Camassa-Holm方程和Ginzburg-Landau方程的整体解及其性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了Camassa—Holm方程和Ginzburg—Landau方程初边值问题整体解的存在性及其性质。全文共分三个部分。
     第一部分:考虑了Camassa—Holm方程在半无界和有界区域上的初边值问题,用Kato关于拟线性演化方程的初值问题的理论及先验估计的方法,证明了整体解的存在性,及在一定条件下,解在有限时间内的Blow—up。同时还研究了一类广义Camassa—Holm方程初值问题整体解的存在性。
     第二部分:在非线性控制边界条件之下,对于带耗散项的Camassa—Holm方程的初边值问题,用压缩映射不动点原理及先验估计方法,证明了整体光滑解的存在性、整体解的指数稳定性、H~2空间中整体吸引子的存在性以及时间周期解和殆时间周期解的存在性。
     第三部分:在一维情形,我们考虑了一类带导数项的Ginzburg—Landau方程,通过构造一些类似于发展方程守恒律的泛函及巧妙的积分估计,证明了当粘性系数趋于零时,Ginzburg—Landau方程的解逼近相应的带导数项的Schr(?)dinger方程的解,并给出了最优收敛速度估计;在二维情形,我们证明了一类带导数项的广义Ginzburg—Landau方程整体光滑解的存在性,以及在某种特殊情形下,GL方程的解趋近于相应的带导数项的Schr(?)dinger方程的弱解;在一般情形下,我们讨论了一类Ginzburg—Landau方程的非齐次边值问题,通过几个积分恒等式,同时估计解的H~1模及法向导数在边界上的模,证明了整体弱解的存在性。
In this paper, we study the existence of global solution and its property of the initial boundary value problem for Camassa-Holm equations and Ginzburg-Landau equations. There are three sections in this paper.
    The first section: We consider the initial boundary value problem on half line and bounded interval, with Kato's method for abstract quasi-linear evolution equations and a prior estimates of. solution, we get the existence of global smooth solution and the Blow-up of solution in finite time under some conditions. At some time, we also research the existence of global smooth solution of the initial boundary value problem for a class of generalized Camassa-Holm equations.
    The second section: Under the conditions of nonlinear boundary controbility, we consider the initial boundary value problem of Camassa-Holm equations with dissipative. By using the contractive mapping fixed point theorem and a priori estimates, the existence of
    global smooth s olution, global attractor in H~(2) , t ime p eriodic s olution or almost-periodic solution and the global exponential stability are proved.
    Finally, in the third section, by constructing some functional which similar to the conservation law of evolution equation and the technical estimates, we prove that in the inviscid limit the solution of generalized derivative Ginzburg-Landau equation (GGL equation)converges to the solution of derivative nonlinear Schrodinger equation correspondently in one-dimension; The existence of global smooth solution for a class of generalized derivative Ginzburg-Landau equation are proved in two-dimension, in some special case, we prove that the solution of GGL equation converges to the weak solution of derivative nonlinear Schrodinger equation; In general case, by using some integral identities
    
    
    
    of solution for generalized Ginzburg-Landau equations with inhomogeneous boundary condition and the estimates for the L~(2) norm
    on boundary of normal derivative and H~(1)'norm of solution, we prove
    the existence of global weak solution of the inhomogeneous boundary value problem for generalized Ginzburg-Landau equations.
引文
[1] Alber M. S., Camassa R. , D. Holm, and J. E. Marsden, On the link between umbilic geodesies and soliton solutions of nonlinear PDE' s[J], Proc. Roy. Soc. London, 1995, 450, 677-692
    [2] Alber M. S. , Camassa R. , . Holm D, and Marsden J. E. , The geometry of peaked solitons and billiard solutions of a class of integrable PDE' s [J], Letters Math. Phys, 1994, 32, 137-151.
    [3] .BealsR, SattingerD. , and Szmigielski J. , Acoustic scattering and the extended Korteweg de Vries hierarchy[J], Adv. Math., 1998, 140, 190-206.
    [4] Benjamin B. , Bona J. L., and Mahony J. J. , Model equations for long waves in nonlinear dispersive systems[J], Philo. Trans. Roy. Soc. London, 1972, 272, 47-78.
    [5] Boyd J. P. , Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation[J], Appl. Math. Comput., 1997, 81, 173-187.
    [6] Calogero F. , An integrable Hamiltonian system[JJ, Phys. Letters A, 1995, 201, 306-310.
    [7] Calogero F., Francoise P. , A completely integrable Hamiltonian system[J], J. Math Phys. , 1996, 37, 2863-2871.
    [8] Calogero F., and Vandiejen J. F. , Solvable quantum version of an integrable Hamiltonian system[J] J. Math. Phys, 1996, 37, 4243-4252.
    [9] Camassa R. and Holm D. , An integrable shallow water equation with peaked solitons[J], Phys. Rev. Letters, 1993, 71, 1661-1664.
    [10] Camassa R. , Holm D. , and Hyman J., A new integrable shallow water equation[J], Adv. Appl. Mech, 1994, 31, 1-33.
    [11] Clarkson P., Mansfield E. , and Priestley T. , Symmetries of a class of nonlinear third-order partial differential equations[J], Math. Comput. Modelling, 1997, 25, 195-212.
    [12] Constantin A., The Cauchy problem for the periodic Camassa-Holm equation[J], J. Differential Equations, 1997, 141, 218-235.
    [13] Constantin A., On the spectral problem for the periodic Camassa-Holm equation[J], J. Math. Anal. Appl., 1997, 210, 215-230.
    [14] Constantin A., On the inverse spectral problem for the Camassa-Holm equation[J], J. Funct. Anal, 1998, 155, 352-363.
    
    
    [15] Constantin A., Quasi-periodicity with respect to time of spatially periodic finite-gap solutions of the Camassa-Holm equation[J], Bull. Sei. Math., 1998, 122, 487-494,.
    [16] Constantin A. and Escher J., Global existence and blow-up for a shallow water equation[J], Annali Sc. Norm. Sup. Pisa, 1998, 26, 303-328.
    [17] Constantin A. and Escher J., Global weak solutions for a shallow water equation[J], Indiana Univ. Math. J., 1998, 47, 1527-1545.
    [18] Constantin A. and Escher J., On the structure of a family of quasi-linear equations arising in shallow water theory[J], Math. Ann., 1998, 312, 403-416.
    [19] Constantin A. and Escher J., Wave breaking for nonlinear nonlocal shallow water equations[J], Acta Mathematica, 1998, 181, 229-243.
    [20] Constantin A. and Escher J., Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation[J], Comm. Pure Appl. Math., 1998, 51, 475-504.
    [21] Cooper F. and Shepard H., Solitons in the Camassa-Holm shallow water equation[J], Phys. Letters A, 1994, 194, 246-250.
    [22] Fokas A. S., On a class of physically important integrable equations[J], Physica D, 1994, 87, 145-150.
    [23] Fokas A. S., Olver P., and Rosenau P., A plethora of integrable bi-Hamiltonian equations[M], In A. S. Fokas and I. M. Gelfand, editors, Algebraic Aspects of Integrable Systems, Birkhauser Verlag, Boston, 1997, 93-101.
    [24] Gilson C. and Pickering A., Factorization and Painleve analysis of a class of nonlinear third-order partial differential equations[J], J. Phys. A, 1995, 28, 2871-2888.
    [25] Y. Li and Olver P., Convergence of solitary wave solutions in a perturbed bi-Hamiltonian dynamical system[J], I. Compactons and peakons, Discrete Contin. Dynam. Systems, 1997, 3, 419-432.
    [26] Constantin A., Global existence of solutions and breaking waves for a shallow water equation: a geometric approach[J], Ann. Inst. Fourier (Grenoble ) 2000, 50, 321-362.
    [27] Constantin A., McKean H. P., A shallow water equation on the circle[J], Commun. Pure Appl. Math, 1999, 52, 949-982.
    [28] Constantin A., Strauss W. A., Stability of peakons [J], Commun. Pure Appl. Math., 2000, 53, 603-610.
    
    
    [29] Xin, Z. Zhang P., On the weak solutions to a shallow water equation[J], Commun. Pure Appl. Math, 2000, 53, 1411-1433.
    [30] Constantin A. , Molinet L. , Global weak solutions for a shallow water equation[J], Comm. Math. Phys., 2000, 211, 45-61.
    [31] . Constantia A, Molinet L., Orbital stability of solitary waves for a shallow water equation[J], Physica D, 2001, 157, 75-89.
    [32] Fisher M., Schiff J. , The Camassa-Holm equation: Conserved quantities and the initial value problem[J], Physics Letters A, 1999, 259, 371-376.
    [33] Rodriguez-Bianco G., On the Cauchy problem for the Camassa-Holm equation [J], Nonlinear Analysis, 2001, 46, 309-327.
    [34] Zhengrong Liu, Tifei Qian, Peakons of the Camassa-Holm equation[J], Applied Mathematical Modelling, 2002, 26, 473-480.
    [35] Dai Huihui, Huo Yi, Solitary shock waves and other traveling waves in a general compressible hyperelastic ord[J], Proc. Roy. Soc. Lond. A, 2000, 456, 331-363.
    [36] Zenchuk, A. I. , The spectral problem and particular solutions to the (2+1) -dimensional integrable generalization of the Camassa-Holm equation[J], Advances in nonlinear mathematics and science, Phys. D, 2001, 152/153, 178-188.
    [37] Qian Tifei; Tang Minying, Peakons and periodic cusp waves in a generalized Camassa-Holm equation[J], Chaos Solitons Fractals, 2001, 12(7) , 1347-1360.
    [38] Kraenkel, R. A. ; Senthilvelan, M. ; Zenchuk, A. I. On the integrable perturbations of the Camassa-Holm equation[J]. J. Math. Phys. 2000, 41(5) , 3160-3169.
    [39] Kwek, Keng-Huat; Gao, Hongjun; Zhang, Weinian; Qu, Chaochun, An initial boundary value problem of Camassa-Holm equation[J]. J. Math. Phys. 2000, 41(12) , 8279-8285.
    [40] Chen, S. , Foias, C. , Holm, D. D. , Olson, E. ; Titi, E. S. , Wynne, S. A connection between the Camassa-Holm equations and turbulent flows in channels and pipes[C]. The International Conference on Turbulence (Los Alamos, NM, 1998) . Phys. Fluids 1999, 11(8) , 2343-2353
    [41] Kraenkel, R. A.; Zenchuk A., Two-dimensional integrable generalization of the Camassa-Holm equation[J]. Phys. Lett. A 1999, 260(3-4) , 218-224.
    [42] Foias C. , Holm D. , Titi S. , The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and Tarbulence theory[J], J. Dynamics
    
    and Diff. Eq, 2002, 14(1) , 1-35.
    [43] Korteweg D. J., Vries G. de, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves[J], Phil. Mag, 1895, 39, 422-443.
    [44] strauss W., Charls B., An inhomogeneous bundary value problem for nonlinear Schrodinger equations[J], J. Diff. eqs. 2001,173, 79-91.
    [45] W.-J. Liu and. Krstic M., "Global boundary stablization of the Korteweg-de Vries-Burgers equation, " [J] submitted to SIAM. J. Control Optim., 1998.
    [46] . Rosier L., "Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, " [J] ESAIM Control Optim. Calc. Var., 1997, 2, 33-55(electronic).
    [47] . Russel D. L and B. Y. Zhang, "Stabilization of the Korteweg-de Vries equation on a periodic domain, " in Control and Optimal Design of Distributed Parameter Systems (Minneapolis, MN, 1992) , pp. 195-211, IMA Vol. Math. Appl., 70, Springer, New York, 1995.
    [48] B. Y. Zhang, "Boundary Stabilzation of the Korteweg-de Vries equation, " Internat. Ser. Numer. Math., 1994,. 118, 371-389.
    [49] Cazcnave I and Weissler, E., The Cauchy problem for the critical nonlinenr Schrodinger equation in H2 [J], Nonlin. Anal. TMA, 1990, 14, 807-836.
    [50] Doering G. ..Gibbon J. and Levermore C. D., Weak and strong solution of the complex Ginzburg-Landau equation[J], Physica D, 1994, 71, 285-318.
    [51] Ginibre J. and Velo G., The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. 1 Compactness methods[J], Physica D, 1996, 95, 191-228.
    [52] Goldman D. and Sitovich L., The one-dimensional complex Ginzburg-Landau equation in the low dimension limit[J], Nonlinearity, 1994,7,417-439.
    [53] Kato T., Quasi-linear equations of evolution, with applications to partial differential equation. In spectral theory and differential equations, 1975, 448, 25-70, Springer Lecture Notes in Mathematics.
    [54] Kenig. C. Ponce. G. and Vega. L2Small solutions in nonlinear Schrodinger equations [J], Annales Anal. Nonlin., 1993, 10, 255-288.
    [55] Wu. J. The inviscid limit of the complex Ginzburg-Landau equation[J], J. Diff. Eqs. 1998, 142, 413-433.
    [56] .Bechouche P,. Jungel A, Inviscid limits of the complex Ginzburg-Landau equation[J],
    
    Conmun. Math. Phys. 2000, 214, 201-226.
    [57] . Tsutsumi M, On smooth solutions to the initial-boundary value problem for the nonlinear Schrodinger equations in two space dimensions[J], Nonlinear Anal. 1989, 13, 1051-1056.
    [58] . Tsutsumi M, On global solutions to the initial-boundary value problem for the nonlinear Schrodinger equations in exterior domains[J], Comm, Partial Differential Equations 1991, 16, 885-907.
    [59] .Duan J,. Holmes P and. Titi E. S, Global existence theory for a generalized Ginzburg-Landau equation[J], Nonlinearity, 1992, 5, 1303-1314.
    [60] .Duan J and. Holmes P, On the Cauchy problem for a generalized Ginzburg-Landau equation[J], Nonlinear Anal. TMA, 1994, 22, 1033-1040.
    [61] . Duan J, . Titi E. S, . Holmes P, Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation [J], Nonlinearity, 1993, 6, 915-933.
    [62] 高洪俊,郭柏灵,一维广义Ginzburg-Landau方程的有限惯性形式,中国科学,1995,25 (12) , 1233-1247。
    [63] Guo Boling. , The global attractors for the periodic initial value problem of generalized Kuramoto-Sivashinsky type equation[J], Prog. In Nat. Sci., 1993, 3, 327-340.
    [64] Guo Boling. , Existence and uniqueness of the global solution of the periodic boundary value and initial value problem for a class of the coupled system of Schrodinger-KdV equations[J], Acta Math. Sinica, 1983, 26(5) , 513-532.
    [65] Guo Boling. and Chang Qianshun, Attractors and dimensions for discretizations of a generalized Ginzburg-Landau equation[J], J. Partial Diff. Equ., 1996, 9, 365-383.
    [66] 郭柏灵、丁时进,自旋转波与铁磁链方程[M],浙江科学技术出版社,2000年5月。
    [67] Guo Boling, Ding Shijin, Initial-boundary value problem for the Landau-Lifshitz system (Ⅱ): Uniqueness[J], Pro. Nar. Sci., 1998, 8 (2) , 147-151.
    [68] Guo Boling, Ding Shijin, Su Fengqiu, Smooth solution for 1-D. Inhomogeneous heisenberg chain equations[J], Edinburgh Proc. Roy. Soc., 1999, A(129) ,117.
    [69] Guo Boli[J], Prog. Nat. Sci., 1995,659-610.
    [70] Guo Boling, Huang Haiyang, Smooth solution of generalized system of ferromagnetic
    
    chain [J], Discrete and continous dynamical systems, 1999, 5(4) , 729-740.
    [71] Guo Boling, Jing Zhujun, Lu Bainian, Slow time-periodic solutions of cubicquintic Ginzbury-Landau equation (Ⅰ), Equilibria problem [J], Prog. Nat. Sci. , 1998, 8(4) , 403-415.
    [72] Guo Boling, Jing Zhujan, Lubainian, Slow time-periodic solutions of cubicquintic Ginzbury-Landau equation (Ⅱ), Equilibria problem[J], Prog. Nat. Sci., 1998, 8(5) , 539-547.
    [73] Guo Boling., Miao Changxin. , Huang Haiyang. , The global flow for coupled system of Schrodinger-BBM equations [J], [In Chinese] Sci. in China (Series A), 1997, 27, 865-872.
    [74] Guo Boling. , Tan Shaobin. , On smooth solutions to the initial value problem for the mixed nonlinear Schrodinger equations [J], Proc. Roy. Soc. , Edinburgh, 1991, 119A, 31-45.
    [75] Hayashi N. , Ozawa T. , On the derivative nonlinear Schrodinger equation[J], Phys. D, 1992, 55, 14?6.
    [76] Guo Boling, Yun Rong, Almost periodic solution of generalized Ginzburg-Landau equation[J], Prog. Natural. Sci., 2001, 11(7) , 503-515.
    [76] Hale J.K. , Asymptotic behavior of dissipative system [M], Mathematical Surveys and Monographs 1988, 15, AMS, Providence. .
    [77] 韩永前,非线性Schrodinger-Boussinesq方程Cauchy问题解的适定性和爆破[D],中国工程 物理研究院博士论文,1999年6月。
    [78] Henry D. , Geometric theory of semilinear parabolic equations, 1981, Springer Verlag.
    [79] Kato H. , Existence of periodic solutions of the Navier-Stokes equations[J], J. Math. Anal. Appl., 1997,208, 141-157.
    [80] Yongsheng Li, Boling Guo, Global existence of solution to derivative 2D Ginzburg-Landau equation[J], J. Math. Anal. Appl., 249, 412-432.
    [81] Lions,J.L.著,郭柏灵、汪礼译,非线性边值问题的一些解法[M],中山大学出版社,1992 年3月。
    [82] . Guo Boling, Gao Hongjun, Finite Dimensional behaviour of generalized Ginzburg-Landau equation[in Chinese] [J], Prog. Natl. Sci. , 1994, 4, 423-434.
    [83] Guo Boling, Wang Baoxiang, Finite Dimensional behaviour of the derivative Ginzburg-Landau equation in two spatial dimensions [J], Phys. D, 1995,89, 83-99.
    
    
    [84] Guo Boling, Wang Baoxiang, Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions[J], Discrete and continuous dynamical systems, 1996,3(4), 455-466.
    [85] Guo Boling, Y. Li, Global attractor for the derivative 2D Ginzburg-Landau equation in an unbounded domain, to appear.
    [86] Guo Boling, Y. Li,, Global existence of solutions to the derivative 2D Ginzburg-Landau equation[J], J.Math. Anal. and Appl., 2000,249, 412-432.
    [87] Guo, Boling, Lu, Bainian, and Wan Guihua, Stability of traveling solutions of the derivative Ginzburg-Landau equation[J], Comm. Nonl. Sci., and Num. Simul., 1997, 2(3), 150-156.
    [88] Cruz-Pacheco, G., Levermore, C.D., and Luce, B. P., Complex Ginzburg-Landau equations as perturbations of nonlinear Schrdinger equations: Traveling wave persistence, Submitted.
    [89] Cruz-Pacheco, G., Levermore, C.D., and Luce, B. P., Complex Ginzburg-Landau equations as perturbations of nonlinear Schrodinger equations: Quasi-periodic solutions, Preprint.
    [90] Doering, C., Gibbon, J.D., Holm, D.D., and Nicolaenko, B., Inertial manifolds for the Ginzburg-Landau equation[J], Nonlnearity, 1989, 1, 279-309.
    [91] Kapitula, T., and Ruhin, J., Existence and stability of standing hole solutions to Complex Ginzburg-Landau equations[J], Nonlinearity, 2000, 13, 77-112.
    [92] Fokas A.S, Fuchsstei[J], Phys. D, 1981,4, 47—66.
    [93] 郭柏灵,非线性演化方程[M],上海科技出版社,1995.
    [94] 郭柏灵,无穷维动力系统(上,下)[M],国防工业出版社,2000.
    [95] 郭柏灵,黄海洋,蒋慕容,金兹堡—朗道方程,科学出版社,2002。
    [96] 郭柏灵,广义Kdv方程的守恒律和行波解结构[J],科学探索,3(2),19S3,pp.31-40.
    [97] 郭柏灵,庞小峰,孤立子[M],科学出版社,1987.
    [98] 郭柏灵,具磁场效应的非线性Schrdinger方程组的初边值问题[J],应用数学学报,1987,10(2),189-202.
    [99] Adams R. A, "Sobolev Space" [M], Academic Press. New York, 1975.
    [100] Friedman A., Partial Differential Equations[M], Holt, New York, 1969.
    [102]. Ghidaglia J. M and Teman R., Attractors for Damped Nonlinear Hyper-bolic Equations[J],
    
    J. Math. Pures Appl. 1987, 66, 273-319.
    [103] W. Rudin, Functional Analysis[M], McGraw-Hill, New York Dusselderf Johannesburg, 1973.
    [104] . Teman R., Infinite Dimansional Dynamical Systems in Mechanics and Physics[M], Springer-Verlag, Second, 1997.
    [105] . Babin A. V. and. Vishik M. I, Attractors of Evolution Equations [M], North Holland, Amsterdm 1992.
    [106] Babin A. V. and Vishik M. I., Attractors of partial differential evolution equations in a unbounded domain[J], Pro. Roy. Soc. Edinburgh, 116(A) (1990) , 221-243.
    [107] A. Pazy, Semigroups of Linear Operators and applications to Partial Differential Equations[M], Springer-Verlag, New York, 1983.
    [108] Stein E. M., Harmonic analysis; Real-Variable methods, orthogonality and oscillatory integrals[M], Princeton University Press,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700