高效的农杆菌介导紫花苜蓿遗传转化体系的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫花苜蓿是世界上栽培最早、分布最广的优质豆科牧草之一,其干草产量高、营养成分完全,堪称“牧草之王”,在畜牧业中占有不容忽视的重要地位。近年来,我国越来越严重的土壤盐碱化、荒漠化、干旱缺水以及病虫害的频繁发生都极大程度地影响了苜蓿的产量和品质,南方地区标志性的酸性土壤也限制了苜蓿的引种栽培。此外,紫花苜蓿一直面临着营养品质问题如干物质可消化性低、家畜采食苜蓿后易患膨胀病等。这都要求人们培育出抗逆性强、品质好的苜蓿新品种。
     传统育种方法复杂、周期长、且育种资源少。近年来,组织培养和遗传转化技术的迅速发展为人们提供了一种方便快捷的紫花苜蓿新品种培育方法。自从1986年的首例苜蓿转基因成功以来,苜蓿遗传转化的研究已取得一定的进展。但现有的紫花苜蓿遗传转化体系转化效率很低,限制了优良外源基因对苜蓿的转化,从而限制了优良苜蓿新品种的获得。
     本研究首次以农艺性状优良的紫花苜蓿引进栽培种“德宝”为转化受体,将兼具选择标记和目的基因双重功能的bar基因,采用目前苜蓿遗传转化中使用最多、效果最好、转化机理最清楚的农杆菌介导法转化到受体中,从外植体选择、bialaphos筛选、共培养时间、农杆菌侵染浓度等因素进行探索,优化苜蓿遗传转化体系,最终建立了高效的苜蓿再生体系和农杆菌介导的转基因体系。主要研究结果如下:
     1.子叶是德宝苜蓿最好的外植体,其愈伤诱导率最高,可达97%,最佳bialaphos筛选浓度为2.5mg/L,子叶最佳预培养时间为3天,最适农杆菌菌液侵染浓度为OD600值0.5-0.7,8-10min是子叶的最佳农杆菌侵染时间,2-3天为子叶的最佳共培养时间,抗性愈伤率最高可达30.5%。
     2.在含有bialaphos培养基上经过反复筛选共计获得100余株T0代独立的转化植株。
     3.利用PCR方法对随机选取的50株T0代转基因植株的bar基因进行扩增,再生植株全部为阳性转基因植株。
     4.对PCR阳性植株和野生型植株叶片喷施5‰除草剂Basta溶液,阳性植株全部表现为除草剂抗性,进一步证实了我们建立的苜蓿遗传转化体系是高效的、可靠的,这将为苜蓿新材料创新打下坚实的基础。
Alfalfa (Medicago sativa) is one of most important legume forage. Because of the high forage yield and comprehensive nutrition, it is called the "the king among forages" and acts a very important role in animal husbandry all over the world, as well as in China. However, in current, China increasingly serious soil salinization, desertification, drought and the frequent pests and diseases have greatly affected the yield and quality of alfalfa, the acid soils in South china also limit alfalfa introduction and cultivation, at the same time, many nutritional quality problems of alfalfa such as low dry matter digestibility and animal tympanites yet not be improved. Therefore, to cultivate well resistance and high quality new varieties of alfalfa has an important significance.
     The traditional breeding methods need long period, and are lack of breeding resources. In recent years, tissue culture and genetic transformation technology have provided a convenient method of cultivating new varieties of alfalfa. Since the first success of genetically modified alfalfa in 1986, many alfalfa genetic transformations have been reported. However, the existing system of genetic transformation of alfalfa showed lower transformation efficiency, limiting the quality of foreign gene in the transformation of alfalfa, thus limiting access to superior new varieties of alfalfa.
     In this study, an alfalfa cultivar "Derby" with important agronomic traits is used as the recipient for transformation, the selectable marker and target genes both dual function bar gene, using the Agrobacterium-mediated methods which is commonly used in genetic transformation of alfalfa. The explant selection, antibiotic screening, culture time, the concentration of Agrobacterium infection solution and other factors were tested. Finally, an efficient alfalfa regeneration and transformation system was established. The major findings are as follows:
     1). Cotyledon was the optimal transformation explant, which has the highest callus induction rate, up to 97%. The best bialaphos screening concentration is 2.5mg/L, the best pre-culture time is 3 days, the optimal Agrobacterium strain OD6oo value of liquid infection is 0.5-0.7,8-10 min is the best time for Agrobacterium infection to cotyledon, and reasonable co-culture time is 2-3 days. From above system, the highest rate of resistant callus is up to 30.5%.
     2). After repeated screening in the medium containing bialaphos, about 100 lines of To resistant plants was obtained.
     3). The resistant plants were detected by PCR, the result suggests that all of the resistant plants were positive transgenic plants.
     4). The regeneration plants and wild-type plants leaves were sprayed with herbicide Basta 5%o solution, all of the PCR positive plants showed resistance to herbicide, further indicating our alfalfa transformation system is efficient and reliable. This study laid a solid foundation for alfalfa materials innovation.
引文
[1]安韩冰,朱祯(1997).基因枪在植物遗传转化中的应用[J].生物工程进展,17:18-25.
    [2]包爱科(2006)AVPl基因转化紫花苜蓿的初步研究.硕士论文.兰州:兰大大学.
    [3]曹孜义,刘国民(1996).实用植物组织培养技术教程[M].第2版.兰州:甘肃科学技术出版社.
    [4]陈晨,曹致中,贺顺姬,乔代蓉,曹毅(2004).农杆菌介导的紫花苜蓿遗传转化体系的建立与优化[J].甘肃农业大学学报,39(5):516-519.
    [5]陈晨,乔代蓉,白林含,马梵辛,贺顺姬,曹毅(20)05).农杆菌介导的杜氏盐藻Dscbr基因转化紫花苜蓿的初步研究[J].四川大学学报(自然科学版),42(3):567-570.
    [6]陈家全,任茂智等(2004).花粉管通道法在转化棉花腺苷酸核糖基化作用因子1(arfl基因)启动子中的应用[C].植物分子育种-第四届全国植物分子育种学术研讨会论文集,:104-108.
    [7]陈军(1998).用激光微束穿刺法转化甘蓝型油菜小抱子的研究[J].激光生物报,7(2):103-107.
    [8]程林梅,孙毅,岳焕荣(2001).大豆生物工程研究进展[J].大豆科学,20(1):66-69.
    [9]程娜,姚大年,等(2007).农杆菌介导的薰衣草愈伤组织遗传转化[J].安徽农业利学,35(11):3181-3182.
    [10]崔衍波,罗小英,等(2004).超量表达苹果酸脱氢酶基因提高苜蓿对铝毒的耐受性[J].分子植物育种,2(5):621-626.
    [11]董江丽(2005).利用转基因苜蓿生产轮状病毒可食用疫苗研究.硕士论文.北京:中国农业大学.
    [12]董云洲(1998).丰抗8号小麦悬浮细胞系的建立及遗传转化的初步研究[J].应用基础与工程科学学报,6(2):140-144.
    [13]杜娟,王萍(2000).植物遗传转化育种技术的研究进展及评价[J].吉林农业科学,25(5):23-27.
    [14]杜秀敏,殷文璇,张慧,等(2003).超氧化物歧化酶(SOD)研究进展[J].中国生物工程杂志,23(1):49-51.
    [15]段发平,粱承邺,黎垣庆(2001).Bar基因和转Bar基因作物的研究进展[J].广西植物21(2):166一172.
    [16]付顺华,梁锦锋,季宗富(2003).植物转基因研究进展[J].云南林业科学,1:70-71.
    [17]傅亚萍,朱正歌,肖眙,胡国成,斯华敏,于永红,孙宗修(2001).抗除草剂基因导入培矮64S实现杂交水稻制种机械化的初步研究[J].中国水稻科学,15:97-100.
    [18]高必达(1994).植物抗病基因工程研究进展[J].湖南农学院学报,20(6):587-596.
    [19]韩利芳,张玉发(2004a).烟草MnSOD基因在保定苜蓿中的转化[J].生物技术通报,(1):39-46.
    [20]韩利芳,张玉发(2004b).紫花苜蓿作为生物反应器的研究现状及应用前景[J].草业学报,13(2):23-27.
    [21]黄超(2005).农杆菌介导下的Bt基因和Bar基因在陆地棉上的遗传转化.硕士论文.武汉:华中农业大学.
    [22]黄健秋,卫志明,安海龙,等(2000).根癌土壤杆菌介导的水稻高效转化和转基因植株的高频再生[J].植物学报,42(11):1172-1178.
    [23]黄培铭,颜昌敬(1990).大麦叶肉原生质体的分离与培养初报[J].上海农业学报,6(4):17-20.
    [24]黄其满,俞梅敏(2002).生物技术与苜蓿品质改良[J].高技术通讯,03:101-103.
    [25]黄绍兴,吕德扬,邵嘉红,李良才,陈英(1991).紫花苜蓿原生质体转基因植株再生[J].科学通报17:1345-1347.
    [26]黄文惠,刘自学(1995).概论苜蓿的分布和发展[M].见:中国苜蓿.北京:中国农业出版社.pp.2-7.
    [27]李进军,吴跃明,等(2005).苜蓿遗传转化的研究进展[J].牧草科学(3):11-15.
    [28]李俊,等(2009).转基因植物中标记基因研究概况[J].植物学报,44(4):497-505.
    [29]李世林,杨舸,易秀莉,等(2008).根癌农杆菌介导的盐生杜氏藻DsNRT2基因转化紫花苜蓿的初步研究[J].四川大学学报(自然科学版),45(02):409-412.
    [30]黎万奎,陈幼竹,周宇,徐恒(2003).肝片吸虫抗原基因转基因苜蓿再生的研究[J].四川大学学报(自然科学版),40(1):144-147.
    [31]黎茵,黄霞,黄学林(2003).根癌农杆菌介导的苜蓿体细胞胚转化[J].植物生理与分子生物学学报,29(2):109-113.
    [32]梁慧敏,夏阳,孙仲序,王太明,刘德玺,王国良,黄剑,陈受宜(2005).根癌农杆菌介导苜蓿遗传转化体系的建立[J].农业生物技术学报,13(2):152-156.
    [33]梁高峰(2008).花粉管通道法导入Prd29A: DREBlA融合基因获得转基因小麦植株[J].核农学报22(3):256-259.
    [34]刘冬青(2003).棉花转基因研究进展[J].江西农业学报,15(2):40-43.
    [35]刘方(2008).花粉管通道法转基因棉花材料的获得[J].中国棉花,8:16.
    [36]刘建强,等(2002).转基因植物鉴定方法的研究概况[J].山东林业科技,5:39-44.
    [37]刘小琳,康俊梅,孙彦,等(2008)MsNHXl基因转化紫花苜蓿及转基因植株的鉴定[J].草地学报,(2):115-120.
    [38]刘艳芝,王玉民,刘莉,隋松兵,李望丰,董英山(2004).Bar基因转化草原1号苜蓿的研究[J].草地学报,12(4):273-280.
    [39]刘艳芝,王玉民,黄学林(2005).苜蓿组织培养体细胞胚发生体系的建立[J].草业科学,23(1):34-36.
    [40]刘洋(2004).棉花铝诱导蛋白对紫花苜蓿的遗传转化.硕士论文.西南农业大学.
    [41]刘志鹏,杨青川,呼天明(2003).抗臌胀病紫花苜蓿研究进展[J].四川草原,5:7-8.
    [42]卢雄斌,龚祖埙(1998).植物转基因方法及进展[J].生命科学,10(3):125-131.
    [43]卢泳全,吴为人(2003).水稻遗传转化研究进展[J].福建农林大学学报(自然科学版),32(1):28-29.
    [44]吕德扬,曹学远,唐顺学,等(2000a).紫花苜蓿外源基因共转化植株的再生[J].中国科学 (C辑),30(4):342-348.
    [45]吕德扬,范云六,俞梅敏,唐顺学,侯宁,汪清(2000b).苜蓿高含硫氨基酸蛋白转基因植株再生[J].遗传学报,27(4):331-337.
    [46]牟红梅,刘树俊,等(1999).慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析[J].遗传学报,26(6):634-642.
    [47]南相日,刘文萍,刘丽艳,等(1998).PEG介导BT基因转化大豆原生质体获转基因植株[J].大豆科学,17(4):327-329.
    [48]农友业,何勇强,Rachid,等(2005).影响农杆菌介导玉米愈伤组织遗传转化因素的研究[J].广西植物,25(2):142-144.
    [49]潘竟丽,等(2007).农杆菌介导灰绿藜NHXI基因转化新疆大叶苜蓿的研究[J].新疆农业科学,44(4):418-422.
    [50]彭仁旺,周雪荣,王峻岭(1998).表达basrtar基因及bar基因的转基因油菜的研究[J].遗传学报,25(1):74-79.
    [51]钱瑾(2006).紫花苜蓿高频再生体系的建立及农杆菌介导的木霉几丁质酶基因转化的研究.硕士论文.甘肃农业大学.
    [52]山仑,张岁岐,李文娆(2008).论苜蓿的生产力与抗旱性[J].中国农业科技导报,10(1):12-17.
    [53]申玉华(2008).农杆菌介导的苜蓿遗传转化体系的建立与优化.硕士论文.黑龙江:东北师范大学.
    [54]盛慧,朱延明,李杰,等(2007)DREB2A基因对苜蓿遗传转化的研究[J].草业科学,24(03):40-45.
    [55]王才林,赵凌,朱镇等(2005).用花粉管通道法将慈姑蛋白酶抑制剂基因(API)导入水稻获得转基因植株[J].江西农业科学,4:18-23.
    [56]王景雪,孙毅(1999).农杆菌介导的植物基因转化研究进展[J].生物技术通报,1:7-13.
    [57]王关林,方宏筠(2002).植物基因工程[M].第2版.北京,科学出版社,:385-402.
    [58]王强龙,王锁民,张金林,陈托兄,楼洁琼,陆妮(2006).紫花苜蓿体细胞胚高频再生体系的建立[J].草业科学,23(11):21-27.
    [59]王瑛,朱宝成,孙毅,张琳宇,罗建平(2007).外源lea3基因转化紫花苜蓿的研究[J].核农学报,21(3):249-252.
    [60]王涌鑫,关宁,李聪(2008).高效的苜蓿组织培养再生体系的建立[J].东北师大学报(自然科学版),(3):112-117.
    [61]王玉祥,王涛,张博(2008).转rstB基因苜蓿耐盐性初评(简报)[J].草地学报,16(5):539-541.
    [62]吴金霞,陈彦龙,何近刚等(2007).生物技术在牧草品质改良中的应用[J].草业学报,16(1):1-9.
    [63]谢道听,范云六,倪万潮,等(1991).苏云金杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株[J].中国科学(B辑),(4):367-373.
    [64]谢龙旭,徐培林,聂燕芳,田颖川(2003).抗草甘膦抗虫植物表达载体的构建及其转基因烟草的分析[J].生物工程学报,19:545-550.
    [65]徐立华(2008).基因枪法获得玉米转基因植株的研究[J].玉米科学,16(2):22-25.
    [66]薛红卫,卫志明(1997).通过PEG法转化甘蓝获得转基因植株[J].植物学报,39(1):28-33.
    [67]晏石娟,马晖玲,曹致中(2006).紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究[J].甘肃农业大学学报,41(5):91-94.
    [68]杨燮荣,邰根福,周荣仁(1981).苜蓿组织培养及植株的再生[J].植物生理学通报,(5):33-34.
    [69]杨英军,周鹏(2005).转基因植物中的标记基因研究新进展[J].遗传,27(3):499-504.
    [70]姚运法(2009).抗除草剂CYP81A6和耐盐SaNHX基因转化红麻的初步研究.硕士学位论文.福州:福建农林大学.
    [71]尹俊(2006).基因工程[M].呼和浩特:内蒙古大学出版.
    [72]云锦凤(2001).牧草及饲料作物育种学[M].北京:中国农业出版社.
    [73]曾君祉,王东江,吴有深,等(1993).用花粉管途径获得小麦转基因植株[J].中国科学,23(3):256-262.
    [74]张万军,王涛(2002).紫花苜蓿愈伤成苗高频再生体系的建立及其影响因子的研究[J].中国农业科学,35(12):1579-1583.
    [75]张晓东,李冬梅,徐文英,等(1997).用基因枪法将除草剂Basta抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株[J].华北农学报,(1):133-136.
    [76]张晓东,李冬梅,徐文英,蒋有绎,胡道芬,韩立新(1998).利用基因枪将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株[J].遗传,20:3-8.
    [77]张媛媛,江吕俊,蒋明权(2005).用基因枪法将抗除草剂bar基因导入小麦的研究[J].南京农业大学学报,28:11-15.
    [78]赵彬,等(1999).Bar基因及转Bar基因水稻的研究和利用[J].杂交水稻,14(2):1-2.
    [79]赵虹,李名扬,裴炎,董玉梅(2002).用基因枪法将抗除草剂基因导入小麦栽培品种的研究[J].植物学通报,19:457-461.
    [80]赵红娟,张博,李培英,等(2007).农杆菌介导犁苞滨藜NHX基因转化苜蓿的影响因素[J].草地学报,15(05):418-422.
    [81]赵凌,王才林,等(2006).花粉管介导的转抗冻蛋白基因(AFP)水稻[J].江苏农业学报,22(4):315-317.
    [82]周冀明,卫志明,许智宏,等(1996).PEG法介导转化诸葛菜下胚轴原生质体获得转基因植株[J].遗传学报,23(1):69-76.
    [83]周维燕(2001).植物细胞工程原理与技术[M].北京:中国农业大学出版社:197-199.
    [84]周兴龙,杨青川,王凭青,吴明生,谢伟伟(2005).苜蓿转基因研究进展[J].重庆大学学报(自然科学版),28(4):126-130.
    [85]朱素琴(2002).膜脂与植物抗寒性关系研究进展[J].湘潭师范学院学报(自然科学版),24(4):49-52.
    [86]Austin SET, Bingham E, Mathews MN, Shahan J, Burgess RR (1995). Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica,85:381-393.
    [87]Avraham T, Badani H, Galili S, Amir R (2005). Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine y-synthase gene. Plant Biotechnol J 3:71-79.
    [88]Bagga S, Sutton DS, Kemp JD, Gopalan CS (1992). Constitutive expression of the beta-phaseolin gene in different tissues of transgenic alfalfa does not ensure phaseolin accumulation in non-seed tissue. Plant Mol Biol,19 (6):951-958.
    [89]Bao AK, Wang SM, et al. (2009). Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science, 176:232-240.
    [90]Barone P, Rosellini D, LaFayette P, Bouton J, Veronesi F, Parrott W (2008). Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep,27: 893-901.
    [91]Baucher M, Bernard-Vailhe MA, Chabbert B, Besle JM, Opsomer C, Vanmontagu M, Botterman J (1999). Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol,39:437-447.
    [92]Bethtold N, Ellis J, Pelletier G (1993). In Planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana Plants.C.R.Acad.Sci.Paris.Life Science,316:1194-1199.
    [93]Bellucci M, Lazzari B, Viotti A (1997). Differential expression of a y-zein gene in Medicago sativa, Lotus cornivulatus, and Nicttiana tabacum. Plant Sci,127:161-169.
    [94]Bretell RS (1995). Methods ofproduction oftransgenic plant. Biotechnology and Genetic Engineering Reviews,13:315-334.
    [95]Brill LM, Evans CJ, Hirsch AM (2001). Expression of MsLECl-and MsLEC2-antisense genes in alfalfa plant lines causes severe embryogenic, developmental and reproductive abnormalities. Plant J,25:453-461.
    [96]Brill LM, Fujishige NA, Hackworth CA, Hirsch AM (2004). Expression of MsLEC1 transgenes in alfalfa plants causes symbiotic abnormalities. Mol Plant Microbe Interact,17:16-26.
    [97]Brouwer DJ, Osborn TC (1999). A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics,99:1194-1200.
    [98]Cao J, Duan X et al. (1992). Regeneration of herbicideresistant transgenic rice plants,following mediated transformation of suspension culture microprojectile cells[J]. Plant Cell Rep, 11:586-591.
    [99]Chabaud M, Passiatore JE, Cannon F, Buchanan-Wollaston V (1988). Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep,7:512-516.
    [100]Chang SS, Park SK, Nam HG (1990). Transformation of Arabidopsis by Agrobacterium inoculation on wounds. In:Abstracts of the Fourth International Conference on Arabidopsis Researeh. Vienna,28.
    [101]Christou P et al. (1991). Production of transgenic rice plants from agronarnically important Indica and Japonaca varieties via electric discharge particle acceteration of exogenous DNA into
    immature zygotic embryos[J]. BioTeclmology,9:957-962.
    [102]Clough SJ, Bent AF (1998). Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabdopsis thaliana. The Plant Journal,16:735-743.
    [103]Cocking C (1960). A method for the isolation of plant protoplasts and vacuoles[J]. Nature, 187:927-929.
    [104]Collins GB, Taylor NL, De vema JW (1984). In vitro approaches to interspecfic hybridization and Chromosome manipulation in crop plants. In:Gustason J P qedo Gene Manipulation in plant improvement.16th staddler Genetics Symposium[M]. Plenum Press, New York, pp:323-383.
    [105]Deborah A. Samac, Tesfaye M (2003). Plant improvement for tolerance to aluminum in acid soils. Plant Cell, Tissue and Organ Culture,75(3):189-207.
    [106]D'Halluin K, Boteerman J, de Greef W (1990). Engineering of herbicide-resistant alfalfa and evaluation under field conditions. Crop Sci,30:866-870.
    [107]Delhaize E and Ryan PR (1995). Aluminum toxicity and tolerance in plants. Plant Physiol, 107:315-321.
    [108]Eliseu S, Figucrira F, Lucio F A, et al. (1994). Transformation of potato(Solanum fuberosum) cv. Mantigueira using Agrobacrerium tumefaciens and evaluation of herbicide resistance. Plant Cell Report,13:666-670.
    [109]Fu Daolin, Wang Lanlan (1999). The developments about laser microbeam transgeneic techniques Acta Laser. BiologySiniea,8:70-74(in Chinese).
    [110]Goplen BP, Howarth RE, Sarkar SK, Lesins K (1980). A search for condensed tannins in annual and perennial species of Medicago, Trigonella, and Onobrychis. Crop Sci,20:801-804.
    [111]Guo DG, Chen F, Inoue K, Blount JW, Dixon RA (2001a). Down regulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa:impacts on lignin structure and implication for biosynthesis of G and S lignin. The Plant Cell,13:73-88.
    [112]Guo DG, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA (2001b). Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferase. Transgenic Res,10:457-464.
    [113]Guo YD, Liang H, Berns M W(1995). Laser mediated gene trnasefr in rice. Physiol Plant, 93:19-24.
    [114]He XZ, Dixon RA (2000). Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. The Plant Cell,12:1689-1702.
    [115]Heichel GH, Barnes DK, Vance CP (1981). Nitrogen fixation of alfalfa in the seeding year. Crop Sci,21:330-335.
    [116]Hensgens LAM, de Bakker EPHM, van Os-Ruygrok EP, Rueb S, van de Mark F, van der Maas HM, van der Veen S, KoomanGersmann M, Hart L, Schilperoort RA (1993). Transient and stable expression of gusA fusions with rice genes in rice, barley and perennial ryegrass. Plant Mol. Biol.,23:643-669.
    [117]Hess D (1980). Investigation on the intra and inter-specific transfer of anthocyanin genes using pollen as vecters. Z P flasnzenphysiol, Bd 98s:323-327.
    [118]Hightower R, Raden C, Penzes E, Lund P, Dunsmuir P (1991). Expression of antifreeze proteins in transgenic plants. Plant Mol Biol,17:1013-1021.
    [119]Hill KK, Jarvis EN, Halk E, Krahn K, Liao L, Mathewson R, Merlo D, Nelson S, Rashka K, Loesch FL (1991). The development of virus-resistant alfalfa (Medicago sativa L.). Bio/Tech,9: 373-377.
    [120]Hipskind JD, Paiva NL (2000). Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases-resistance to Phoma medicaginis. Mol Plant Microbe Interact,13:551-562.
    [121]Huang LK, Liao SC, Chang CC, Liu HJ (2006). Expression of avian reovirus sigmaC protein in transgenic plants. J Virol Methods,17 (Epub ahead of print).
    [122]Khoudi H, Laberge S, Ferullo JM (1999). Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnology and Bioengineering,64 (2):135-143.
    [123]Kochian LV (1995), Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.,46:237-260.
    [124]Krysan PJ, Young Jeffery C, Michael RS (1999). T-DNA as an instertional mutagen in Aarabidopsis. Plant Cell,11:2283-2290.
    [125]Javier NV, Martha L, et al (1992). Differential expression of a chimeric CaMV-tomato proteinase inhibitor gene in leaves of transformed nightshade, tobacco and alfalfa plants. Plant Molecular Biology,20:1149-1157.
    [126]Langridge P, Brettschneider R, Lazzeri P, et al. (1992). Transformation of cereals via Agrobacterium and the pollen tube pathway:a critical assessment. Plant J,2:631-638.
    [127]Leemans J, Deblock MD, Halluin K, et al (1987). The use of glufosinate 0.5a selective herbicide on genetically engineered resistant tobacco plant. BCPC publicatins. Proc. Brit. Crop protection confweeds,:867-870.
    [128]Li HaoYan, Wang Wei (2003). Progress in next generation of genetically modified plants. Journal of Chinese Biotechnology,23(6):22-26.
    [129]Ma JF, Ryan PK and Delhaize E (2001). Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci,6(6):273-278.
    [130]Maria CR (2002). Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant,115(4):531-540.
    [131]Masoud SA, Zhu Q, Lamb C, Dixon RA (1996). Constitutive expression of an inducible β-1, 3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen chitin-containing fungi. Transgenic Res,5:313-323.
    [132]Mckersie BD, Bowley SR, Harjanto E, Leprince O (1996). Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol,111: 1177-1181.
    [133]McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, D'Halluin K, Botterman J (1993). Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol,103:1155-1163.
    [134]Mckersie BD, Murnaghan J, Jones KS, Bowley SR (2000). Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol,122:1427-1437.
    [135]Mizukami Y, Houmura I, Takamizo T, Nishizawa Y (2000). Production of transgenic alfalfa with chitinase gene (RCC2). In:Spangenberg G ed. Abstracts 2nd International Symposium Molecular Breeding of Forage Crops. Lorne and Hamilton, Victoria, pp.105.
    [136]Morris P, Robbins MP (1997). Manipulating condensed tannins in forage legumes[A]. In:Mckersie BD, Brown DCW. Biotechnology and the Improvement of Forage Legumes[M]. Wallingford, CT:CAB International,147-173.
    [137]Nagata T, Takebe I (1970). Cellwall regeneration and cell division in isolated tobaccomesophyll protoplasts[J]. Planta,92:301-308.
    [138]Ortega JL, Moguel-Esponda S, Potenza C, Conklin CF, Quintana A, Sengupta-Gopalan C (2006). The 3'untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J,45:832-846.
    [139]Ortega JL, Temple SJ, Sengupta-Gopalan C (2001). Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol,126:109-121.
    [140]Otani M, WakitaY, Shimada T (2003). Production of herbicide-resistant sweetpotato(Ipomoea batatas (L.)Lam.) plants by Agrobacterium tumefaciens-media.ted transformation. Breeding Sci, 53:145-148.
    [141]Pereira LF, Erickson L (1995). Stable transformation of alfalfa by particle bombardment. Plant Cell Rep,14:290-293.
    [142]Perez Vicente R, Wen XD, Wang ZY, Leduc N, Sautter C, Wehrli E, Potrykus I, Spangenberg G (1993). Culture of vegetative and floral meristems in ryegrasses:potential targets for microballistic transformation. Plant Physiol,142:610-617.
    [143]Pual EC, et al. (1987). Bio Technology,5:815-817.Radcliffe BC, Hynd PI, Benevenga NJ, Egan AR (1985). Effects of cysteine ethyl ester supplements on wool growth rate. Aust J Agri Res,36: 709-715.
    [144]Ray H, Yu M, Auser P, Blahut-Beatty L, McKersie B, Bowley S, Westcott N, Coulman B, Lloyd A, Gruber MY (2003). Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant Physiol,132:1448-1463.
    [145]Reich TJ, Lyer VN, Miki BL (1986). Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti-plasmids. Bio Technol,4:1001-1004.
    [146]Reis PJ (1979). Effects of amino acids on the growth and properties of wool. In:Black JL, Reis PJ eds. Physiological and Environmental Limitations to Wool Growth. Armidale, University of New England Publishing Unit, pp.223-242.
    [147]Rosellini D, Barone P, Bouton J, LaFayette P, Sledge M, Veronesi F, Parrott W (2002). Aliminum tolerance in alfalfa with the citrate synthase gene. In:Abstract for the 38th North American alfalfa improvement conference. July 27-31. Sacramento, CA.
    [148]Rubio MC, Gonzalez EM, Minchin FR, Judith WK, Arrese-Igor C, Ramos J, Becana M (2002). Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant,115:531-540.
    [149]Ryan PR, Delhaize E, and Randall PJ (1995). Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta,196:103-110.
    [150]Samis K, Bowley SR, McKersie BD (2002). Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Exp Bot,53:1343-1350.
    [151]Sanford JC (1988). The biolistic process. Trends Biotechnol,6:299-302.
    [152]Santos M, Wigdorovitza, Ttonok (2002). A novel methodology to develop a Foot and Mouth Disease Virus(FMDV) peptide-based vaccive in Transgenic Plants[J]. Vaccine, 20(7-8):1141-1147.
    [153]Saunders JW, Bingham ET (1972). Production of Medicago sativa L. plants from callus tissue[J]. Crop Science,12:804-808.
    [154]Schoenbeck MA, Temple SJ, Trepp GB, Blumenthal JM, Samac DA, Gantt JS, Hernandez G, Vance CP (2000). Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. J Exp Bot,51: 29-39.
    [155]Schroeder HE, Khan MRI, Kinbb WR, Spencer D, Higgins TJV (1991). Expression of a chicken ovalbumin gene in three lucerne cultivars. Aust J Plant Physiol,18:495-505.
    [156]Song Xiqiang, et al. (2003). Advances on the study of marker genes in transgenic plants. Chinese Journal of Tropical Crops,24(3):88-92.
    [157]Spangenberg G, et al. (1995a). Transgenic tall fescue (Festuca arundinacea.) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cell. J Plant Physiol, 145:693-701.
    [158]Spangenberg G, et al. (1995b). Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci,108:209-217.
    [159]Spangenberg G, Wang ZY (1998). Biolistic transformation of embryogenic cell suspensions. In: Celis, J. E., ed. Cell biology:a laboratory handbook, vol.4,2nd edn. New York, NY:Academic Press,:162-168.
    [160]Speulman E, Metz PLJ, et al. (1999). A two-compontent Enhancer-Inhibitor transposon mutagenesis system for functional analysis ofthe Arabidopsis genome. Plant Cell,11:1853-1866.
    [161]Steinbiss HH,李向辉.科学通了[M],1982,27:948-949.
    [162]Strizhov N, Keller M, Mathur J, Koncz-Kalman Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A (1996). A synthetic cryIC gene, encoding a Bacillus thuringiensis 8-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci USA,93: 15012-15017.
    [163]Tabe LM, Wardley-Richardson T, Ceriotti A, Aryan A, McNabb W, Moore A, Higgins TJ (1995). A biotechnological approach to improving the nutritive value of alfalfa. J Anim Sci,73: 2752-2759.
    [164]Taylor MG, Vasil IK (1991). Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile bombardment. Plant Cell Rep,10:120-125.
    [165]Temple SJ, Bagga S, Sengupta-Gopalan C (1998). Down-regulation of specific members of the glutamine synthetase gene family in alfalfa by antisense RNA technology. Plant Mol Biol,37: 535-547.
    [166]Tesfaye M, Denton MD, Samac DA, Vance CP (2005). Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant and Soi,269:233-243.
    [167]Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol,127:1836-1844.
    [168]Thomas JC, Wasmann CC, Echt C, Dunn RL, Bohnert HJ, Mccoy TJ (1994). Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plant Cell Rep, 14:31-36.
    [169]Thompson CJ, Movva NR, Tizard R, et al. (1987). Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J,6:2519-2523.
    [170]Tuholy T, Yu W, Bailey A, Degrnadis S, Du S, Eriekson L, Ngay E (2000). Immunogenicity of Porcine transmissible gastroenteritis virus spike protein epxressed in plants. Vaccine, 18(19):2023-2028.
    [171]Vain P, DeBuysetr J, Trang BV (1995). Factors influence T-DNA transfer in Agrobacterium Tumefacious. Biotechnology Advances,13:653-671.
    [172]Van der Maas HM, de Jong ER, Rueb S, Hensgens LAM, Krens FA (1994). Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.). Plant Mol. Biol.,24:401-405.
    [173]Vasil IK(1985). Cellular and molecular genetic improvement of cereals. Current issues in plant Molecular and cellular biology. Netherlands:Klwuer Academic Publication,:5-8.
    [174]Vasil V, Castillo AM, Fromm ME, Vasil IK (1992). Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology,10:667-674.
    [175]Waghorn GC (1990). Beneficial effects of low concentrations of condensed tannins in forages fed to ruminants. New York, Elsevier. pp.,137-147.
    [176]Wandelt C, et al. (1992). Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants[J]. The Plant Journal, (2):181-192.
    [177]Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005). Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J,3:475-486.
    [178]Webb KJ (1986). Transformation of forage legumes using Agrobacterium tumaefeiens. Theoretical and Applied Genetics,72(1):53-58.
    [179]White J (1990). A cassette containing the bar gene of streptomyces hygroscopicus:a selectable marker for plant transformation. Nucleic Acids Res,18:1062-1066.
    [180]Wigdorovitz D, Mozgovoj M, Parenno V, Gomez C (2004). Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants.
    [181]Wigdorovitz A, Sadir AM, Escribano JY, et al. (1999). Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral st ructural protein VPI[J]. Virology,255:347-353.
    [182]Winicov I (2000). Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta,210:416-422.
    [183]Winicov I, Bastola DR (1999). Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol,120:473-480.
    [184]Yang Zhaohui, Lei Jianjun (2000). Advances in the study of the green fluorescent protein gene. Journal of Biology,17(5):12-14.
    [185]Yang Zhongyi, Wang Lanlan, Song Guiyin. et al. (1999). Studies on introduction of Bean chininase gene into Brassica napus via laser microbeam puncture Acta Laser. Biology Sinica, 8:8-11 (in Chinese).
    [186]Yi G, Shin YM, Choe G, et al. (2007). Production of herbicide-resistant sweetpotato plants transformed with the bar gene. Biotechnol Lett,29:669-675.
    [187]Zeng J ZH, Wang D J(1993). The gain of transgenic wheat with pollen-tube pathway[J]. Science in China(Ser.B),23(3):256-263.
    [188]Zhang Haiyan, Tian Yinge huan, Zhou Yihua, et al. (1998). Introduction of PAP cDNA into B.napus and acquisition of transgenic Plants resistant to viurses. Chinese Science Bulletin, 43:2534-2537(in Chinese).
    [189]Zhang Jumei, et al. (2001). Review of luciferase. Microbiology,28(5):98-101.
    [190]Zhao Yan (2002). The safe marker genes used in plant transformation. Progress in Biochemistry and Biophysics,29(3):352-354.
    [191]Zhou Yihua, et al. (1997). Introduction of Gus gene into lotus and acquisition of transgenic plants via laser microbeam puneture. Chinses J Laser,24(4):380-384(in Chinese).
    [192]Ziegelhoffer T, Will J, Austin-Phillips S (1999). Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.), potato(Solanum tuberosum L.), and tobacco (Nicotiana tabacum L.). Mol Breed,5:309-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700