了ABO3型钙钛矿相,使得绝缘体-金属转变逐渐向高温移动,同时电阻率下降。这说明离子大小失配使得双层四方相不易形成,较小离子的存在更不利于四方相的形成。比较了z=0.05, y=0; z=0,y=0.05; z=y=0.05三个样品的实验结果,发现Y的掺杂效应强于Ba的掺杂效应,而Y和Ba共掺杂效应最明显。因为Y掺杂增加的晶格畸变,而Ba掺杂减小了晶格畸变,所以Y掺杂比Ba掺杂有更大的掺杂效应。等量的Y和Ba共掺杂虽然能保持A位的平均离子半径几乎不变,但却进一步增大了离子大小的失配,导致最大的掺杂效应,证明了失配效应在这里起主导作用。
     研究了在La_(1.4)Sr_(1.6)Mn_2O_7的Mn位上的系列过渡元素掺杂效应,掺杂元素包括:Cr、Fe、Co、Ni、Cu、Zn、Ti、Nb、Mo等,掺杂浓度固定为2%。掺杂引起了系统的电、磁性质(诸如:三维磁转变温度TC、二维磁转变温度T*、绝缘体-金属转变温度TIM、电阻率、磁电阻、高场磁化强度,高温导电方式等)明显的变化。从掺杂离子的尺寸效应、与Mn离子之间不同的磁交换作用、Mn3+/Mn4+比的变化以及Mn-O-Mn网络和双交换作用的破坏等角度对实验结果进行了分析和讨论。Cr掺杂有明显不同的掺杂效应。在锰氧化物中,首次观察到Cr掺杂使得系统的TC、TIM同时升高,且电阻率下降这种现象。
     对La_(1.4)Sr_(1.6)(Mn_(1-y)Cr_y)_2O_7 (0≤y≤0.1)系列的电、磁性质,特别是磁性质进行了研究。我们发现Cr较低掺杂和较高掺杂对电、磁性质有明显不同的影响。随着Cr掺杂的增加,TIM先升后降,峰值电阻率先降后升。TC也先升高,然后几乎保持不变。TC和T*的变化也不一致,随着Cr掺杂,T*单调地下降,且与掺杂浓度几乎成线性关系。这些结果仅仅用双交换不能很好地理解。通过综合考虑Cr掺杂对双层内及双层间磁相互作用的不同影响,我们较合理地解释了其掺杂效应。
The bilayer manganites not only possess some similar properties with the three-dimensional perovskite manganites, but also show many own unique properties due to the decrease of dimension and particular structure. So, the bilayer manganites offer the opportunity not only to investigate the generic features of the mixed-valence manganites , but also to explore phenomena that are not found in the 3D manganites. In this thesis, we focus on the bilayer manganites La_(2-2x)Sr_(1+2x)Mn_2O_7, and choose La_(1.4)Sr_(1.6)Mn_2O_7 as parent compound to investigate systematically it’s A-site and Mn-site doping effect. The major investigations and results are presented as follow:
     The introduction on the generic properties of the mixed-valence manganites and some important theory model and viewpoints has been presented. Then some features of the bilayer manganites are introduced, and these features include magnetic structure and phase diagram, crystal structure, magnetic and electrical transport properties, magnetoresistance effect, the orbital degrees of freedom etc. On the basis of the review, the basic thinking of subject selection and investigation significance is put forward.
     The high quality samples have been successfully synthesized by the solid state reaction method and sol-gel method, respectively. The virtue and shortcoming of the two methods is compared. For the sample with nominal composition La4/3Sr5/3Mn2O7, the effect of sintering temperature on the structure and transport properties and magnetoresistance are investigated, and we find the resistivity of the bilayer manganites increases with the increase of sintering temperature. The polycrystalline La_(2-2x)Sr_(1+2x)Mn_2O_7 (0.3≤x≤0.5) samples were successfully synthesized by the solid state reaction method and their structure and electrical and magnetic properties were studied and discussed.
     With the carrier concentration kept the constant, the small ion Y and the big one Ba are chosen to study the A site doping of La_(1.4)Sr_(1.6)Mn_2O_7 and the main study focus is on the influence of A-site size and mismatch on the system properties. The research includes: Y doping in La_(1.4-z)Y_zSr_(1.6)Mn_2O_7, Ba doping in La_(1.4)Sr_(1.6-y)Ba_yMn_2O_7 and the co-doping of Y and Ba of the same content in La_(1.4-z)Y_zSr_(1.6-y)Ba_yMn_2O_7(z=y). The result shows that when z < 0.08、y≤0.3 or z=y < 0.08, the sample is a single phase of bilayer structure. The doping suppresses the magnetic transition and insulator-metal transition (IMT) which results in the increases of the resistivity and the magnetoreaiatance increases near IMT. When z≥0.08、y > 0.4 or z=y≥0.08, the sample is no longer in single phase but includes the perovskite phase of ABO3 type, which shifts IMT towards higher temperature and decreases resistivity. This shows that ionic size mismatch makes it difficult to form bilayer phase and the existence of smaller ions makes it more difficult for tetragonal phase to form. Through the comparison of the experiment results of three samples which are z=0.05, y=0; z=0, y=0.05; z=y=0.05, it is discovered that Y doping has greater doping effect than Ba doping and the co-doping of Y and Ba has the most obvious effect. Because Y doping increases lattice distortion and Ba doping decreases it, Y doping has greater doping effects than Ba doping. Though co-doping of Y and Ba of the same content can keep the average A-site ionic radius nearly constant, it further increases ionic size mismatch and results in the greatest doping effect, which proves that the size mismatch plays a dominant role here.
     The thesis also studied the doping effects of series transition element on Mn-site of La_(1.4)Sr_(1.6)Mn_2O_7. The transition elements include Cr、Fe、Co、Ni、Cu、Zn、Ti、Nb、Mo, etc and the doping concentration is fixed as 2%. Doping causes obvious changes of electronic and magnetic properties (such as the three-dimensional magnetic transition temperature TC, the two-dimensional magnetic transition temperature T*, and the insulator-metal transition temperature TIM, resistivity, magnetoreaiatance, high field magnetization, and high temperature conductance). The thesis also analysed and studied the experiment results by considering the size effect of doping ions, the different magnetic interaction between doping ions and Mn ions, the change of Mn3+/Mn4+ ratio and the damage of Mn-O-Mn network and double-exchange interaction etc. Cr has obvious different doping effects. It is observed for the first time that Cr doping increases Tc and TIM at the same time in manganites and resistivity decreases.
     The thesis studied the electrical and magnetic properties of the La_(1.4)Sr_(1.6)(Mn_(1-y)Cr_y)_2O_7 (0≤y≤0.1) series and studied magnetic properties especially. We have found that lower Cr doping and higher Cr doping has obviously different effects on electrical and magnetic properties. With the increase of Cr doping, TIM increases first and then decreases while peak resistivity decreases first and then increases. TC also increases first and then keeps almost the same. The change of TC does not correspond to that T*. With Cr doping T* decreases monotonously and almost follows linear relation with the doping concentration. All these results can not be explained well by double-exchange interaction. Through considering the different influences of Cr doping on intrabilayer and interbilayer magnetic interaction, we have explained reasonably its doping effect.
引文
[1]刘俊明,王克锋.稀土掺杂锰氧化物庞磁电阻效应.物理学进展, 2005, 25: 82-130
    [2] Zener C. Interaction Between the d Shells in the Transition Metals. Phys. Rev., 1951, 81: 440-444
    [3] Anderson P W and Hasegawa H. Consideration on Double Exchange. Phys. Rev, 1955, 100: 675-681
    [4] de Gennes P–G. Effects of Double Exchange in Magnetic Crystals. Phys. Rev. 1960, 118: 141-154
    [5] Kusters R M, Singleton J, Keen D A et al. Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3. Physica B, 1989, 155: 362-365
    [6] Chahara K, i Ohno T, Kasai M et al. Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett., 1993, 63: 1990-1992
    [7] Helmolt R Von, Wecker J, Holzapfel B et al.. Magnetoresistance in perovskite La2/3Ba1/3MnO3 films. Phys. Rev. Lett., 1993, 71: 2331-2335
    [8] Jin S, Tiefel T H, McCormack M et al. Thousandfold change in magnetoresistive La-Ca-Mn-O films. Science, 1994, 264: 413-415
    [9] Tokura Y, Urushibara A, Moritomo Y et al. Giant magnetotransport phenomena in filling-controlled Kondo-lattice system-La1-xSrxMnO3. J. Phys. Soc. Jap, 1994, 63 : 3931-3935
    [10] Asamitsu A, Moritomo Y, Tomioka Y et al. A structural phase-transition induced by an external magnetic-field. Nature, 1995, 373: 407-409
    [11] Millis A J, Littlewood P B and Shraiman B I. Double exchange alone does not explain resistivity of La1-xSrxMnO3. Phys.Rev.Lett., 1995, 74: 5144-5147
    [12] Goodenough J B and Longon J M. Magnetic and Other Properties of Oxidesand Related Compounds. Landolt-Bornstein, New Series, Group III, Vol.4, Pt. a Springer, Berlin, 1970
    [13] Schiffer P, Ramirez A P, Bao W et al. Low-temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. Phys. Rev. Lett., 1995, 75: 3336-3339
    [14] Goodenough J B. Colossal Magnetoresistance in Ln1-xAxMnO3 perovskites, Aust. J. Phys., 1999, 52: 155-186
    [15] Tomioka Y, Asamitsu A and Tokura Y. Magnetotransport properties and magnetostructure phenomenon in single crystals of La0.7(Ca1-ySry)0.3MnO3, Phys. Rev. B, 2001, 63: 024421-1-6
    [16] McCormack M, Jin S, Tiefel T H et al. Very large magnetoresistance in perovskite-like La-Ca-Mn-O thin films. Appl. Phys. Lett., 1994, 64: 3045-3049
    [17] Jin S, O’Bryan H M, Tiefel T H et al. Large magnetoresistance in polycrystalline La–Y–Ca–Mn–O. Appl. Phys. Lett., 1995, 66: 382-386
    [18] Jin S, Tiefel T H, McCormack M et al. Thickness dependence of magnetoresistance in La–Ca–Mn–O epitaxial films. Appl. Phys. Lett., 1995, 67: 557-562
    [19] Coey J M D, Viret M and von Molnár S. Mixed-valence manganites. Adv. Phys., 1999, 48: 167-293
    [20] Tokura Y, Urushibara A, Moritomo Y et al. J. Phys. Soc. Japan, 1994, 63: 3931-3935
    [21] Urushibara A, Moritomo Y, Arima T et al. Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys. Rev. B, 1995, 51: 14103-1-8
    [22] Fontcuberta J, Mart′?nez B, Seffar A et al. Colossal Magnetoresistance of Ferromagnetic Manganites: Structural Tuning and Mechanisms. Phys. Rev. Lett., 1996, 76: 1122-1126
    [23] Guo-Qiang Gong, Chadwick Canedy and Gang Xiao. Colossalmagnetoresistance of 1000000 fold magnitude achieved in the antiferromagnetic phase of La1-xCaxMnO3. Appl. Phys. Lett., 1995, 67: 1783-1785
    [24] Hwang H Y, Cheong S-W, Ong N P et al. Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett., 1995, 75: 914-919
    [25] Sanchez R D, Rivas J, Vazquez-Vazquez C et al. Giant magnetoresistance in fine particle of La2/3Ca1/3MnO3 Synthesized at low temperature. Appl. Phys. Lett., 1996, 68: 134-136
    [26] Anderson P W. Antiferromagnetism. Theory of Superexchange Interaction Phys. Rev, 1950, 79: 350-356
    [27] Millis A J, Shraiman B I and Mueller R. Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrxMnO3. Phys. Rev. Lett., 1996, 77: 175-178
    [28] Millis A J, Mueller R and Shraiman B I. Fermi-liquid-to-polaron crossover. I. General results. Phys. Rev. B, 1996, 54: 5389-5393
    [29] Millis A J, Mueller R and Shraiman B I. Fermi-liquid-to-polaron crossover. II. Double exchange and the physics of colossal magnetoresistance. Phys. Rev. B, 1996, 54: 5405-5409
    [30] Snyder G J, Hiskes R, DiCarolis S. Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B, 1996, 53: 14 434-14444
    [31] Ziese M and Srinitiwarawong C. Polaronic effects on the resistivity of manganite thin films. Phys. Rev. B, 1998, 58: 11519-11525
    [32] Jaime M, Salamon M B, Rubinstein M. High-temperature thermopower in La2/3Ca1/3MnO3 films: Evidence for polaronic transport. Phys. Rev. B, 1996, 54: 11914-11918
    [33] Palstra T T M, Ramirez A P, Cheong S-W. Transport mechanisms in dopedLaMnO3: Evidence for polaron formation. Phys. Rev. B, 1997, 56: 5104-5107
    [34] Jaime M, Hardner H T, Salamon M B. Hall-Effect Sign Anomaly and Small-Polaron Conduction in (La1-xGdx)0.67Ca0.33MnO3. Phys. Rev. Lett., 1997, 78: 951-954
    [35] Wang L, Yin J, Huang S. Thermally activated drift mobility and small polaron conduction in La0.75Sr0.11Ca0.14MnO3 thin films investigated by the traveling wave method. Phys. Rev. B, 1999, 60: R6976-6980
    [36] Adams C P, Lynn J W, Mukovskii Y M et al. Charge Ordering and Polaron Formation in the Magnetoresistive Oxide La0.7Ca0.3MnO3. Phys. Rev. Lett., 2000, 85: 3954-3957
    [37] Zhang J, Dai P, Fernandez-Baca J A et al. Jahn-Teller Phonon Anomaly and Dynamic Phase Fluctuations in La0.7Ca0.3MnO3. Phys. Rev. Lett., 2001, 86: 3823-3826
    [38] De Teresa J M, Ibarra M R, Algarabel P A et al. Evidence for magnetic polarons in the magnetoresistive perovskites. Nature, 1997, 387: 256-259
    [39] Allodi G, De Renzi R and Guidi G. 139La NMR in lanthanum manganites: Indication of the presence of magnetic polarons from spectra and nuclear relaxations. Phys. Rev. B, 1998, 57: 1024-1029
    [40] Kapusta Cz, Riedi P C, Kocemba W et al. 55Mn nuclear magnetic resonance study of mixed-valence manganites. J. Phys.:Condens. Matter, 1999, 11: 4079-4086
    [41] Shengelaya A, Zhao G, Keller H et al. EPR Evidence of Jahn-Teller Polaron Formation in La1-xCaxMnO3+y. Phys. Rev. Lett, 1996, 77: 5296-5299
    [42] Zhao G, Hunt M B and Keller H. Strong Oxygen-Mass Dependence of the Thermal-Expansion Coefficient in the Manganites (La1-xCax)1-yMn1-yO3. Phys. Rev. Lett., 1997, 78: 955-959
    [43] Babushkina N A, Belova L M, Gorbenko O Yu et al. Metal–insulator transitioninduced by oxygen isotope exchange in the magnetoresistive perovskite manganites. Nature, 1998, 391: 159-161
    [44] Franck J P, Isaac I, Chen W et al. Oxygen-isotope effect of the paramagnetic-insulating to ferromagnetic-metallic transition in La1-xCaxMnO3. Phys. Rev. B, 1998, 58: 5189-5192
    [45] Booth C H, Bridges F, Kwei G H et al. Direct Relationship between Magnetism and MnO6 Distortions in La1-xCaxMnO3. Phys. Rev. Lett., 1998, 80: 853-856
    [46] Lanzara A, Saini N L, Brunelli M et al. Crossover from Large to Small Polarons across the Metal-Insulator Transition in Manganites. Phys. Rev. Lett., 1998, 81: 878-881
    [47] Zhou J-S and Goodenough J B. Phonon-Assisted Double Exchange in Perovskite Manganites. Phys. Rev. Lett., 1998, 80: 2665-2668
    [48] Capone M, Feinberg D and Grilli M. Stabilization of A-type layered antiferromagnetic phase in LaMnO3 by cooperative Jahn-Teller deformations. Eur. Phys. J. B, 2000, 17: 103-109
    [49] Goodenough J B. Frist changes in ionic/covalent bonding. Ferroelectrics, 1992, 130: 77-86
    [50] Archibald W, Zhou J-S and Goodenough J B. First-order transition at TC in the orthomanganites. Phys. Rev. B, 1996, 53: 14445-14449
    [51] Rivadulla F, López-Qunitela M A, Mira J et al. Jahn-Teller vibrational anisotropy determines the magnetic structure in orthomanganites. Phys. Rev. B, 2001, 64: 052403-1-4
    [52] Zhou J-S, Goodenough J B, Asamitsu A et al. Pressure-Induced Polaronic to Itinerant Electronic Transition in La1-xSrxMnO3 Crystals. Phys. Rev. Lett., 1997, 79: 3234-3237
    [53] Zhou J-S and Goodenough J B. Zener versus de Gennes ferromagnetism in La1-xSrxMnO3. Phys. Rev. B, 2000, 62: 3834-3838
    [54] Coey J M D, Viret M and Ranno L. Electron Localization in Mixed-Valence Manganites. Physical Review Letters, 1995, 75: 3910-3913
    [55] Viret M, Ranno L and Coey J M D. Magnetic Localization in Mixed-Valence Manganites. Physical Review B, 1997, 55: 8067-8070
    [56] Alexandrov A S and Bratkovsky A M. Carrier Density Collapse and Colossal Magnetoresistance in Doped Manganites. Phys. Rev. Lett., 1999, 82: 141-145
    [57] Alexandrov A S and Bratkowsky A M. Theory of colossal magnetoresistance in doped manganites. J. Phys.: Condens. Matter, 1999, 11: 1989-2005
    [58] Alexandrov A S and Bratkowsky A M. Colossal magneto-optical conductivity in doped manganites. Phys. Rev. B, 1999, 60: 6215-6218
    [59] Alexandrov A S and Bratkowsky A M. The essential interactions in oxides and spectral weight transfer in doped manganites. J. Phys.: Condens. Matter, 1999, 11: L531-539
    [60] Ju H L, Sohn H-C and Krishnan K M. Evidence for O2p Hole-Driven Conductivity in La1-xSrxMnO3 (0≤x≤0.7) and La0.7Sr0.3MnOz Thin Films, Phys. Rev. Lett., 1997, 79: 3230-3233
    [61] Alexandrov A S, Zhao G-M, Keller H et al. Evidence for polaronic Fermi liquid in manganites. Phys. Rev. B, 2001, 64: R140404-1-4
    [62] Jakob G, Martin F, Westerburg W et al. Evidence of charge-carrier compensation effects in La0.67Ca0.33MnO3. Phys. Rev. B, 1998, 57: 10252-10255
    [63] Matl P, Ong N P, Yan Y F et al. Hall effect of the colossal magnetoresistance manganite La1-xCaxMnO3. Phys. Rev. B, 1998, 57: 10248-10251
    [64] Ziese M. Grain-boundary magnetoresistance in manganites: Spin-polarized inelastic tunneling through a spin-glass-like barrier. Phys. Rev. B, 1999, 60: R738-741
    [65] Zhao G, Smolyaninova V, Prellier W et al. Electrical Transport in theFerromagnetic State of Manganites: Small-Polaron Metallic Conduction at Low Temperatures. Phys. Rev. Lett., 2000, 84: 6086-6090
    [66] Zhao G,Wang Y S, Kang D J et al. Phys., 2000, 32: 148-151
    [67] Dagotto E, Hotta T and Moreo A. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep., 2001, 344: 1-153
    [68] Bastiaansen P J M and Knops H J F. Percolation mechanism for colossal magnetoresistance. J. Phys. Chem. Solids, 1998, 59: 297-301
    [69] Moreo A, Yunoki S and Dagotto E. Phase Separation Scenario for Manganese Oxides and Related Materials. Science, 1999, 283: 2034-2038
    [70] F?th M, Freisem S, Menovsky A A et al. Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites. Science, 1999, 285: 1540-1544
    [71] Mayr M, Moreo A, Verg′es J A et al. Resistivity of Mixed-Phase Manganites. Phys. Rev. Lett., 2001, 86: 135-139
    [72] Dzero M O, Gor’kov L P and Kresin V Z. Peculiarities in low temperature properties of doped manganites A1?xBxMnO3. Eur. Phys. J. B, 2000, 14: 459-471
    [73] Moritomo Y. Magnetic and electronic properties in hole-doped manganese oxides with layered structures: La1-xSr1+xMnO4. Phys. Rev. B, 1995, 51: 3297-3300
    [74] Moritomo Y, Asamitsu A, Kuwahara H et al. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature, 1996, 380: 141-144
    [75] Kimura T, Tomioka Y, Kuwahara H at al. Interplane tunneling magnetoresistance in a layered manganite crystal. Science, 1996, 274: 1698-1701
    [76] Tang Y K, Ma X, Kou Z Q et al. Slight La doping induced ferromagneticclusters in layered La3-3xSr 1+3xMn3O10(x=1.00, 0.99, 0.95). Phys. Rev. B, 2005, 72: 132403-132404
    [77] Battle P D, Cox D E, Green M A et al. Antiferromagnetism, Ferromagnetism, and Phase Separation in the GMR System Sr2-xLa1+xMn2O7. Chem. Mater., 1997, 9: 1042-1049
    [78] Argyriou D N, Mitchell J F, Potter C D et al. Unconventional magnetostriction in layered La1.2Sr1.8Mn2O7: Evidence for spin-lattice coupling above TC. Phys. Rev. B, 1997, 55: 11965-11968
    [79] Perring T G, Aeppli G, Kimura T et al. Ordered stack of spin valves in a layered magnetoresistive perovskite. Phys. Rev. B, 1998, 58: 14693-14696
    [80] Hirota K, Moritomo Y, Fujioka K et al. Neutron-Diffraction Studies on the Magnetic Ordering Process in the Layered Mn Perovskite La2-2xSr1+2xMn2O7. J. Phys. Soc. Japan, 1998, 67: 3380-3385
    [81] Kubota M, Fujioka H, Ohoyama K et al. Neutron scattering studies on magnetic structure of the double-layered manganite La2?2xSr1+2xMn2O7 (0.30≤x≤0.50). J. Phys. Chem. Solids, 1999, 60: 1161-1164
    [82] Argyriou D N, Mitchell J F, Radaelli P G et al. Lattice effects and magnetic structure in the layered colossal magnetoresistance manganite La2-2xSr1+2xMn2O7, x = 0.3. Phys. Rev. B, 1999, 59:8695-8702
    [83] Chatterji T, Thalmeier P, McIntyre G J et al. Low-energy magnetic excitations in double-layered manganite La1.2Sr1.8Mn2O7. Europhys. Lett., 1999, 46: 801-805
    [84] Rosenkranz S, Osborn R, Mitchell J F et al. Low-energy spin-wave excitations in the bilayer manganite La1.2Sr1.8Mn2O7. J. Appl. Phys, 2000, 87: 5816-5820
    [85] Perring T G, Moritomo Y and Tokura Y. Antiferromagnetic Short Range Order in a Two-Dimensional Manganite Exhibiting Giant Magnetoresistance. Phys. Rev. Lett., 1997, 78:3197-3200
    [86] Osborn R, Rosenkranz S, Argyiou D N et al. Neutron Scattering Investigation of Magnetic Bilayer Correlations in La1.2Sr1.8Mn2O7: Evidence of Canting above TC. Phys. Rev. Lett., 1998, 81:3964-3967
    [87] Fujioka H, Kubota M, Hirota K et al. Spin dynamical properties of the layered perovskite La1.2Sr1.8Mn2O7. J. Phys. Chem. Solids, 1999, 60: 1165-1168
    [88] Chatterji T, Regnault L P, Thalmeier P et al. Spin waves in the quasi-two-dimensional ferromagnetic bilayer manganite La1.2Sr1.8Mn2O7. Phys. Rev. B, 1999, 60: 6965-6968
    [89] Ling C D, Millburn J E, Mitchell J F et al. Interplay of spin and orbital ordering in the layered colossal magnetoresistance manganite La2-2xSr1+2xMn2O7 ( 0 .5≤x≤1.0). Phys. Rev. B, 62: 15096-15111
    [90] Akimoto T, Maruyama Y, Morimoto Y et al. Antiferromagnetic metallic state in doped manganites. Phys. Rev. B, 1998, 57: R5594-5597
    [91] Battle P D, Green M A, Laskey N S. Layered Ruddlesden-Popper Manganese Oxides: Synthesis and Cation Ordering. Chem. Mater., 1997, 9: 552-559
    [92] Okamoto S, Ishihara S and Maekawa S. Orbital structure and magnetic ordering in layered manganites:Universal correlation and its mechanism. Phys. Rev. B, 2001, 63: 104401-1-6
    [93] Mitchell J F, Argyriou D N, Jorgensen J D et al. Charge delocalization and structural response in layered La1.2Sr1.8Mn2O7: Enhanced distortion in the metallic regime. Phys. Rev. B, 1997, 55(1): 63-66
    [94] Kimura T, Tomioka Y, Asamitsu A et al. Anisotropic Magnetoelastic Phenomena in Layered Manganite Crystals: Implication of Change in Orbital State. Phys. Rev. Lett., 1998, 81: 5920-5923
    [95] Medarde M, Mitchell J F, Millburn J E et al. Optimal TC in Layered Manganites: Different Roles of Coherent and Incoherent Lattice Distortions. Phys. Rev. Lett., 1999, 83: 1223-1226
    [96] Ishikawa T, Tobe K, Kimura T et al. Optical study on the doping and temperature dependence of the anisotropic electronic structure in bilayered manganites: La2-2xSr1+2xMn2O7 ( 0 .30≤x≤0.50), Phys. Rev. B, 2000, 62: 12354-12362
    [97] Kimura T, Asamitsu A, Tomioka Y et al. Pressure-Enhanced Interplane Tunneling Magnetoresistance in a Layered Manganite Crystal. Phys. Rev. Lett., 1997, 79: 3720-3723
    [98] Heffner R H, MacLaughlin D E, Nieuwenhuys G J et al. Effects of Reduced Dimensionality on Spin Dynamics in the Layered Perovskite La1.4Sr1.6Mn2O7. Phys. Rev. Lett., 1998, 81: 1706-1709
    [99] Dho J, Kim W S, Choi H S et al. Re-entrant charge-ordering behaviour in the layered manganites La2-2xSr1+2xMn2O7. J. Phys. Condens. Matter, 2001, 13: 3655-3663
    [100] Romero D B, Podobedov V B, Weber A et al. Polarons in the layered perovskite manganite La1.2Sr1.8Mn2O7. Phys. Rev. B, 1998, 58: R14737-14740
    [101] Yamamoto K, Kimura T, Ishikawa T et al. Probing Charge/Orbital Correlation in LaSr2Mn2O7 by Raman Spectroscopy. J. Phys. Soc. Jpn., 1999, 68: 2538-2541
    [102] Yamamoto K, Kimura T, Ishikawa T et al. Raman spectroscopy of the charge-orbital ordering in layered manganites. Phys. Rev. B, 2000, 61: 14706-14715
    [103] Liu L, Zhang L J, Niu L Y et al. Effect of sintering temperature on the structure and transport properties of La4/3Sr5/3Mn2O7. Mater. Sci. Eng. B, 2005, 117: 227-230
    [104] Akimoto T, Moritomo Y, Ohoyama K et al. Interrelation between orbital polarization and magnetic structure in bilayer manganites, Phys. Rev. B, 1999,59: 14153-14156
    [105] Koizumi A, Miyaki S, Kakutani Y et al. Study of the eg Orbitals in the Bilayer Manganite La2-2xSr1+2xMn2O7 by Using Magnetic Compton-Profile Measurement. Phys. Rev. Lett., 2001, 86: 5589-5592
    [106] Perring T G, Adroja D T, Chaboussant G et al. Spectacular Doping Dependence of Interlayer Exchange and Other Results on Spin Waves in Bilayer Manganites. Phys. Rev. Lett., 2001, 87: 217201-217204
    [107] Hirota K, Ishihara S, Fujioka H et al. Spin dynamical properties and orbital states of the layered perovskite La2-2xSr1+2xMn2O7 (0.3≤x<0.5). Phys. Rev. B, 2002, 65: 064414-1-10
    [108] Moritomo Y, Ishikawa H and Nakamura A. Interrelation between cluster orbital and spin ordering in bilayer manganites. Phys. Rev. B, 2003, 68: 064417-1-4
    [109] Kim K H, Uehara M, Hess C et al. Thermal and Electronic Transport Properties and Two-Phase Mixtures in La5/8-xPrxCa3/8MnO3. Phys. Rev. Lett., 2000, 84:2961-2964
    [110] Hwang H Y, Cheong S-W, Ong N P, et al. Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett., 1996, 77:2041-2044
    [111] Dho J, Kim W S, Choi H S et al. Macroscopic phase separation in layered manganite induced by a surface effect. Solid State Commun., 2001, 117:517-521
    [112] Hur N H, Kim Jin-Tae, Yoo K H et al. Effect of lanthanide ions on the magnetotransport properties in layered Sr1.6R1.4Mn2O7 (R=La, Pr, Nd, Gd). Phys. Rev. B, 1998, 57: 10740-10744
    [113] Chauvet O, Goglio G, Molinie P et al. Ferromagnetic Clusters and Magnetic Polarons as Evidenced by ESR in La1.35Sr1.65Mn2O7. Phys. Rev. Lett., 1998, 81:1102-1105
    [114] Wang A H, Liu Y, Zhang Z Y et al. Magnetic entropy change and colossal magnetoresistance effect in the layered perovskite La1.34Sr1.66Mn2O7. Solid State Commun., 2004, 130: 293-296
    [115] Gundakaram R, Lin J G, Lee F Y et al. Cr doping in the La1.2Sr1.8Mn2O7 system. J. Phys.: Condens. Matter, 1999, 11:5187-5194
    [116] Kimura T, Kumai R, Tokura Y et al. Successive structural transitions coupled with magnetotransport properties in LaSr2Mn2O7. Phys. Rev. B, 1998, 58: 11081-11084
    [117] Chi E O, Kwon Y -U, Kim J -T et al. Lattice effects on the magnetic and transport properties in La1.4Sr1.6-xAxMn2O7 (A = Ca, Ba). Solid State Commun., 1999, 110:569–574
    [118] Zhu Hong, Liu XianMing, Ruan KeQing et al. Magnetic inhomogeneity and variable-range hopping transport at temperatures above the ferromagnetic transition in La1.4Sr1.6Mn2-xTixO7 system. Phys. Rev. B, 2002, 65:104424-1-7
    [119] Moritomo Y, Maruyama Y, Akimoto T et al. Metal-insulator transition in layered manganites: (La1-zNdz)1.2Sr1.8Mn2O7. Phys. Rev. B, 1997, 56: R7057-7060
    [120] Moritomo Y, Ohoyama K, Ohashi M. Competition of interbilayer magnetic couplings in R1.4Sr1.6Mn2O7 (R=La1-zNdz). Phys. Rev. B, 1999, 59: 157-160
    [121] Akimoto T, Moritomo Y, Ohoyama K et al. Interrelation between orbital polarization and magnetic structure in bilayer manganites. Phys. Rev. B, 1999, 59: R14153-14156
    [122] Dho J, Kim W S, Hur N H. Relaxorlike spin-glass phase in the layered manganite (La0.8Gd0.2)1.4Sr1.6Mn2O7. Phys. Rev. B, 2001, 65: 024404-1-6
    [123] Takemoto M, Katada A, Ikawa H. Effect of lattice contraction on magnetotransport properties of layered manganites La1.4Sr1.6-xCaxMn2O7. Solid State Commun., 1999, 109: 693-697
    [124] Zhu H, Tan S, Tong W et al. Percolative metal–insulator transition in layered manganites La1.4Sr1.6-yBayMn2O7 (y≤0.50). Appl. Phys. Lett., 2002, 80: 3778-3780
    [125] Zhu H, Zhu D L, Y.H. Zhang. Effect of lattice expansion on the magnetotransport properties in layered manganites La1.4Sr1.6-yBayMn2O7 J. Appl. Phys., 2002, 92: 7355-7361
    [126]刘莉,钙钛矿锰氧化物的电、磁性质及掺杂效应,华中科技大学博士学位论文,华中科技大学图书馆,2005
    [127]李广,择优掺杂Mn基氧化物中半导体-金属转变和超大磁电阻效应,中科院博士学位论文,1999
    [128] Okuda T, Kimura T, Tokura Y. Low-temperature transport properties in a bilayered manganite La1.3Sr1.7Mn2O7. Phys. Rev. B, 1999, 60: 3370-3374
    [129] Vasiliu-Doloc L, Rosenkranz S, Osborn R et al. Charge melting and polaron collapse in La1.2Sr1.8Mn2O7. Phys. Rev. Lett., 1999, 83: 4393-4396
    [130] Chen X J, Zhang C L, Almasan C C et al. Small-polaron hopping conduction in bilayer manganite La1.2Sr1.8Mn2O7. Phys. Rev. B, 2003, 67: 094426-1-4
    [131] Zhang C L, Chen X J, Almasan C C et al. Low-temperature electrical transport in bilayer manganite La1.2Sr1.8Mn2O7. Phys. Rev. B, 2002, 65: 134439-1-5
    [132] Izumi F, Ikeda T. A Rietveld-analysis program RIETAN-2000. Mater. Sci. Forum, 2000, 321-324: 198-203
    [133] Zhang J, Wang F, Zhang P et al. Effect of Fe doping on magnetic properties and magnetoresistance in La1.2Sr1.8Mn2O7. J. Appl. Phys., 1999, 86: 1604-1606
    [134] Zhang J, Yan Q, Wang F et al. Magnetic and transport properties of layered La1.2Sr1.8Mn2-xTxO7 (T=Fe, Co, Cr). J. Phys: Condens. Matter., 2000, 12: 1981-1990
    [135] Weigand F, Gold S, Schmid A et al. Antiparallel ruthenium coupling in doped La1.2Sr1.8Mn2-xRuxO7. Appl. Phys. Lett., 2002, 81: 2035-2037
    [136] Onose Y, He J P, Kannko Y et al. Impact of Ru doping in bilayered manganese oxide La1.2Sr1.8Mn2O7. Appl. Phys. Lett., 2005, 86: 242502-242504
    [137] Nair Sunil, Banerjee A. Dilution of two-dimensional antiferromagnetism by Mn site sunstitution in La1Sr2Mn2-xAlxO7. Phys. Rev. B, 2004, 70: 104428-1-6
    [138] Zhang R L, Zhao B C, Song W H et al. The influence of Cr doping on the charge-ordering state in the bilayered LaSr2Mn2O7. J. Appl. Phys., 2004, 96: 4965-4969
    [139] Matsukawa M, Chiba M, Kikuchi E et al. Effect of suppression of local distortion on the magnetic, electrical, and thermal transport properties of the Cr-substituted bilayer manganite LaSr2Mn2O7. Phys. Rev. B, 2005, 72: 224422-1-8
    [140] Zhang R L, Song W H, Ma Y Q et al. Influence of Co doping on the charge-ordering state of the bilayered manganite LaSr2Mn2O7. Phys. Rev. B, 2004, 70: 224418-1-5
    [141] Ang R, Lu W J, Zhang R L et al. Effects of Co doping in bilayered manganite LaSr2Mn2O7: Resistivity, thermoelectric power and thermal conductivity. Phys. Rev. B, 2005, 72: 184417-1-8
    [142] Zhu H, Xu X J, Pi L et al. Two-dimensional magnetic correlation and transport behavior of layered manganite La1.4Sr1.6Mn2-xCuxO7. Phys. Rev. B, 2000, 62: 6754-6760
    [143] Ghosh K, Ogale S B, Ramesh R et al. Transition-element doping effects in La0.7Ca0.3MnO3. Phys. Rev. B, 1999, 59: 533-537
    [144]司继伟,曹庆琪,顾本喜等.层状钙钛矿La1.2Sr1.8Cu0.04Mn1.96O7中的自旋玻璃态和输运性质.中国稀土学报, 2005, 23: 723-726
    [145] Yuan S L, Zhang L J, Xia Z C et al. Effect of sintering temperature on electronic transport and low-field colossal magnetoresistance in sol-gel prepared polycrystals of nominal La2/3Ca1/3Mn0.96Cu0.04O3. Phys. Rev. B, 2003, 68: 172408-1-4.
    [146] Pe?a A, Gutiérrez J, Barandiarán J M et al. Magnetism in La0.7Pb0.3(Mn0.9TM0.1)O3 (TM=Fe, Co, Ni) CMR perovskites. J. Magn. Magn. Mater., 2001, 226-230: 831-833
    [147] Song H, Kim W, Kwon S J et al. Magnetic and electronic properties of transition-metal-substituted perovskite-La0.7Ca0.3Mn0.95X0.05O3. J. Appl. Phys., 2001, 89: 3398-3402
    [148] Young S L, Chen Y C, Chen H Z et al. Effect of substitutions of Ni3+, Co3+ and Fe3+ for Mn on the ferromagnetic states of the La0.7Pb0.3MnO3. J. Appl. Phys., 2002, 91: 8915-8917
    [149] Goodenough J B, Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3 [J]. Phys. Rev., 1955, 100 (2): 564-573
    [150] Zhang L W, Feng Gong, Liang He et al. The magnetotransport properties of LaMn1-xCrxO3 manganites J. Magn. Magn. Mater., 2000, 219: 236-240
    [151] Sun Young, Tong Wei, Xu Xiaojun et al. Possible double-exchange interaction between manganese and chromium in LaMn1-xCrxO3. Phys. Rev. B, 2001, 63: 174438-1-5
    [152] Morales L, Allub R, Alascio B et al. Structural and magnetotransport properties of LaMn1?xCrxO3.00 (0≤x≤0.15): Evidence of Mn3+-O-Cr3+ double-exchange interaction. Phys. Rev. B, 2005, 72: 132413-1-4
    [153] Sun Young, Xu Xiaojun, Zhang Yuheng. Effects of Cr doping in La0.67Ca0.33MnO3: Magnetization, resistivity, and thermopower. Phys. Rev. B, 2000, 63: 054404-1-5
    [154] Hong C S, Hur N H, Choi Y N. Magnetic exchange interactions induced byCr-doping in perovskite manganites. Solid State Commun., 2005, 133: 531-536
    [155] Gundakaram R, Arulraj A, Rao C N et al. Effect of Substitution of Cr3+ in Place of Mn3+ in Rare-Earth Manganates on the Magnetism and Magnetoresistance: Role of Superexchange Interaction and Lattice Distortion in LnMn1-xCrxO3. J. Solid. State. Chem., 1996, 127: 354-358
    [156] Nakazono S, Ono K, Oshima M. Ferromagnetism and glassy behavior in LaCr0. 1Mn0. 9O3. J. Magn. Magn. Mater., 2001, 226-230: 866-868
    [157] Deisenhofer J, Paraskevopoulos M, Krug von Nidda H-A et al. Interplay of superexchange and orbital degeneracy in Cr-doped LaMnO3. Phys. Rev. B, 2002, 66: 054414-1-7
    [158] Goodenough J B. Magnetism and the Chemical Bond. Inter-science, New York, 1963
    [159] Roy S, Dubenko I S, Ignatov A Y et al. Study of the colossal magnetoresistance properties of the compound La1?xSrxAyMn1?yO3 (A = Cr, Re). J. Phys: Condens. Matter., 2000, 12: 9465-9479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700