KT-ST稳态马克装置建立及初步实验研究结果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要的工作是在中国科学技术大学等离子体物理专业的KT-ST稳态等离子体环形装置上进行的,包括KT-ST稳态磁面位形放电装置的建立以及在此放电位形下等离子体性质的初步实验研究。
     首先,设计了在真空室小截面中心的金属内置导体环及相关的配套系统,包括去离子体冷却系统、稳流极向场及纵场供电电源、无油真空抽充气系统、自动化远程控制系统等。完成了整套系统的安装、调试,并实现了稳态等离子体放电的成功运行。新升级后的装置命名为KT-ST。KT-ST稳态马克的KT-ST意义是K表示科大,T表示类似托克马克的环形装置,ST表示稳态/仿星器,兼有仿星马克意思,因为本装置与仿星器一样有真空磁面。
     这些工作让KT-ST装置具备了一种新的工程实验的基础条件,使得其可以长时间保持一个具有类托卡马克磁面结构的等离子体环境。装置的适应性和可实验研究范围得到了有效的扩展,有利于进行托卡马克边界等离子体物理可比的实验。
     本论文所实现的具有类似托卡马克磁场位形且可以进行稳态环形磁约束等离子体放电的装置,迄今为止在国际上尚未见有其他报道。
     其次,本论文在完成装置建立的基础上,对磁面位形稳态放电的等离子体的性质进行了初步诊断。本论文利用CST软件模拟了KT-ST装置的磁力线位形,并测量了真空磁场的空间分布,发现实际测量值与理论模拟吻合的很好,并给出了安全因子在径向的分布。本论文还利用静电探针组对等离子体的重要基本参数的空间分布进行了诊断,给出了等离子体的密度、温度、悬浮电位等物理量在不同纵场、极向场、气压等放电条件下在水平径向或者垂直径向上的分布,对分布进行了相关的比较,并给出了初步的讨论和物理解释。通过对极向剪切速度、径向输运损失等物理量的考查,给出了等离子体极向旋转的初步实验证据。
     本论文还使用相机对等离子体发出的可见光进行了拍照,在10微秒量级的曝光时间下的等离子体照片表明,在此磁面放电位形下,等离子体确实有效的极向旋转了起来,为探针的数据提供了支持。
The work is performed in the steady state plasma torus device of KT-ST in the University of Science and Technology of China, This thesis presents the construction of the magnetic confinement plasma device KT-ST and the preliminary experiments of plasma basic properties with steady state discharge.
     Firstly, we design the inner conductor torus in the center of the minor cross-section of the vacuum and the relevant auxiliary facilities, including an ion-free water device, power source providing power to the coils of toroidal and poloidal field, oil-free pumping system and the remote control system and so on. All devices were installed and tested on the site to be properly worked. KT-5D was named for KT-ST magnetic confinement device after upgrading. K means Keda, T means Tokamak-like Torus, ST means steadystate/stellarator and steady-mak.
     The accomplishment mentioned above made it maintains the magnetic surfaces configuration similar to tokamak, the adaptability and flexibility of the device are remarkably improved. It is beneficial to research of the physics issues in tokamak magnetic configuration.
     The set up of magnetic surfaces similar to tokamak with steady state plasma discharge was not reported yet elsewhere.
     Secondly, the preliminary research of plasma properties in the magnetic surfaces configuration steadystate discharge is completed based on above work.we simulated the magnetic line of poloidal field by using CST software and measured the radial profiles of poloidal magnetic field in horizontal and vertical direction,theoretical value and experimental data is very consistent,meanwhile the profile of safety factor in radial direction is given. Some basic parameters of plasma with electrostatic probes movable horizontally and vertically along radial directions of the minor cross section of the vacuum were measured. The profile of basic parameters of plasma such as plasma density,electron temperature,floating voltage were provided with different discharge conditions(gas pressure,toroidal field,poloidal field) in the thesis,and we give preliminary discussion and physical explanations. the preliminary experimental evidence of plasma poloidal rotation is also given.
     The camera was used to take pictures of the visible light emission of the plasma, the pictures of the exposure time of ten microseconds show plasma poloidal rotation is formed in magnetic surfaces configuration, which provides the support for the probe data.
引文
[1]The JET team, Fusion energy production from a deuterium-tritium plasma in the JET tokamak.Nucl.Fusion,1992,32; 187
    [2]The JET team, Latest JET results in deuterium and deuterium-tritium plasmas, Plasma Phys Control Fusion,1997,39:B1.
    [3]Strachan J D, et al,. TFTR DT experiments. Plasma Phys Control Fusion,1997, 39:B103.
    [4]H. P. Furth, R J, Goldston, S. J. Zweben, Buring plasmas. Nucl. Fusion 25,543 (1990).
    [5]L. A. Artsimovich, Tokamak devices, Nucl. Fusion 12,215(1972).
    [6]ASDEX team. The H-mode of ASDEX. Nucl. Fusion,1989,29:1959.
    [7]P.H.Diamond, S.I. Itoh, K. Itoh et al., Zonal flows in plasma-a review. Plasmas Phys. Control. Fusion 47, R35 (2005).
    [8]T. Ido, Y. Isoya, H. Katori, Optical-dipole trapping of Sr atoms at a high phase-space density Plasma Phys. Control. Fusion 42, A309 (2000).
    [9]P. Gohil, K.H. Burrell, E. J. Doyle et al., The phenomenology of the LH transition in the DIII-D tokamak.Nucl. Fusion 34,1057(1994)
    [10]C. P. Ritz, E. J. Powers and R.D.Bengtson, Experimental measurement of three-wave coupling and energy cascading. Phys. Fluids B 1,153(1989)
    [11]M. Xu, G. R. Tynan, C. Holland, Z. Yan, S. H. Muller, and J. H. Yu. Study of nonlinear spectral energy transfer in frequency domain. Phys. Plasmas 16,042312 (2009)
    [12]E.D.Zimmerman and S.C.Luckhardt. Measurement of the correlation spectrum of electrostatic potential fluctuations in an ECRH Helimak plasma. J. Fusion.Energy.12, 289 (1993).
    [13]J. Egedal, A. Fasoli, M. Porkolab, and D. Tarkowski. Plasma generation and confinement in a toroidal magnetic cusp. Rev. Sci. Instrum.71,3351 (2000).
    [14]J. Egedal, A. Fasoli, D. Tarkowski, and A. Scarabosio. Collisionless magnetic reconnection in a toroidal cusp. Phys, Plasmas 8,1935 (2001).
    [15]J.J.Ramos, F.Porcelli and R.Verastegui. Driven Reconnection about a Magnetic X-Line with Strong Guide Component. Phys. Rev. Letts, Vol 89, No 5,29 July(2002).
    [16]J.Egedal, W.Fox and M. Porkolab. Experimental evidence of fast reconnection via trapped electron motion. Phys. Plasmas, Vol 11, No 5, May(2004).
    [17]P.K.Sharma and D. Bora. Experimental study of a toroidal magnetized plasma in the presence of a weak vertical magnetic field. Plasma.Phys.Control.Fusion 37,1003 (1995).
    [18]D. Bora, Curvature induced low frequency instabilities in a toroidal plasma. Phys. Letter. A,308(1989).
    [19]S.K.Mattoo and N.Venkataramani, Dependence of striking characteristics of plasma discharge on filament orientation in a toroidal device. J. Appl. Phys.60,2762 (1986).
    [20]S.T.Wu, X.Q.Mao, Y.Wu et al. Engineering design of the Helimak device.Fusion Engineering and Design 63-64,59(2002).
    [21]K.W.Gentle and H.He. Texas Helimak. Plasma Science and Technology, Vol.10, No.3, Jun (2003).
    [22]K.Rypdal and S.Ratynskaia. Onset of Turbulence and Profile Resilience in the Helimak Configuration. Phys. Rev. Letts 94,225002 (2005).
    [23]R.B.Dahlburg, W.Horton, W.L. Rowan et al. Evolution of the Bounded magnetized jet and comparison with Helimak experiments. Plasma Phys 16,072109 (2009).
    [24]Anuraj Panwar, V. Sajal and A.K.sharma. Whistler wave stabilization/ destabilization of drift waves in a plasma cylinder. J. Phys D:Appl. Phys.42 (2009).
    [25]A.Fasoli, A.Burckel, L.Federspiel et al. Electrostatic instabilities,turbulence and fast ion interactions in the TORPEX device. Plasma.Phys.Control.Fusion.52 (2010).
    [26]P. Ricci and B.N.Rogers. Turbulence Phase Space in Simple Magnetized Toroidal Plasmas. Phys. Rev. Letts 104,145001(2010).
    [27]B.Labit,I.Furno,A.Fasoli et al.Universal Statistical Properties of Drift-Interchange Turbulence in TORPEX plasmas. Phys. Rev. Letts 98,255002(2010).
    [28]M.Podesta, A.Fasoli, B.Labit et al. Cross-Field Transports by Instability and Blobs in a Magnetized Toroidal Plasma. Phys. Rev. Letts 101,045001(2008).
    [29]A.Fasoli, B.Labit, M.McGrath et al. Electrostatic turbulence and transport in a simple magnetized plasma. Phys. Plasmas 13,055902(2006).
    [30]A.Fasoli, A.Burkel,L.Federspiel et al. Electrostatic instabilities,turbulence and fast interactions in the TORPEX device. Plasma Phys.Control.Fusion 52,124020 (2010).
    [31]F.M.Poli, M.Podestaand A.Fasoli. Development of electrostatic turbulence from drift-interchange instabilities in a toroidal plasma. Phys. Plasmas 14,052311(2007).
    [32]S.Yoshikawa, W.L.Harries and R.M.Sinclair, Equilibrium of a Toroidal Plasma with a Conducting Aperture Limiter. Phys.Fluid 6,1506(1963).
    [33]S.Nakao, K.Ogura, Y.Terumichi and S.Tanka. Particle loss from an electron cyclotron resonance discharge plasma in the WT-2 device. Phys.letter 96 A,405(1983).
    [34]L.E.Zakharov and G.V.Pereverzev, Plasma equilibrium and confinement in the initial stage of a tokamak discharge. Sov.J.Plasma Phys.14,75(1988).
    [35]S.H.Muller, A.Fasoli, B.Labi et al. Effects of a Vertical Magnetic Field on Particle Confinement in a Magnetized Plasma Torus. Phys. Rev. Letts 93,165001(2004).
    [36]O. Grulke, F. Greiner,T. Klinger and A. Piel, Comparative experimental study of coherent structures in a simple magnetized torus. Plasma.Phys.Control.Fusion43 (2001)525-542
    [37]F. Greiner, D. Block, and A. Piel. Observation of Mode like Coherent Structures in Curved Magnetic Fields of a Simple Magnetized Torus. Plasma Phys.44, No.4, 335-346 (2004)
    [38]S.H.Muller, A.Fasoli, B.Labit et al. Basic turbulence studies on TORPEX and challenges in the theory-experiment comparison. Phys. Plasmas 12,090906(2005)
    [39]S. J. Zweben et al. Edge turbulence measurements in toroidal fusion devices. Plasma Phys. Control. Fusion49 (2007)
    [40]Noam Katz,Jan Egedal,Will Fox et al, Experiment on the propagation of plasma filaments. Phys.Rev.Lett 101,015003(2008).
    [41]D.Iraji, A. Diallo, A.Fasoli et al. Fast visible Imaging of turbulent plasma in TORPEX. Rev. Sci. Instrum.79,10F508(2008).
    [42]D. Iraji, I. Furno, A. Fasoli and C.Theiler. Imaging of turbulence structure and tomographic reconstruction of TOPEX plasma emissivity. Phys.Plasmas 17,122304 (2010)
    [43]S.H.Muller, C.Theiler, A.Fasoli et al. Studies of blob formation, propagation and transport mechanisms in basic experimental plasmas. Plasma Phys. Control. Fusion51 (2009).
    [44]S.H.Muller, A.Diallo, A.Fasoli et al. Plasma blobs in a basic toroidal experiment: origin,dynamics and induced transport. Phys.Plasmas 14,110704 (2007).
    [45]I.Furno, B.Labit, A.Fasoli et al. Mechanism for blobs generation in the TORPEX plasma. Phys.Plasmas 15,055903 (2008).
    [46]A.Diallo, A.Fasoli, I.Furno et al. Dynamics of Plasma Blobs in a Shear Flow. Phys.Rev.Letts 101,115005 (2008).
    [47]C.Theiler, I.Furno, P.Ricci et al, Cross-Field of Plasma Blobs in an Open Magnetic Field Line Configuration. Phys.Rev.Letts 103,065001 (2009).
    [48]O.E.Garcia, N.H.Bian, V.Naulin et al. Mechanism and scaling for convection of isolated structures in nonuniformly magnetized plasmas.Phys.Plasma 12,090701 (2005)
    [49]G.Q.Yu,S.I.Krasheninnikov and P.N.Guzdar.Two-dimensional modelling of blob dynamics in tokamak edge plasmas.Phys.Plasma 13,042508 (2006)
    [50]D.Iraji, I.Furno, A.Fasoli and C.Theiler. Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity. Phys. Plasmas 17, 122304(2010).
    [51]J.C.Perez,W.Horton,K.Gentle et al. Drift wave instability in the Helimak experiment. Phys. Plasmas 13,032101(2006).
    [52]F. M. Poli, P. Ricci, A.Fasoli, and M. Podesta, Transition from drift to interchange instabilities in an open magnetic field. Phys. Plasmas 15,032104(2008).
    [53]H. Xia and M. G. Shats, Inverse energy cascade correlated with turbulent-structure generation in toroidal plasma. Phys.Rev.Lett.91,155001(2003)
    [54]H. Xia and M. G. Shats, Spectral energy transfer and generation of turbulent structures in toroidal plasma. Phys. Plasmas, Vol.11, No.2, February 2004
    [55]A. Hasegawa and K. Mima, Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21,87(1978).
    [56]M. G. Shats, Effect of the radial electric field on the fluctuation-produced transport in the H-1 helia. Plasma Phys. Controlled Fusion 41,1357 (1999).
    [57]R.Freeman, M.Okabayashi, H.Pacher et al. Plasma containment in the Princeton spherator using a supported supercinducting ring. Phys. Rev. Lett 23,756 (1969).
    [58]A. Hasegawa, K. Mima. Pseudo-three-dimensional turbulence in magnetized no uniform plasma. Phys. Fluids 2187 (1978).
    [59]P. H. Diamond et al. Dynamics of zonal flows and self-regulating drift-wave turbulence.17th Int. Conf. on Fusion Energy (1998).
    [60]R. E. Waltz, G. D. Kerbel and J. Milovich, Toroidal gyro-Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes. Phys. Plasma 1(7) (1994).
    [61]Z. Lin et al.1988 Turbulence transport reduction by zonal flows:massively parallel simulation. Science 281 (1835).
    [62]Eun-jin Kim and P. H. Diamond. Zonal Flows and Transient Dynamics of the L-H Transition. Phys. Rev. Letts.90,185006(2003).
    [63]R. Sanchez et al. On the nature of radial transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic tokamak plasma turbulence. Phys. Plasma 16,055905(2009).
    [64]Eun-jin Kim. Effect of Collisional Zonal-Flow Damping on Flux-Driven Turbulent Transport. Phys. Rev. Letts.92,025002(2004).
    [65]R.Freeman, M.Okabayashi, H.Pacher et al. Plasma containment in the Princeton spherator using a supported superconducting ring. Rev. Letts.Vol.23, No.14,6 October (1969).
    [66]H.D.Pacher,G.W.Pacher and S Yoshikawa. Effect of Shear on resistive drift waves in the spherator. Phys. Rev. Letts.Vol.25, No.22,30 November (1970).
    [67]J.Sinnis, M.Okabayashi, J.Schmidt and S.Yoshikawa. Particle loss in the Levitated Spherator FM-1. Phys. Rev. Lett. Vol.29, No.18,30 October (1972).
    [68]S.Ejima, M.Okabayashi and J.Schmidt. Determination of the electron thermal conductivity across magnetic surfaces in the FM-1 spherator. Phys. Rev. Lett.Vol.32, No.16,22 April (1974).
    [69]S.Ejima and M.Okabayashi. Electron thermal conductivity in the trapped electron regime in the FM-1 spherator. Phys Fluid, Vol.18, No.7, July (1975).
    [70]B.A.Grierson, M.E.Mauel, M.W.Worstell et al. Transport Induced by Large Scale Convective Structures in a Dipole-Confined Plasma. Phys. Rev. Lett 105,205004 (2010).
    [71]B.A.Grierson, M.W.Worstell, M.E.Mauel. Global and local characterization of turbulent and chaotic structure in a dipole-confined plasma. Phys. Plasmas 16,055902 (2009).
    [72]M.S.Krasheninnikova and p.J.Catto. Effects of hot electrons on the stability of a dipolar plasma. Phys. Plasmas 13,052503 (2006).
    [73]H.P.Warren and M.E.Mauel. Wave-induced chaotic radial transport of energetic electrons in a laboratory terrella experiment. Phys.Plasna 2,4185(1999).
    [74]B.Levitt, D.Masiovsky and M.E.Mauel. Measurement of the global structure of interchange modes driven by energetic electrons in a magnetic dipole. Phys. Plasna, Vol 9, No 6,June (2002).
    [75]H.P.Warren and M.E.Mauel. Observation of Chaotic Particle Transport Induced by Drift-Resonant Fluctuations in a magnetic Dipole Field. Phys. Rev.Letts, Vol 74, No 8 (1995).
    [76]F. J. Crossley et al., Experimental study of drift-wave saturation in quadrupole geometry. Plasma Phys. Controlled Fusion 34,235(1992)
    [77]Yuichi Ogawa, Zensho Yoshida,Junji Mrikawa et al. Construction and operation of an Internal Coil device,RT-l,with a High-Temperature superconductor. Plasma and Fusion Research,4,020(2009).
    [78]S.Mizumaki, T.Tosaka, Y. Ohsaka et al. Development of the magnetically floating superconducting dipole in the RT-1 plasma device. IEEE Transaction on Applied superconductivity, Vol.16, No.2, June (2006).
    [79]Y. Yano, Z. Yoshida, J.Morikawa et al. Improvement of field accuracy and plasma performance in the RT-1 device. Plasma and Fusion Research:Rapid Communications. Vol.4,039 (2009).
    [80]D.T.Gamier, A.K.Hansen, J.Kesner et al. Design and initial operation of the LDX facility. Fusion Engineering and Design 81,2371 (2006).
    [81]J.Kesner, A.N.Simakov, D.T.Gamier et al. Dipole equilibrium and stability. Nuclear Fusion, Vol.41, No.3 (2001).
    [82]A.C.Boxer, D.T.Garnier, J.L.Ellsworth et al. Density profiles in the levitated dipole experiment. J Fusion Energ 27:11-15 (2008).
    [83]A.Kouznetsov, J.P.Freidbeg and J. Kesner. Quasilinear theory of interchange modes in a closed field line configuration, phys plasmas 14,102501 (2007).
    [84]D.T.Garnier, A.C.Boxer, J.L.Ellsworth et al. Stabilization of a low-frequency instability in a dipole plasma. J.plasmas Phys, Vol.76,733(2008).
    [85]D.T.Garnier, M.S.Davis. J.L.Ellsworth et al. Turbulence particle pinch in levitated superconducting dipole. ICC/1-1Ra.
    [86]A.C.Boxer, R.Bergmann, J.L.Ellsworth et al. Strong turbulence pinch of plasma confined by a Levitated dipole magnet. PSFC/JA-10-22.
    [87]DPP Metting:The levitated dipole experiment:Experiment and Theory.
    [88]P.Ricci and B.N.Rogers and W.Dorland. Small-Scale turbulence in a closed-field-line geometry. Phys. Rev. Lett 97,245001 (2006).
    [89]A.N.Simakov, P.J.Catto, J.Ramos et al. Resistive stability of magnetic dipole and other axisymmetric closed field line configurations. Phys. Plasmas, Vol.9, No.12, 4985 (2002).
    [90]A.N.Simakov, R.J.Hastie and P.J.Catto. Long mean-free path collisional stability of electromagnetic modes in axisymmetric closed magnetic field configurations. Phys. Plasmas, Vol.9, No.1,201 (2002).
    [91]D.T.Garnier, J.Kesner and M.E.Mauel. Magnetohydrodynamic stability in a levitated dipole. Phys. Plasmas, Vol.6, No.9,3431 (1999).
    [92]S.Kobayashi, B.N.Rogers and W. Dorland. Gyrokinetic simulation of turbulence transport in a ring dipole plasma. Phys. Rev. Lett 103,055003 (2009).
    [93]J.Kesner and M.Mauel. Plasma confinement in a Levitated Magnetic Dipole. Plasma Physics Reports, Vol.23, No.9,742(1997).
    [94]P.P.Woskov, J. Kesner, D.T.Garnier et al. Obervations and modeling of the electron cyclotron emission background in the Levitated Dipole Experiment. Journal of Physics:Conference Series 227,012021(2010).
    [95]A.C.Boxer, D.T.Garnier, M. E.Mauel. Multichannel microwave interferometer for the levitated dipole experiment. Rev. Sci. Instrum 80,043502(2009).
    [96]P.P.Woskov, J. Kesner, D.T.Garnier et al. Obervations and modeling of the electron cyclotron emission background in the Levitated Dipole Experiment. Journal of Physics:Conference Series 227,012021(2010).
    [97]A.K.Hansen, A.C.Boxer, J.L.Ellsworth et al. Varying electron cyclotron resonance heating on the Levitated dipole experiment. Journal of Fusion Energy, Vol. 26,57 (2007).
    [98]N. A. Krall, Finite β effects in a weakly unstable plasma. Phys. Fluids 9,(1966) 820
    [99]Paolo Ricci、B. N. Rogers and W.Dorland. Small-Scale Turbulence in a Closed-Field-Line Geometry, Phys.Rev.Lett 97,245001 (2006)
    [100]Sumire Kobayashi、Barrett N. Rogers and William Dorland. Gyrokinetic Simulations of Turbulent Transport in a Ring Dipole Plasma. PRL 103, 055003(2009).
    [101]D.T.Garnier et al. Stabilization of a low-frequency instability in a dipole plasma. J. Plasma Physics (2008), vol.74, part 6, pp.733-740
    [102]V.Pastukhov and N. Chudin, Low-frequency turbulence and non-diffusive cross-field plasma transport in mirror systems.Bulletin of the American Physical (2006)
    [103]High Beta observations of the hot electron interchange instability. The 48th Annul Metting of Division of plasma physics.
    [104]2010 EPS:invited talk presented at Dublin EPS meeting.
    [105]2010 IAEA:invited talk and poster presented at Daejeon IAEA meeting.
    [106]J.Kesner. M.Muel. Levitated Dipole Experiment.submitted to the U.S. Department of Energy Notice 03-19,Apri1 30,(2003).
    [107]R. A. Moyer et al. Turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the DIII-D tokamak. Phys. Plasma,2397(1995).
    [108]J. A. Boedo et al. Suppression of Temperature Fluctuations and Energy Barrier Generation by Velocity Shear. Phys. Rev. Lett.84,2630.(2000).
    [109]V. Antoni et al. Electrostatic transport reduction induced byf low shear modification in a reversed field pinch plasma. Plasma.Phys. Control. Fusion 42, 83(2000).
    [110]项志遴,俞昌旋,高温等离子体诊断技术,上海科技出版社,上海(1982).
    [111]Langmuir, I., in "The collected work in Irving Langmuir", Macmillan (Pergamon),1961.
    [112]H.Mott-Smith and I.Langmuir, Phys.Rev.28,27(1926)
    [113]N.Hershkowitz, How Langmuir Probes Work, in "Plasma Diagnostics", Vol.1, ed. by O. Auciello and D.L. Flamm (Academic Press, Boston,1989),Chap.3.
    [114]Sin-Li Chen,T.Sekiguchi, Journal of Applied phys, volume:36 issue:8(1965)
    [115]R.A.Moyer, K.H.Burrell, T.N.Carlstrom et al,. Beyond paradigm:Turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the DⅢ-D tokamak. Phys. Plasmas 2(6),2397-2407(1995).
    [116]H.Y.W.Tsui, R.D.Bengtson, G.X.Li et al. A new scheme for Langmuir probe measurement of transport and electron temperature fluctuations. Proceedings of the 9th topical conference on high temperature plasma diagnostics, Rev.Sci.Instrum. 63(10),4608-4610(1992).
    [117]H.Lin, R.D.Bengtson, and Ch.P.Ritz. Temperature fluctuations and transport in a tokamak edge plasma. Phys. Fluids B:Plasma Physics 1(10),2027-2030(1989).
    [118]R.Balbin, C.Hidalgo, M.A.Pedrosa et al. Measurement of density and temperature fluctuations using a fast-swept Langmuir probe. Rev. Sci. Instrum. 63(10),4605-4607(1992).
    [119]P.C.Liewer, J.M.McChesney, S.J.Zweben et al. Temperature fluctuations and heat transport in the edge regions of a tokamak. Phys. Fluids 29(1),309-317(1986).
    [120]A. J. Wootton et al. Fluctuations and anomalous transport in tokamaks. Phys. Fluids B,212 (1990).
    [121]P.C.Stangeby, in Physics of plasma-Wall Interactions in controlled Fusion, Edited by D.E.Post and R. Behrisch (Plenum, New York,1986),P.41
    [122]J.P.Gunn and V.Fuchs. Mach probe interpretation in the presence of suprathermal electrons. Phys. plasmas 14,032501(2007)
    [123]A.Tanga, M.Bandyopadhyay, and P.McNeely. Measurement of ion flow in a negative ion source using a Mach probe.Appl.Phys.Lett.,Vol.84,No.2,12 January 2004.
    [124]P.C.Stangeby, Measuring plasma drift velocities in tokamak edge plasmas using probes. Phys. Fluids 27,2699 (1984).
    [125]I.H.Hutchinson, A fluid theory of ion collection by probes in strong magnetic fields with plasma flow. Phys. Fluids 30(12), December 1987
    [126]I. H. Hutchinson, Ion collection by probes in strong magnetic fields with plasma flow Phys. Rev. A 37,4358 (1988).
    [127]I.H.Hutchinson, principles of plasma diagnostics, Cambridge university press,2005
    [128]C. M. Franck, O. Grulke, and T. Klinger, Magnetic fluctuation probe design and capacitive pickup rejection. Rev. Sci. Instrum.73,3768 (2002).
    [129]J.W.Cooley and J.W.Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput (1965)
    [130]J. M. Beall, Y. C. Kim, and E. J. Powers. Estimation of wavenumber and frequency spectra using fixed probe pairs. J. Appl. Phys.53(6),3933-3940 (1982).
    [131]Naofuml Iwama, Yasuo Ohba, andT akashige Tsukishima.Estimation of wavenumber and frequency spectra using fixed probe pairs. J. Appl. Phys.50(5), 3197-3206(1979).
    [132]Ch.P.Ritz, H.Lin, T.L.Rhodes et al. Evidence for confinement improvement by velocity-shear suppression of edge turbulence. Phys.Rev.Lett.65(20), 2543-2546(1990).
    [133]Ch.P.Ritz, E.J.Powers, T.Rhodes et al. Advanced plasma fluctuation analysis techniques and their impact on fusion research (invited). Rev.Sci.Instrum.59(8), 1739(1988).
    [134]Young C. Kim and Edward. J. Powers. Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions. IEEE. Transactions on Plasma Science PS-7(2),120-131(1979).
    [135]C. Holland, G.R. Tynan, P.H. Diamond et al. Evidence for Reynolds-stress driven shear flows using Bispectral analysis:theory and experiment. Plasma Phys. Control. Fusion 44(5A), A453-A457(2002).
    [1366]Edward. J. Powers, Jae Y. Hong, and Christoph P. Ritz. "Applied Digital Time Series Analysis". Preliminary version edition (1988).
    [137]Akira Hasegawa and Masahiro Wakatani. Self-Organization of Electrostatic Turbulence in a Cylindrical Plasma. Phys.Rev.Lett. VOLUME 59, NUMBER 14 (1987)
    [138]C. Holland, G. R. Tynan, R. J. Fonck et al. Zonal-flow-driven nonlinear energy transfer in experiment and simulation. Phys. Plasmas 14(5),056112(2007).
    [139]M. Xu, G. R. Tynan, C. Holland, Z. Yan, S. H. Muller, and J. H. Yu. Study of nonlinear spectral energy transfer in frequency domain. Phys. Plasmas 16,042312 (2009)
    [140]YU Yi, LU Ronghua, WANG Cheng, Pan Gesheng,WEN Yizhi,Yu Changxuan,MA Jinxiu, WAN Shude, LIU Wandong. Dual-Electrode Biasing Experiments in KT5C Device. Plasma.Sci.Tech.8,91 (2006).
    [141]Yi Yu, Yi-zhi Wen, Chang-xuan Yu, Shu-de Wan, Wan-dong Liu, Magnetically and opto-electronically isolated trigger for pulse-power applications. Rev. Sci. Instr. 79,083507 (2008).
    [142]Yi Yu, Rong-hua Lu, Zhi-jiang Wang, Yi-zhi Wen, Chang-xuan Yu, Shu-de Wan, Wan-dong Liu. Statistical properties of turbulence in a toroidal magnetized ECR plasma. Phys.Lett.A.372,1081 (2008).
    [143]Yi Yu, Zhi-jiang Wang, Min Xu, Zhen-hua Zhu, Rong-hua Lu, Yi-zhi Wen, Chang-xuan Yu, Shu-de Wan, Wan-dong Liu, Jun Wang, Xiao-yuan Xu, Ling-ying Hu. Compatible operation of the power system for steady-state and pulse modes in a magnetic torus KT5D. Rev. Sci. Instr.77,123502 (2006).
    [144]ZHU Zhenhua, XU Min, YU Yi, WANG Zhijiang, LU Ronghua, WEN Yizhi,YU Changxuan, MA Jinxiu, WAN · Shude,LIU Wandong, WAN Baonian, ZHAO Yanping,LI Jiangang, YAN Longwen, YANG Qingwei,DING Xuantong. Steady-State Plasmas in KT5D Magnetized Torus. Plasma.Sci.Tech.9,5 (2007).
    [145]J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman. Some stable hydromagnetic equilibria.Phys.Fluids 1,253(1958).
    [146]S.H.Mullur, A.Fasoli, A.Labit, M.McGrath, M.Podesta, and F.M.Poli. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus. Phys. Rev. Lett.93.165003 (2004).
    [147]K.Rypdal, A.Fredriksen, O.M.Oisen, and K.G.Hellblom, Anomalous cross-field current and fluctuating equilibrium of magnetized plasmas, phys. Plasmas 4 (5), May 1997.
    [148]王广珠、汪德良、崔焕芳,离子交换树脂使用及诊断技术,化学工业出版社北京(2005)
    [149]E.V. Suvorov & M.D. Tokman, High-frequency plasma heating in a toroidal system (review). Radiophysics and Quantum Electronics,1983
    [150]Bhag Singh Guru, Hiiseyin R.Hiziroglu 《Electromagnetic Field Theory Fundamentals)),Second Edition, Cambridge University Press 2005.
    [151]Yi Yu, Zhi-jiang Wang, Min Xu, Zhen-hua Zhu, Rong-hua Lu, Yi-zhi Wen, Chang-xuan Yu, Shu-de Wan, Wan-dong Liu, Jun Wang, Xiao-yuan Xu, and Ling-Ying Hu, Rev.SCI.Instrum.77,123502(2006).
    [152]王之江KT-5D双功能环建立过程及初步实验结果.博士毕业论文中国科学技术大学(2005)。
    [153]陆荣华KT-5D脉冲放电双电极偏压和稳态ECR等离子体性质的研究。博士毕业论文中国科学技术大学(2005)。
    [154]胡伶英高速可见光成像研究KT5D等离子体中流体漂移不稳定性。硕士毕业论文中国科学技术大学(2007)。
    [155]Hu Lingying, Yu Yi, Zhu Zhenhua, et al., Preliminary results of drift instability by fast optical images in KT-5D toroidal plasma. Plasma Sci. Tech.10273 (2008).
    [156]余奕稳态磁约束环等离子体输运相关问题的实验研究。博士毕业论文中国科学技术大学(2009)。
    [157]P.K.Sharma,J.P.Singh and D.Bora. Experimental study of a microwave produced toroidal plasma. Plasma Phys.Control.Fusion 39.1669(1997).
    [158]K.Rypdal,A.Fredriksen,O.M.Olsen et al. Microwave-plasma in a simple magnetized torus. Phys Plasmas 4,1468(1997).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700