用于复Ginzburg-Landau方程的格子Boltzmann方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格子Boltzmann方法是上世纪末兴起的一种用于流体力学模拟及复杂系统计算的数值方法。它具有算法简单有效、计算并行、复杂边界容易处理等优点,因此受到了广泛关注。近几年,格子Boltzmann方法广泛应用于线性及非线性偏微分方程的求解及模拟。本文用此方法研究复Ginzburg-Landau方程。方程如下:其中β,a,d都是复常数,(?)2是Laplace算子。这是一个具有复变量的振幅方程,描述的是Hopf分叉附近的系统的行为。它在超导、超流、化学系统等领域中,都有广泛的应用。本文重点研究螺旋波及三维涡卷的动力学演化。
     复Ginzburg-Landau方程具有复变量和复方程参数,因此本文构建直接用于复变量的格子Boltzmann模型。
     在源项的二阶假设下,使用多尺度技术,通过对具有源项及复分布函数的格子Boltzmann方程做Chapman分析,得到一系列关于复平衡态分布函数的偏微分方程。采用二维FHP格子和三维主立方体格子,给出了用于二维及三维复Ginzburg-Landau方程的格子Boltzmann模型。此模型具有复平衡态分布、复附加分布、复格子Boltzmann方程及平衡态分布的复高阶矩形式。同时,针对附加分布函数,我们引入了一个可调参数,以便对模型做出适当调整来改善结果。模型具有实数的单松弛时间因子,因此模型的表达与用于实偏微分方程的模型形式一致。这使得模型保留了用于实方程的模型的简单性。为便于数值模拟,采用Neumann边界条件。边界上的平衡态分布函数由宏观边界的表达式给出。假定在边界处的分布函数为平衡态分布。因为二维及三维的高阶离散速度矩表达式不同,本文分别给出其误差表达式。由于二阶假设导致误差反弹现象,使得模型具有一阶精度。
     在本文中,首先研究螺旋波的动力学演化。在对稳定螺旋波的研究中,发现Im(a)有两个值分别标志着其旋转和振动性质的改变。另外,螺旋端点是一种拓扑缺陷点,称为量子涡。在这些点处,理论上|A|=0,但格子Boltzmann模型的结果在2%到8%之间。穿过量子涡剖面的|A|在缺陷点附近线性增加,这与理论预测一致。第二,研究了不同条件下不稳定螺旋波的失稳性质。在特定参数条件下,形成的单螺旋波会破碎成众多的不规则小螺旋,系统进入螺旋湍流态。在螺旋破碎之前,有低振幅波向外传播,在计算区域中心和低振幅波之间存在着振幅的靶波。
     与二维问题相比,三维问题的计算消耗明显增加。因此,为研究涡卷性质,将网格调整为50×50×50。为测试三维模型的有效性,先用其模拟准二维空间中的螺旋波。结果表明,当前的网格尺寸可以用来研究三维涡卷的某些性质。然后,在不同的初始条件下,分别给出了各种稳定涡卷的演化,如涡环、涡线为螺旋线的涡卷、不规则多个涡卷和其他类型的涡卷。涡环运动的结果与经典结果一致。螺旋状涡线的涡卷与涡环的运动相似,但最后会形成直涡线的稳定涡卷。对于随机给定的初始条件形成的涡卷,其涡线形成时一般均为弯曲状,经过相互作用,涡线将因拉伸而运动出计算区域以外。因此,在演化中涡线数目逐渐减少,与二维情形不同,最终涡线将全部消失。另外,对于其他两种直线型涡卷,当涡线两端位于计算区域两相邻侧面时,涡线将弯成圆弧,然后沿着半径方向运动至消失;而当涡线两端位于两相对侧面时,将演化成直线型涡卷。因此,涡卷的演化结果为或者随着演化消失,全场变成均匀态,或者经过拉伸变形后形成与坐标轴平行的直涡线的涡卷,这符合正涡线拉伸理论。
     对二维螺旋波及三维涡卷的模拟和研究,格子Boltzmann模型都给出了可以接受的结果。它可以用来研究螺旋波或涡卷的其他性质和其他的复偏微分方程。由于复变量的实虚部可以分别看作是两种物质的浓度,因此可以将此模型拓展到其他的双组分反应扩散系统的研究中。
Lattice Boltzmann method (LBM) is a numerical method for fluid flow and complex system which arises in the end of last century. It has some advantages that bring much attention, such as their algorithmic simplicity, parallel computation, easy handling of complex boundary conditions, and efficient numerical simulations. This method has been widely used to the nonlinear partial differential equation in recent years. In this paper, we will investigate the complex Ginzburg-Landau equation (CGLE) by using the LBM. The CGLE has the following form: where/β, a, d are all complex constants,▽2 is the Laplace operator. This is an amplitude equation, which governs complex variable. It describes the behavior of the system near a Hopf bifurcation. It has wide application in the fields of superconductivity, super fluidity and chemical system etc. However, we will focus on the dynamical evolution of the spiral wave and scroll wave.
     CGLE governs complex variable and has complex parameters; hence, we will build a lattice Boltzmann model suitable for complex variable.
     Under the assumption that the source term is second-order and by using the multi-scale technique, the Chapman-Enskog analysis on the lattice Boltzmann equation with complex distribution is given. Then, a series of partial differential equations on the complex equilibrium distribution are obtained. Under such condition, the FHP lattice in two dimensions (2D) and primitive cubic lattice in three dimensions (3D) are used to give the lattice Boltzmann model for the CGLE. The model has complex equilibrium distribution, complex additional distribution, complex lattice Boltzmann equation, and complex higher order moments of the equilibrium distribution. Meanwhile, an adjustable parameter is introduced in the additional distribution so that the model can be modified to give better results. The model has real single relaxation time factor, so the expression of the model has the same form as that for real partial differential equation. Thus, it retains the simplicity. In order to do the numerical simulation, the Neumann boundary condition is used. The equilibrium distributions on the boundaries are expressed by the macroscopic quantity. We assume that the distributions on the boundaries are equilibrium distributions. The error expressions for 2D and 3D are given separately because of the different higher order moments of discrete velocity. The accuracy of the model is the first order owing to the error rebounded phenomenon caused by the assumption that the source term is second order.
     First, the spiral wave dynamics is investigated in the numerical simulation. As to the results of the stable spiral wave, we find that there are two values of Im(a) which mark the change in the rotation and oscillation properties, respectively. And the spiral tips are a kind of topological point defects known as quantum vortices. At these defects,| A|= 0 theoretically, but the LBM result is around 2% to 8% . The profile of| A| going through the defects shows the linear increase near the defects, which is in agreement with theoretical prediction. Second, the LBM is used to investigate the unstable spiral wave under various conditions. With certain parameters, the single spiral wave will be broken up into small spirals and then the spiral turbulence state is formed finally. Before the spiral is broken up, we can observe that there is a low amplitude wave that spreads outwardly as the disk is growing. The target waves of amplitude can also be found between the low amplitude wave and the center.
     Compared with 2D problems, the computing costs of 3D problems are increasing sharply. Thus, we reduce the lattice size to 50×50×50. In order to test the validity of the 3D model, the spiral wave in quasi-two dimensions are simulated. The results show that such treatment is acceptable. Then, some initial conditions are given to form some specific stable scroll waves, such as scroll ring, helical scroll, multi-scroll waves and other scroll waves. The results of the motion of scroll ring are in agreement with classical results. The helical scroll has the similar law of motion to the scroll ring, but it will be a scroll wave with a straight filament finally. For the multi-scroll waves, the filaments are stretched and move until outside of the computing region in the evolution. Thus, the number of the filaments decreases as time goes on, and then they will all disappear. Such phenomenon is distinct from that of spiral waves in 2D CGLE. Additionally, two initial conditions for scroll wave with straight filaments are given. But the two have different destinations. The curved filament with its ends on the adjacent sides of the computing region will be an arc and move along the direction of its radius until it disappears. The filament with its ends on the opposite sides will be adjusted to a stable state, namely, a straight filament parallel to an axis. The results are in agreement with the theory of positive filament tension.
     The model in this paper gives acceptable results in the simulation of spiral wave and scroll wave. The model can be used to study other properties of spiral wave and scroll waves, and other complex partial differential equation. On the other hand, the real and imagery parts of the complex variable can be regarded as density of two components, thus the model can be extended to other bi-component reaction-diffusion systems.
引文
[1]FRISCH U, HASSLACHER B, POMEAU Y. Lattice gas automata for the Navier-Stokes equations [J]. Phys. Rev. Lett.,1986,56:1505-1508.
    [2]WOLFRAM S. Cellular Automaton fluids 1:Basic theory [J]. J. Stat. Phys.,1986,45: 471-518.
    [3]FRISCH U, D'HUMIERES D, HASSLACHER B, et al. Lattice gas hydrodynamics in two and three dimensions [J]. Complex Syst.,1987,1:649-707.
    [4]BROAD WELL JE. Study of rarefied shear flow by the discrete velocity method [J]. J. Fluid Mech.,1964,19:401-414.
    [5]INAMURO T, STURTEVANT B. Numerical study of discrete-velocity gases [J]. Phys. Fluids,1990,2:2196-2203.
    [6]HARDY J, DE PAZZIS O, POMEAU Y. Molecular dynamics of a classical lattice gas: transport properties and time correlation functions [J]. Phys. Rev. A,1976,13:1949-1961.
    [7]D'HUMIERES D, LALLEMAND P, FRISCH U. Lattice gas model for 3D hydrodynamics [J]. Europhys. Lett.,1986,2:291-297.
    [8]SUCCI S. The lattice Boltzmann equation for fluid dynamics and beyond [M]. Oxford: Oxford University Press,2001.
    [9]MCNAMARA GR, ZANETTI G. Use of the Boltzmann equation to simulate lattice-gas automata [J]. Phys. Rev. Lett.,1988,61:2332-2335.
    [10]HIGUERA F, JIMENEZ J. Boltzmann approach to lattice gas simulations [J]. Europhys. Lett,1989,9:663-668.
    [11]HIGUERA F, SUCCI S, BENZI R. Lattice gas dynamics with enhanced collisions [J]. Europhys. Lett.,1989,9:345-349.
    [12]QIAN Y. Lattice gas and lattice kinetic theory applied to the Navier-Stokes equations [D]. Paris:Universite Pierre et Marie Curie,1990.
    [13]CHEN S, CHEN H, MARTINEZ D, et al. Lattice Boltzmann model for simulation of magneto-hydrodynamics [J]. Phys. Rev. Lett.,1991,67:3776-3779.
    [14]BHATNAGAR PL, GROSS EP, KROOK M. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system [J]. Phys. Rev., 1954,94:511-525.
    [15]QIAN Y, D'HUMIERES D, LALLEMAND P. Lattice BGK model for Navier-Stokes equations [J]. Europhys. Lett.,1992,17:479-484.
    [16]CHEN S, WANG Z, SHAN X, et al. Lattice Boltzmann computational fluid dynamics in three dimensions [J]. J. Stat. Phys.,1992,68:379-400.
    [17]BENZI R, SUCCI S, VERGASSOLA M. The lattice Boltzmann equation:theory and applications [J]. Phys. Rep.,1992,222:145-197.
    [18]HE X, LUO LS. A priori derivation of the lattice Boltzmann equation [J]. Phys. Rev. E, 1997,55:6333-6336.
    [19]ABE T. Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation [J]. J. Comput. Phys.,1997,131:241-246.
    [20]CHEN S, DOOLEN GD. Lattice Boltzmann method for fluid flows [J]. Annu. Rev. Fluid Mech.,1998,30:329-364.
    [21]CHAPMAN S, COWLING TG. The mathematical theory of non-uniform gases [M]. Cambridge:Cambridge University Press,1970.
    [22]ZHANG JY, YAN GW. Lattice Boltzmann method for one and two-dimensional Burgers equation [J]. Physica A,2008,387:4771-4786.
    [23]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法[M].武汉:湖北科学技术出版社,2002.
    [24]ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model [J]. Phys. Fluids,1997,9:1591-1598.
    [25]INAMURO T, YOSHINO M, OGINO F. A non-slip boundary condition for lattice Boltzmann simulations [J]. Phys. Fluids,1995,7:2928-2930.
    [26]CHEN S, MARTINEZ D, MEI R. On boundary conditions in lattice Boltzmann methods [J]. Phys. Fluids,1996,8:2527-2536.
    [27]HE X, LUO LS, DEMBO M. Some progress in lattice Boltzmann method, Part 1. Non-uniform mesh grids [J]. J. Comput. Phys.,1996,129:357-363.
    [28]FILIPPOVA O, HANEL D. Grid refinement for lattice-BGK models [J]. J. Comput. Phys.,1998,147:219-228.
    [29]LALLEMAND P, LUO LS. Lattice Boltzmann method for moving boundaries [J]. J. Comput. Phys.,2003,184:406-421.
    [30]KAO PH, YANG RJ. An investigation into curved and moving boundary treatments in the lattice Boltzmann method [J]. J. Comput. Phys.,2008,227:5671-5690.
    [31]VERSCHAEVE JCG. Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition:Ways to improve accuracy and stability [J]. Phys. Rev. E,2009,80: 036703.
    [32]LATT J, CHOPARD B, MALASPINAS O, et al. Straight velocity boundaries in the lattice Boltzmann method [J]. Phys. Rev. E,2008,77:056703.
    [33]CHANG C, LIU CH, LIN CA. Boundary conditions for lattice Boltzmann simulations with complex geometry flows [J]. Comput. Math. Appl.,2009,58:940-949.
    [34]VERSCHAEVE JCG MULLER B. A curved no-slip boundary condition for the lattice Boltzmann method [J]. J. Comput. Phys.,2010,229:6781-6803.
    [35]KANG X, LIAO Q, ZHU X, et al. Non-equilibrium extrapolation method in the lattice Boltzmann simulations of flows with curved boundaries (non-equilibrium extrapolation of LBM) [J]. Appl. Therm. Eng.,2010,30:1790-1796.
    [36]IZQUIERDO S, FUEYO N. Momentum transfer correction for macroscopic-gradient boundary conditions in lattice Boltzmann methods [J]. J. Comput. Phys.,2010,229:2497-2506.
    [37]KUNERT C, HARTING J, VINOGRADOVA OI. Random-roughness hydrodynamic boundary conditions [J]. Phys. Rev. Lett.,2010,105:016001.
    [38]BOEK ES, VENTUROLI M. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries [J]. Comput. Math. Appl.,2010,59:2305-2314.
    [39]MA J, WU K, JIANG Z, et al. SHIFT:An implementation for lattice Boltzmann simulation in low-porosity porous media [J]. Phys. Rev. E,2010,81:056702.
    [40]AURSJO O, KNUDSEN HA, FLEKKOY EG, et al. Oscillation-induced displacement patterns in a two-dimensional porous medium:A lattice Boltzmann study [J]. Phys. Rev. E,2010,82:026305.
    [41]BROSTEN TR, CODD SL, MAIER RS, et al. Dynamic length-scale characterization and nonequilibrium statistical mechanics of transport in open-cell foams [J]. Phys. Rev. Lett., 2009,103:218001.
    [42]FERREOL B, ROTHMAN DH. Lattice-Boltzmann simulations of flow through Fontainebleau sandstone [J]. Transp. Porous Media,1995,20:3-20.
    [43]CANCELLIERE A, CHANG C, FOTI E, et al. The permeability of a random medium: Comparison of simulation with theory [J]. Phys. Fluids A,1990,2:2085-2088.
    [44]MARTYS NS, CHEN H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method [J]. Phys. Rev. E,1996,53:743-750.
    [45]BOEK ES, CHIN J, COVENEY PV. Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media [J]. Int. J. Mod. Phys. B,2003,17:99-102.
    [46]SULLIVAN SP, GLADDEN LF, JOHNS ML. Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques [J]. J. Non-Newton. Fluid Mech.,2006,133:91-98.
    [47]YU D, MEI R, LUO LS, et al. Viscous flow computations with the method of lattice Boltzmann equation [J]. Prog. Aerosp. Sci.,2003,39:329-367.
    [48]SHAN X, CHEN H. Lattice Boltzmann model of simulating flows with multiple phases and components [J]. Phys. Rev. E,1993,47:1815-1819.
    [49]CHIN J, BOEK ES, COVENEY PV. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model [J]. Proc. R. Soc. Lond. A,2002,360:547-558.
    [50]SHAN X. Multicomponent lattice Boltzmann model from continuum kinetic theory [J]. Phys. Rev. E,2010,81:045701 (R).
    [51]GUNSTENSEN AK, ROTHMAN DH, ZALESKI S, et al. Lattice Boltzmann model of immiscible fluids [J]. Phys. Rev. A,1991,43:4320-4327.
    [52]SWIFT MR, OSBORN WR, YEOMANS JM. Lattice Boltzmann simulation of nonideal fluids [J]. Phys. Rev. Lett.,1995,75:830-833.
    [53]SWIFT MR, ORLANDINI E, OSBORN WR, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems [J]. Phys. Rev. E,1996,54:5041-5052.
    [54]TIRIBOCCHI A, STELLA N, GONNELLA G, et al. Hybrid lattice Boltzmann model for binary fluid mixtures [J]. Phys. Rev. E,2009,80:026701.
    [55]PREMNATH KN, ABRAHAM J. Three-dimensional multi-relaxation lattice Boltzmann models for multiphase flows [J]. J. Comput. Phys.,2007,224:539-559.
    [56]POOLEY CM, KUSUMAATMAJA H, YEOMANS JM. Contact line dynamics in binary lattice Boltzmann simulations [J]. Phys. Rev. E,2008,78:056709.
    [57]ASINARI P. Multiple-relaxation-time lattice Boltzmann scheme for homogeneous mixture flows with external force [J]. Phys. Rev. E,2008,77:056706.
    [58]KIM SH, PITSCH H, BOYD ID. Lattice Boltzmann modeling of multi component diffusion in narrow channels [J]. Phys. Rev. E,2009,79:016702.
    [59]BEHREND O. Solid boundaries in particle suspension simulations via lattice Boltzmann method [J]. Phys. Rev. E,1995,52:1164-1175.
    [60]LADD AJC. Numerical simulation of particular suspensions via discretized Boltzmann equation, Part 2. Numerical results [J]. J. Fluid Mech.,1994,271:311-339.
    [61]QI D, LUO LS. Rotational and orientational behaviour of a three-dimensional spheroidal particles in Couette flow [J]. J. Fluid Mech.,2003,447:201-203.
    [62]QI D, LUO LS, ARAVAMUTHAN R, et al. Lateral migration and orientation of elliptical particles in Poiseuille flows [J]. J. Stat. Phys.,2002,107:101-120.
    [63]LORENZ E, CAIAZZO A, HOEKSTRA AG. Corrected momentum exchange method for lattice Boltzmann simulations of suspension flow [J]. Phys. Rev. E,2009,79:036705.
    [64]LORENZ E, HOEKSTRA AG, CAIAZZO A. Lees-Edwards boundary conditions for lattice Boltzmann suspension simulations [J]. Phys. Rev. E,2009,79:036706.
    [65]AHLRICHS P, DUNWEG B. Lattice-Boltzmann simulation of polymer-solvent systems [J]. Int. J. Mod. Phys. C,1998,9:1429-1438.
    [66]AHLRICHS P, DUNWEG B. Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics [J]. J. Chem. Phys.,1999,111: 8225-8239.
    [67]AHLRICHS P, EVERAERS R, DUNWEG B. Screening of hydrodynamic interactions in semi-dilute polymer solutions:a computer simulation study [J]. Phys. Rev. E,2002,64: 040501.
    [68]NASH RW, ADHIKARI R, CATES ME. Singular forces and pointlike colloids in lattice Boltzmann hydrodynamics [J]. Phys. Rev. E,2008,77:026709.
    [69]BASAGAOGLU H, MEAKIN P, SUCCI S, et al. Two-dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow flow channels [J]. Phys. Rev. E, 2008,77:031405.
    [70]SANKARANARAYANAN K, SHAN X, DEVREKIDIS IG, et al. Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method [J]. J. Fluid Mech.,2002,452:61-96.
    [71]SANKARANARAYANAN K, KEVREKIDIS IG, SUNDARESAN S, et al. A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations [J]. Int. J. Multiphase Flow,2003,29:109-116.
    [72]BENZI R, CHIBBARO S, SUCCI S. Mesoscopic lattice Boltzmann modeling of flowing soft systems [J]. Phys. Rev. Lett.,2009,102:026002.
    [73]HALLIDAY I, SPENCER TJ, CARE CM. Validation of multicomponent lattice Boltzmann equation simulations using theoretical calculations of immiscible drop shape [J]. Phys. Rev. E,2009,79:016706.
    [74]JOSHI AS, SUN Y. Multiphase lattice Boltzmann method for particle suspensions [J]. Phys. Rev. E,2009,79:066703.
    [75]GINZBURG I, STEINER K. Lattice Boltzmann model for free-surface flow and its application to filling process in casting [J]. J. Comput. Phys.,2003,185:61-99.
    [76]NIE X, QIAN YH, DOOLEN GD, et al. Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability [J]. Phys. Rev. E,1998,58:6861-6864.
    [77]HE X, CHEN SY, ZHANG RY. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability [J]. J. Comput. Phys.,1999,152:642-663.
    [78]TOLKE J, KRAFCZYK M, SCHULZ M, et al. Lattice Boltzmann simulations of binary fluid flow through porous media [J]. Philos. Trans. R Soc. London A,2002,360:535-545.
    [79]INAMURO T, OGATA T, TAJIMA S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences [J]. J. Comput. Phys., 2004,198:628-644.
    [80]LISHCHUK SV, HALLIDAY I, CARE CM. Multicomponent lattice Boltzmann method for fluids with a density contrast [J]. Phys. Rev. E,2008,77:036702.
    [81]GUO Z, ASINARI P, ZHENG C. Lattice Boltzmann equation for microscale gas flows of binary mixtures [J]. Phys. Rev. E,2009,79:026702.
    [82]ALEXANDER FJ, CHEN H, CHEN S, et al. Lattice Boltzmann model for compressible fluids [J]. Phys. Rev. A,1992,46:1967-1970.
    [83]YU H, ZHAO K. Lattice Boltzmann method for compressible flows with high Mach numbers [J]. Phys. Rev. E,2000,61:3867-3870.
    [84]YAN GW, CHEN YS, Hu SX. Simple lattice Boltzmann model for simulating flows with shock wave [J]. Phys. Rev. E,1999,59:454-459.
    [85]YAN GW, ZHANG JY, LIU YH, et al. Amulti-energy-level lattice Boltzmann model for the compressible Navier-Stokes equations [J]. Int. J. Numer. Meth. Fluids,2007,55:41-56.
    [86]ZHANG JY, YAN GW, SHI XB, et al. A lattice Boltzmann model for the compressible Euler equations with second-order accuracy [J]. Int. J. Numer. Meth. Fluids,2009,60: 95-117.
    [87]KATAOKA T, TSUTAHARA M. Lattice Boltzmann method for the compressible Euler equations [J]. Phys. Rev. E,2004,69:056702.
    [88]QU K, SHU C, CHEW YT. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number [J]. Phys. Rev. E,2007,75:036706.
    [89]HE X, CHEN S, DOOLEN GD. A novel thermal model for the lattice Boltzmann method in incompressible limit [J]. J. Comput. Phys.,1998,146:282-300.
    [90]IHLE T, KROLL DM. Thermal lattice-Boltzmann method for non-ideal gases with potential energy [J]. Comput. Phys. Commun.,2000,129:1-12.
    [91]PENG Y, SHU C, CHEW YT. Simplified thermal lattice Boltzmann model for incompressible thermal flows [J]. Phys. Rev. E,2003,68:026701.
    [92]SHI Y, ZHAO TS, GUO ZL. Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit [J]. Phys. Rev. E,2004,70: 066310.
    [93]EGGELS JGM, SOMMERS JA. Numerical simulation of free convective flow using the lattice-Boltzmann scheme [J]. Int. J. Heat Fluid Flow,1996,16:357-364.
    [94]SHAN X. Simulation of Rayleigh-Bernard convection using a lattice Boltzmann method [J]. Phys. Rev. E,1997,55:2780-2788.
    [95]REND A A, BELLA G, SUCCI S, et al. Thermohydrodynamic lattice BGK schemes with non-perrurbative equilibrium [J]. Europhys. Lett.,1998,41:279-283.
    [96]PALMER BJ, RECTOR DR. Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids [J]. J. Comput. Phys.,2000,161:1-20.
    [97]GUO Z, ZHENG C, SHI B, et al. Thermal lattice Boltzmann equation for low Mach number flows:Decoupling model [J]. Phys. Rev. E,2007,75:036704.
    [98]LI Q, HE YL, WANG Y, et al. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations [J]. Phys. Rev. E,2007,76: 056705.
    [99]LALLEMAND P, LUO LS. Hybrid finite-difference thermal lattice Boltzmann equation [J]. Int. J. Mod. Phys. B,2003,17:41-47.
    [100]MEZRHAB A, BOUZIDI M, LALLEMAND P. Hybrid lattice-Boltzmann finite-difference simulation of convective flows [J]. Comput. Fluids,2004,33:623-641.
    [101]NADIGA BT. An Euler solver based on locally adaptive discrete velocities [J]. J. Stat. Phys.,1995,81:129-146.
    [102]SUN CH. Lattice-Boltzmann model for high speed flows [J]. Phys. Rev. E,1998,58: 7283-7287.
    [103]SUN CH. Simulations of compressible flows with strong shocks by an adaptive lattice Boltzmann model [J]. J. Comp. Phys.,2000,161:70-84.
    [104]SUN CH, HSU AT. Three-dimensional lattice Boltzmann model for compressible flows [J]. Phys. Rev. E,2003,68:016303.
    [105]HUANG J, XU F, VALLIERES M, et al. A thermal LBGK model for large density and temperature difference [J]. Int. J. Mod. Phys. C,1997,8:827-841.
    [106]WATARI M, TSUTAHARA M. Supersonic flow simulations by a three-dimensional multispeed thermal model of the finite difference lattice Boltzmann method [J]. Physica A, 2006,364:129-144.
    [107]PAN XF, XU AG, ZHANG GC, et al. Lattice Boltzmann approach to high-speed compressible flows [J]. Int. J. Mod. Phys. C,2007,18:1747-1764.
    [108]WANG Y, HE YL, ZHAO TS, et al. Implicit-explicit finite-difference lattice Boltzmann method for compressible flows [J]. Int. J. Mod. Phys. C,2007,18:1961-1983.
    [109]TSUTAHARA M, KATAOKA T, SHIKATA K, et al. New model and scheme for compressible fluids of the finite difference lattice Boltzmann method and direct simulations of aerodynamic sound [J]. Comput. Fluids,2008,37:79-89.
    [110]GAN YB, XU AG, ZHANG GC, et al. Two-dimensional lattice Boltzmann model for compressible flows with high Mach number [J]. Physica A,2008,387:1721-1732.
    [111]HINTON FL, ROSENBLUTH MN, WONG SK, et al. Modified lattice Boltzmann method for compressible fluid simulations [J]. Phys. Rev. E,2001,63:061212.
    [112]BROWNLEE RA, GORBAN AN, LEVESLEY J. Stabilization of the lattice Boltzmann method using the Ehrenfests'coarse-graining idea [J]. Phys. Rev. E,2006,74: 037703.
    [113]PRASIANAKIS NI, BOULOUCHOS KB. Lattice Boltzmann method for simulation of weakly compressible flows at arbitrary Prandtl number [J]. Int. J. mod. Phys. C,2007, 18:602-609.
    [114]PRENDERGAST KH, XU K. Numerical hydrodynamics from gas-kinetic theory [J]. J. Comput. Phys.,1993,109:53-66.
    [115]KIM C, XU K, MARTINELLI L, et al. Analysis and implementation of the gas kinetic BGK scheme for computing inhomogeneous fluid behavior [J]. Int. J. Numer. Meth. Fluids,1997,25:21-49.
    [116]KOTELNIKOV AD, MONTGOMERY DC. A kinetic method for computing inhomogeneous fluid behavior [J]. J. Comput. Phys.,1997,134:364-388.
    [117]XU K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method [J]. J. Comput. Phys.,2001, 171:289-335.
    [118]XU K, MAO M, TANG L. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow [J]. J. Comput. Phys.,2005,203:405-421.
    [119]XU K, HE X, CAI C. Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations [J]. J. Comput. Phys.,2008,227: 6779-6794.
    [120]ANCONA MG. Fully-Lagrangian and lattice-Boltzmann methods for solving systems of conservation equations [J]. J. Comput. Phys.,1994,115:107-120.
    [121]YAN GW. A Lagrangian lattice Boltzmann method for Euler equations [J]. Acta Mech. Sinica,1998,14:186-192.
    [122]YAN GW, DONG YF, LIU YH. An implicit Lagrangian lattice Boltzmann method for the compressible flows [J]. Int. J. Numer. Meth. Fluids,2006,51:1407-1418.
    [123]FRISCH U. Turbulence:The lLegacy of A. N. Kolmogorov [M]. New York: Cambridge University Press,1995.
    [124]POPE S. Turbulent Flows [M]. New York:Cambridge University Press,2000.
    [125]MARTINEZ DO, MATTHAEUS WH, CHEN S, et al. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics [J]. Phys. Fluids,1994,6:1285-1298.
    [126]TREVINO C, HIGUERA F. Lattice Boltzmann and spectral simulations of non-linear stability of Kolmogorov flows [J]. Rev. Mex. Fis.,1994,40:878-890.
    [127]BENZI R, STRUGLIA MV, TRIPICCIONE R. Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence [J]. Phys. Rev. E,1996,53: R5565-R5568.
    [128]TEIXEIRA C. Incorporating turbulence models into the lattice-Boltzmann method [J]. Int. J. Mod. Phys. C,1998,9:1159-1175.
    [129]EGGELS J. Direct and large-eddy simulation of turbulent fluid flow using the lattice Boltzmann schemes [J]. Int. J. Heat Fluid Flow,1996,17:307-323.
    [130]HOU S, STERLING J, CHEN S, etc. A lattice Boltzmann subgrid model for high Reynolds number flows [J]. Fields Inst. Commun.,1996,6:151-166.
    [131]PREMNATH KN, PATTISON MJ, BANERJEE S. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows [J]. Phys. Rev. E,2009,79:026703.
    [132]PATTISON MJ, PREMNATH KN, BANERJEE S. Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation [J]. Phys. Rev. E,2009,79:026704.
    [133]CHEN S, TOLKE J, KRAFCZYK M. Simple lattice Boltzmann subgrid-scale model for convectional flows with high Rayleigh numbers within an enclosed circular annular cavity [J]. Phys. Rev. E,2009,80:026702.
    [134]SHAN X, YUAN XF, CHEN H. Kinetic theory representation of hydrodynamics:a way beyond the Navier-Stokes equation [J]. J. Fluid Mech.,2006,550:413-441.
    [135]ZHANG R, SHAN X, CHEN H. Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation [J]. Phys. Rev. E,2006,74:046703.
    [136]PHILIPPI PC, HEGELE JR LA, dos SANTOS LOE, et al. From the continuous to the lattice Boltzmann equation:The discretization problem and thermal models [J]. Phys. Rev. E,2006,73:056702.
    [137]SUGA K, TAKENAKA S, ITO T, et al. Evaluation of a lattice Boltzmann method in a complex nanoflow [J]. Phys. Rev. E,2010,82:016701.
    [138]GUO Z, ZHENG C, SHI B. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow [J]. Phys. Rev. E,2008,77:036707.
    [139]KIM SH, PITSCH H, BOYD ID. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows [J]. Phys. Rev. E,2008,77:026704.
    [140]GABBANELLI S, DRAZER G, KOPLIK J. Lattice Boltzmann method for non-Newtonian (power-law) fluids [J]. Phys. Rev. E,2005,72:046312.
    [141]OUARED R, CHOPARD B. Lattice Boltzmann simulations of blood flow:Non-Newtonian rheology and clotting processes [J]. J. Stat. Phys.,2005,121:209-221.
    [142]DELLAR PJ. Lattice kinetic schemes for magnetohydrodynamics [J]. J. Comput. Phys.,2002,179:95-126.
    [143]VAHALA L, VAHALA G, YEPEZ J. Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence [J]. Phys. Lett. A, 2003,306:227-234.
    [144]CHATTERJEE D, AMIROUDINE S. Lattice kinetic simulation of nonisothermal magnetohydrodynamics [J]. Phys. Rev. E,2010,81:066703.
    [145]PELLICCIONI O, CERROLAZA M, SUROS R. A biofluid dynamic computer code using the general lattice Boltzmann equation [J]. Adv. Eng. Softw.,2008,39:593-611.
    [146]MILLER W. Flow in the driven cavity calculated by the lattice Boltzmann method [J]. Phys. Rev. E,1995,51:3659-3669.
    [147]QIAN Y, SUCCI S, MASSAIOLI F, et al. A benchmark for lattice BGK model:Flow over a backward-facing step [J]. Fields Inst. Commun.,1996,6:207-215.
    [148]HE X, DOOLEN GD. Lattice Boltzmann method on a curvilinear coordinate system: Vortex shedding behind a circular cylinder [J]. Phys. Rev. E,1997,56:434-440.
    [149]MUSS A A, ASINARI P, LUO LS. Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders [J]. J. Comput. Phys.,2009,228:983-999.
    [150]ZHOU JG. A lattice Boltzmann model for the shallow water equations [J]. Comput. Methods Appl. Mech. Eng.,2002,191:3527-3539.
    [151]DELLAR PJ. Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations [J]. Phys. Rev. E,2002,65:036309.
    [152]VAN THANG P, CHOPARD B, LEFEVRE L, et al. Study of the 1D lattice Boltzmann shallow water equation and its coupling to build a canal network [J]. J. Comput. Phys.,2010,229:7373-7400.
    [153]LIU H, ZHOU JG, BURROWS R. Lattice Boltzmann simulations of the transient shallow water flows [J]. Adv. Water Res.,2010,33:387-396.
    [154]HOLDYCH DJ, NOBLE DR, GEORGIADIS JG, et al. Truncation error analysis of lattice Boltzmann methods [J]. J. Comput. Phys.,2004,193:595-619.
    [155]JUNK M, KLAR A, LUO LS. Asymptotic analysis of the lattice Boltzmann equation [J]. J. Comput. Phys.,2005,210:676-704.
    [156]CAIAZZO A, JUNK M, RHEINLANDER M. Comparison of analysis techniques for the lattice Boltzmann method [J]. Comput. Math. Appl.,2009,58:883-897.
    [157]SERVAN-CAMAS B, TSAI FT-C. Non-negativity and stability analyses of lattice Boltzmann method for advection-diffusion equation [J]. J. Comput. Phys.,2009,228: 236-256.
    [158]SIEBERT DN, HEGELE LA, PHILIPPI PC. Lattice Boltzmann equation linear stability analysis:Thermal and athermal models [J]. Phys. Rev. E,2008,77:026707.
    [159]RHEINLANDER M. On the stability structure for lattice Boltzmann schemes [J]. Comput. Math. Appl.,2010,59:2150-2167.
    [160]LALLEMAND P, LUO LS. Theory of the lattice Boltzmann method:dispersion, dissipation, isotropy, Galilean invariance, and stability [J]. Phys. Rev. E,2000,61:6546-6562.
    [161]CHIKATAMARLA SS, KARLIN IV. Entropy and Galilean invariance of lattice Boltzmann theories [J]. Phys. Rev. Lett.,2006,97:190601.
    [162]PRASIANAKIS NI, KARLIN IV, MANTZARAS J, et al. Lattice Boltzmann method with restored Galilean invariance [J]. Phys. Rev. E,2009,79:066702.
    [163]RUBINSTEIN R, LUO LS. Theory of the lattice Boltzmann equation:Symmetry properties of discrete velocity sets [J]. Phys. Rev. E,2008,77:036709.
    [164]KANDHAI D, KOPONEN A, HOEKSTRA A, et al. Iterative momentum relaxation for fast lattice-Boltzmann simulations [J]. Future Gener. Comp. Sy.,2001,18:89-96.
    [165]GUO Z, ZHAO T, SHI Y. Preconditioned lattice-Boltzmann method for steady flows [J]. Phys. Rev. E,2004,70:066706.
    [166]PREMNATH KN, PATTISON MJ, BANERJEE S. Steady state convergence acceleration of the generalized lattice Boltzmann equation with forcing term through preconditioning [J]. J. Comput. Phys.,2009,228:746-769.
    [167]LIU B, KHALILI A. Lattice Boltzmann model for exterior flows with an annealing preconditioning method [J]. Phys. Rev. E,2009,79:066701.
    [168]IMAMURA T, SUZUKI K, NAKAMURA T, et al. Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method [J]. J. Comput. Phys.,2005,202:645-663.
    [169]ZHENG L, GUO Z, SHI B, et al. Finite-difference-based multiple-relaxation-times lattice Boltzmann model for binary mixtures [J]. Phys. Rev. E,2010,81:016706.
    [170]SOFONEA V, SEKERKA RF. Viscosity of finite difference lattice Boltzmann models [J]. J. Comput. Phys.,2003,184:422-434.
    [171]PATIL DV, LAKSHMISHA KN. Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh [J]. J. Comput. Phys.,2009,228:5262-5279.
    [172]GHASEMIA J, RAZAVI SE. On the finite-volume lattice Boltzmann modeling of thermo-hydrodynamics [J]. Comput. Math. Appl.,2010,60:1135-1144.
    [173]ZHANG J, LU XY. Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight [J], Phys. Rev. E,2009,80:017302.
    [174]PENG Y, SHU C, CHEW YT, et al. Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows [J]. J. Comput. Phys.,2006,218:460-478.
    [175]TENG S, CHEN Y, OHASHI H. Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing with artificial compression scheme [J]. Int. J. Heat Fluid Flow,2000,21:112-121.
    [176]YAN GW, CHEN YS, HU SX. A lattice Boltzmann method for KdV equation [J]. Acta Mech. Sinica,1998,14:18-26.
    [177]YAN GW, SONG M. Recovery of the solitons using a lattice Boltzmann model [J]. Chi. Phys. Lett.,1999,16:109-110.
    [178]YAN GW, ZHANG JY. A higher-order moment method of the lattice Boltzmann model for the Korteweg-de Vries equation [J]. Math. Comput. Simulat.,2009,79:1554-1565.
    [179]ZHANG JY, YAN GW. A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws [J]. Comput. Phys. Commun.,2009,180:1054-1062.
    [180]YAN GW. A lattice Boltzmann equation for waves [J]. J. Comput. Phys.,2000,161: 61-69.
    [181]ZHANG JY, YAN GW, SHI XB. Lattice Boltzmann model for wave propagation [J]. Phys. Rev. E,2009,80:026706.
    [182]ZHANG JY, YAN GW, DONG YF. A higher-order accuracy lattice Boltzmann model for the wave equation [J]. Int. J. Numer. Meth. Fluids,2009,61:683-697.
    [183]SHI XB, YAN GW, ZHANG JY. A multi-energy-level lattice Boltzmann model for two-dimensional wave equation [J]. Int. J. Numer. Meth. Fluids,2010,64:148-162.
    [184]LI HY, KI H. Lattice Boltzmann method for weakly ionized isothermal plasmas [J]. Phys. Rev. E,2007,76:066707.
    [185]BUICK JM, COSGROVE JA, GREATED CA. Gravity-capillary internal wave simulation using a binary fluid lattice Boltzmann model [J]. Appl. Math. Modell.,2004, 28:184-195.
    [186]MORA P. The lattice Boltzmann phononic lattice solid [J]. J. Stat. Phys.,1992,68: 591-609.
    [187]ZHAO Y, HAN YP, FAN Z, et al. Visual simulation of heat shimmering and mirage [J]. IEEE T. Vis. Comput. Gr.,2007,13:179-189.
    [188]YAN GW. Studies of Burgers equation using a lattice Boltzmann method [J]. Acta Mech. Sinica,1999,31:143-151.
    [189]YEPEZ J. Quantum lattice-gas model for the Burgers equation [J]. J. Stat. Phys., 2002,107:203-224.
    [190]YEPEZ J. Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity [J]. Phys. Rev. A,2006,74:042322.
    [191]VELIVELLI AC, BRYDEN KM. Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation [J]. Physica A,2006,362:139-145.
    [192]WANG JK, WANG MR, LI ZX. Lattice evolution solution for the nonlinear Poisson-Boltzmann equation in confined domains [J]. Commun. Nonlinear Sci. Numer. Simul.,2008,13:575-583.
    [193]CHAI ZH, SHI BC. A novel lattice Boltzmann model for the Poisson equation [J]. Appl. Math. Modell.,2008,32:2050-2058.
    [194]WANG HM, YAN GW, YAN B. Lattice Boltzmann model based on the rebuilding-divergency method for the Laplace equation and the Poisson equation [J]. J Sci Comput, 2011,46:470-484.
    [195]ZHANG JY, YAN GW, DONG YF. A new lattice Boltzmann model for the Laplace equation [J]. Appl. Math. Comput.,2009,215:539-547.
    [196]忻孝康,刘儒勋,蒋伯诚.计算流体动力学[M].长沙:国防科技大学出版社,1989.
    [197]傅德熏,马延文.流体力学数值模拟[M].北京:国防工业出版社,1993.
    [198]水鸿寿.一维流体力学差分方法[M].北京:国防工业出版社,1998.
    [199]傅德熏,马延文.计算流体力学[M].北京:高等教育出版社,2002.
    [200]张涵信,沈孟育.计算流体力学—差分方法的原理和应用[M].北京:国防工 业出版社,2003.
    [201]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2002.
    [202]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003.
    [203]应隆安,滕振寰.双曲型守恒律方程及其差分方法[M].北京:科学出版社,1991.
    [204]傅德熏,汪翼云,马延文.计算空气动力学[M].宇航出版社,1997.
    [205]DONG YF, ZHANG JY, YAN GW. A higher-order moment method of the lattice Boltzmann model for the conservation law equation [J]. Appl. Math. Modell.,2010,34: 481-494.
    [206]YAN GW, YUAN L. Lattice Bhatnagar-Gross-Krook model for the Lorenz attractor [J]. Physica D,2001,154:43-50.
    [207]YAN GW, YUAN L. Lattice Boltzmann solver of Rossler equation [J]. Commun. Nonlinear Sci. Numer. Simul.,2000,5:64-68.
    [208]YAN GW, ZHANG JY, DONG YF. Numerical method based on the lattice Boltzmann model for the Fisher equation [J]. Chaos,2008,18:023131.
    [209]ZHANG JY, YAN GW. A lattice Boltzmann model for the Burgers-Fisher equation [J]. Chaos,2010,20:023129.
    [210]LAI HL, MA CF. Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation [J]. Physica A,2009,388:1405-1412.
    [211]YE LN, YAN GW, LI TT. Numerical method based on the lattice Boltzmann model for the Kuramoto-Sivashinsky equation [J]. J Sci Comput,2011, DOI: 10.1007/s10915-010-9455-1.
    [212]GINZBURG I. Variably saturated flow described with the anisotropic lattice Boltzmann methods [J]. J. Comput. Fluids,2006,25:831-848.
    [213]STIEBLER M, TOLKE J, KRAFCZYK M. Advection-diffusion lattice Boltzmann scheme for hierarchical grids [J]. Comput. Math. Appl.,2008,55:1576-1584.
    [214]SHI B, GUO Z. Lattice Boltzmann model for nonlinear convection-diffusion equations [J]. Phys. Rev. E,2009,79:016701.
    [215]KUZMIN A, GINZBURG I, MOHAMAD AA. The role of the kinetic parameter in the stability of two-relaxation-time advection-diffusion lattice Boltzmann schemes [J]. Comput. Math. Appl.,2010, doi:10.1016/j.camwa.2010.07.036.
    [216]DAWSON SP, CHEN SY, DOOLEN GD. Lattice Boltzmann computations for reaction-diffusion equations [J]. J. Chem. Phys.,1993,98:1514-1523.
    [217]YEPEZ J. Quantum lattice-gas model for the diffusion equation [J]. Int. J. Mod. Phys. C,2001,12:1285-1303.
    [218]VANDEKERCKHOVE C, VAN LEEMPUT P, ROOSE D. Acceleration of lattice Boltzmann models through state extrapolation:a reaction-diffusion example [J]. Appl. Numer. Math.,2008,58:1742-1757.
    [219]YEPEZ J. Relativistic Path integral as a lattice-based quantum algorithm [J]. Quantum Inf. Process.,2005,4:471-509.
    [220]SHI B, GUO Z. Lattice Boltzmann model for the one-dimensional nonlinear Dirac equation [J]. Phys. Rev. E,2009,79:066704.
    [221]ZHONG LH, FENG SD, DONG P, et al. lattice Boltzmann schemes for the nonlinear Schrodinger equation [J]. Phys. Rev. E,2006,74:036704.
    [222]ZHANG JY, YAN GW. A lattice Boltzmann model for the nonlinear Schrodinger equation [J]. J. Phys. A,2007,40:10393-10405.
    [223]SHI B. Lattice Boltzmann simulation of some nonlinear complex equations [J]. Lect. Notes Comput. Sci.,2007,4487:818-825.
    [224]SUCCI S. Numerical solution of the Schrodinger equation using discrete kinetic theory [J]. Phys. Rev. E,1996,53:1969-1975.
    [225]SUCCI S. Lattice quantum mechanics:an application to Bose-Einstein condensation [J]. Int. J. Mod. Phys. C,1998,9:1577-1585.
    [226]PALPACELLI S, SUCCI S, SPIGLER R. Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme [J]. Phys. Rev. E,2007,76:036712.
    [227]PALPACELLI S, SUCCI S. Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials [J]. Phys. Rev. E,2008,77:066708.
    [228]YEPEZ J, VAHALA G, VAHALA L. Lattice quantum algorithm for the Schrodinger wave equation in 2+1 dimensions with a demonstration by modeling soliton instabilities [J]. Quantum Inf. Process.,2005,4:457-469.
    [229]YEPEZ J, BOGHOSIAN B. An efficient and accurate quantum lattice-gas model for the many-body Schrodinger wave equation [J]. Comput. Phys. Commun.,2002,146:280-294.
    [230]VAHALA G, VAHALA L, YEPEZ J. Quantum lattice representations for vector solitons in external potentials [J]. Physica A,2006,362:215-221.
    [231]ZHANG JY, YAN GW. Lattice Boltzmann model for the complex Ginzburg-Landau equation [J]. Phys. Rev. E,2010,81:066705.
    [232]KURAMOTO Y. Chemical oscillations, waves, and turbulence [M]. Berlin:Springer-Verlag,1984.
    [233]ARANSON IS, KRAMER L. The world of the complex Ginzburg-Landau equation [J]. Rev. Mod. Phys.,2002,74:99-143.
    [234]IPSEN M, KRAMER L, SORENSEN PG. Amplitude equations for description of chemical reaction-diffusion systems [J]. Phys. Rep.,2000,337:193-235.
    [235]PELAP FB, KAMGA JH, FOMETHE A, et al. Wave dynamics in a modified quintic complex Ginzburg-Landau system [J]. Phys. Lett. A,2009,373:1015-1018.
    [236]YU RP, PAGANIN DM, MORGAN MJ. Inferring generalized time-dependent complex Ginzburg-Landau equations from modulus and gauge-field information [J]. Phys. Rev. B,2008,77:134512.
    [237]YU RP, PAGANIN DM, MORGAN MJ. Inferring the time-dependent complex Ginzburg-Landau equation from modulus data [J]. Phys. Rev. E,2005,72:056711.
    [238]CHOI H, DAVIS JP, POLLANEN J, et al. Strong coupling corrections to the Ginzburg-Landau theory of superfluid 3He [J]. Phys. Rev. B,2007,75:174503.
    [239]WINFREE AT. Spiral Waves of Chemical Activity [J]. Science,1972,175:634-636.
    [240]欧阳颀.反应扩散系统中的斑图动力学[M].上海:上海科技教育出版社,2000.
    [241]XI HW, GUNTON JD, VINALS J. Spiral pattern formation in Rayleigh-Bernard convection [J]. Phys. Rev. E,1993,47:2987-2990.
    [242]FRISCH T. Spiral waves in nematic and cholesteric liquid crystals [J]. Physica D, 1995,84:601-614.
    [243]闫广武.模拟化学波的格子Boltzmann方法(博士后研究工作报告)[R].北京: 中国科学院数学与系统科学研究院,计算数学研究所,2001.
    [244]TYSON JJ, ALEXANDER KA, MANORANJAN VS, et al. Spiral waves of cyclic amp in a model of slime mold aggregation [J]. Physica D,1989,34:193-207.
    [245]DAVIDENKO JM, PERTSOV AV, SALOMONSZ R, et al. Stationary and drifting spiral waves of excitation in isolated cardiac muscle [J]. Nature,1992,355:349-351.
    [246]KAPRAL R, SHOWALTER K, ed. Chemical waves and patterns [M]. Dordrecht: Kluwer Academic,1995.
    [247]HAGAN PS. Spiral waves in reaction-diffusion equations [J]. SIAM J. Appl. Math., 1982,42:762-786.
    [248]WEIMAR JR, BOON JP. Class of cellular automata for reaction-diffusion systems [J]. Phys. Rev. E,1994,49:1749-1752.
    [249]GABBAY M, OTT E, GUZDAR PN. Motion of scroll wave filaments in the complex Ginzburg-Landau equation [J]. Phys. Rev. Lett.,1997,78:2012-2015.
    [250]GABBAY M, OTT E, GUZDAR PN. The dynamics of scroll wave filaments in the complex Ginzburg-Landau equation [J]. Physica D,1998,118:371-395.
    [251]ARANSON IS, BISHOP AR, KRAMER L. Dynamics of vortex lines in the three-dimensional complex Ginzburg-Landau equation:instability, stretching, entanglement, and helices [J]. Phys. Rev. E,1998,57:5276-5286.
    [252]HENDREY M, OTT E, ANTONSEN TM. Spiral wave dynamics in oscillatory inhomogeneous media [J]. Phys. Rev. E,2000,61:4943-4953.
    [253]ZHANG SL, BAMBI H, ZHANG H. Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg-Landau equation [J]. Phys. Rev. E,2003,67: 016214.
    [254]AGUARELES M, CHAPMAN SJ, WITELSKI T. Interaction of spiral waves in the complex Ginzburg-Landau equation [J]. Phys. Rev. Lett.,2008, PRL 101:224101.
    [255]AGUARELES M, CHAPMAN SJ, WITELSKI T. Motion of spiral waves in the complex Ginzburg-Landau equation [J]. Physica D,2010,239:348-365.
    [256]HENDREY M, NAM K, GUZDAR P, et al. Target waves in the complex Ginzburg-Landau equation [J]. Phys. Rev. E,2000,62:7627-7631.
    [257]ZHOU CT, YU MY, HE XT. X-wave solutions of complex Ginzburg-Landau equations [J]. Phys. Rev. E,2006,73:026209.
    [258]CONWAY JM, RIECHE H. Multiresonant forcing of the complex Ginzburg-Landau equation:Pattern selection [J]. Phys. Rev. E,2007,76:057202.
    [259]HOUGHTON SM, KNOBLOCH E, TOBIAS SM, et al. Transient spatio-temporal chaos in the complex Ginzburg-Landau equation on long domains [J]. Phys. Lett. A,2010, 374:2030-2034.
    [260]JIANG M, WANG X, OUYANG Q, et al. Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system [J]. Phys. Rev. E,2004,69: 056202.
    [261]STICH M, BETA C. Control of pattern formation by time-delay feedback with global and local contributions [J]. Physica D,2010,239:1681-1691.
    [262]SOTO-CRESPO JM, PESQUERA L. Analytical approximation of the soliton solutions of the quintic complex Ginzburg-Landau equation [J]. Phys. Rev. E,1997,56: 7288-7293.
    [263]MIHALACHE D, MAZILU D, LEDERER F, et al. Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation [J]. Phys. Rev. A,2007,75:033811.
    [264]MIHALACHE D, MAZILU D, LEDERER F, et al. Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation [J]. Phys. Rev. A,2008,77:033817.
    [265]WAINBLAT G, MALOMED BA. Interactions between two-dimensional solitons in the diffractive-diffusive Ginzburg-Landau equation with the cubic-quintic nonlinearity [J]. Physica D,2009,238:1143-1151.
    [266]ZHAO C, ZHOU S. Limit behavior of global attractors for the complex Ginzburg-Landau equation on infinite lattice [J]. Appl. Math. Lett.,2008,21:628-635.
    [267]ZHANG Q. Random attractors for a Ginzburg-Landau equation with additive noise [J]. Chaos, Solitons and Fractals,2009,39:463-472.
    [268]HOUGHTON SM, TOBIAS SM, KNOBLOCH E, et al. Bistability in the complex Ginzburg Landau equation with drift [J]. Physica D,2009,238:184-196.
    [269]DAS SK, PURI S, CROSS MC. Nonequilibrium dynamics of the complex Ginzburg- Landau equation:Analytical results [J]. Phys. Rev. E,2001,64:046206.
    [270]DAS SK, PURI S. Nonequilibrium dynamics of the complex Ginzburg-Landau equation:Numerical results in two and three dimensions [J]. Phys. Rev. E,2002,65: 046123.
    [271]DAI Z, LI Z, LIU Z, et al. Exact homoclinic wave and soliton solutions for the 2D Ginzburg-Landau equation [J]. Phys. Lett. A,2008,372:3010-3014.
    [272]ZHONG P, YANG R, YANG G. Exact periodic and blow up solutions for 2D Ginzburg-Landau equation [J]. Phys. Lett. A,2008,373:19-22.
    [273]DAI CQ, CEN X, WU SS. Exact solutions of discrete complex cubic Ginzburg-Landau equation via extended tanh-function approach [J]. Comput. Math. Appl.,2008,56: 55-62.
    [274]ZHAN M, KAPRAL R. Model for line defects in complex-oscillatory spiral waves [J]. Phys. Rev. E,2005,72:046221.
    [275]ZHAN M, LUO JM, GAO JH. Chirality effect on the global structure of spiral-domain patterns in the two-dimensional complex Ginzburg-Landau equation [J]. Phys. Rev. E,2007,75:016214.
    [276]HENRY H, HAKIM V. Scroll waves in isotropic excitable media:Linear instabilities, bifurcations, and restabilized states [J]. Phys. Rev. E,2002,65:046235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700