席佛碱稀土配合物的合成、结构及其反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分别采用四个席佛碱为辅助配体(3,5-But2-2-(OH)C6H2CH =N-8-C9H6N(HL1) , 3,5-But2-2(OH)-C6H2CH=N-4-R-C6H4,R=-Cl(HL2),-CH3(HL3),-F (HL4)),合成了一系列席佛碱稀土一氯化物、二氯化物及其衍生物:席佛碱基稀土茂基配合物、席佛碱基芳氧基配合物,以及均配型二齿席佛碱稀土配合物、三齿席佛碱稀土配合物、含C=N键还原偶联的稀土配合物,这些配合物都经过了包括X-光结构分析在内的全面表征。考察了席佛碱—稀土化学键在催化内酯开环聚合、苯胺与碳化二亚胺的胍化反应、异氰酸苯酯三聚反应中的反应性能,取得了以下结果:
     1、将席佛碱HL1与NaH按1:1摩尔比反应,得到该席佛碱的钠盐{(3,5-But2-2-(O)C6H2CH=N-8-C9H6N)Na(THF)}2 (2)。X-光结构显示该钠盐为二聚体结构,整个分子具有C2对称性。
     2、将原位生成的席佛碱钠盐2与LnCl3按3:1摩尔比反应,合成了下列2个均配型席佛碱稀土配合物: (3,5-But2-2-(O)C6H2CH=N-8-C9H6N)3Sm (C6H14) (6), (3,5-But2-2-(O) C6H2CH=N-8-C9H6N)3Eu(C4H8O) (C6H14) 0.5(7)。X光结构分析显示这两个配合物是同构的,中心金属为九配位。席佛碱配体HL2、HL3和HL4与分别NaH按1:1摩尔比反应,原位生成的钠盐再以3:1摩尔比与SmCl3反应,高产率地得到目标配合物(3,5-But2-2-(O)-C6H2CH=N-4-Cl-C6H4)3Sm (8)、(3,5-But2-2-(O)-C6H2CH=N-4- CH3-C6H4)3Sm(C4H8O) (C6H14)0.5(9)和(3,5-But2-2-(O)-C6H2CH=N-4-F -C6H4)3 Sm (C4H8O) (10)。对配合物8和9进行了X-Ray衍射结构分析。我们发现席佛碱—稀土金属键在较高温度下具有一定的活性,可以催化己内酯开环聚合、异氰酸苯酯环三聚反应和胺与碳化二亚胺的胍化反应。并且,席佛碱的的苯环上连接的吸电子取代基能活化席佛碱—稀土化学键。二齿席佛碱稀土配合物的活性远大于三齿席佛碱稀土配合物。
     3、将原位生成的席佛碱钠盐2与LnCl3按1:1的摩尔比反应,合成了下列4个席佛碱稀土二氯化物: (3,5-But2-2-(O)C6H2CH=N-8-C9H6N)YbCl2(DME)(11a) ,(3,5-But2-2-(O)C6H2CH= N-8- C9H6N)SmCl2(DME)(12),(3,5-But2-2-(O) C6H2CH =N-8- C9H6N)EuCl2(DME)(13)和(3,5-But2-2-(O) C6H2-CH=N-8-C9H6N)YCl2(DME)(14)。这些配合物都经过了元素分析、红外光谱表征,其中对配合物11a进行了X-光结构的表征。X光结构分析显示配合物11a呈溶剂化单分子结构,围绕中心金属离子的配位几何构型为扭曲的五角双锥体。席佛碱HL1的锂盐与YbCl3按1:1摩尔比反应,合成了离子对型席佛碱镱二氯化物((3,5-But2-2-(O)C6H2CH= N-8- C9H6N)YbCl3)(Li(DME)3(11b)。配合物经过了元素分析、红外光谱和X-光结构分析的表征,X-光结构显示中心金属镱为六配位,阴离子的配位几何构型是扭曲的八面体。
     4、席佛碱稀土二氯化物(3,5-But2-2-(O)C6H2CH=N-8-C9H6N)LnCl2(DME)(Ln =Yb(11a), Sm (12), Eu(13), Y(14))与NaCH3C5H4按1:1摩尔比反应,分离到了含一个席佛碱基和甲基环戊二烯基稀土氯化物(3,5-But2-2-(O)C6H2CH=N-8-C9H6N) LnCl(CH3C5H4)(THF)(Ln = Yb(15), Sm (16), Eu(17), Y(18))。配合物经过了全面表征,其中Yb(15), Sm (16), Eu(17)的配合物经过了X-光结构鉴定。配合物11a与Na(OC6H3-But2-2,6)按1:2摩尔比反应得到(3,5-But2-2-(O)C6H2CH=N-8- C9H6N)Yb(OC6H3-But2-2,6)2(19),而Yb(OC6H3-But2-2,6)3与席佛碱HL1按1:1摩尔比反应也得到了相同的配合物。上述配合物经过了全面表征,X-光结构分析显示配合外物19中Yb离子为不多见的五配位,呈三角双锥几何构型。
     5、席佛碱钠盐2与LnCl3按2:1的摩尔比反应,合成了下列3个席佛碱稀土一氯化物: (3,5-But2-2-(O)C6H2CH=N-8-C9H6N)2LnCl(THF) 3.5 (Ln =Yb(20), Sm (21), Eu(22)),这些配合物都经过了元素分析、红外光谱表征,其中配合物20进行了X-光结构的表征。配合物20与Na(OC6H3-But-2-Me-4)以1:1的摩尔比反应,得到了配合物(3,5-But2-2-(O)C6H2CH=N-8-C9H6N)2Yb(OC6H3-But-2-Me-4) (THF)2.5 (23)。X-光结构分析表明,中心稀土离子的配位几何构型可以描述成五角双锥型,其中芳氧和一个席佛碱中的氧原子占据两个锥顶点。配合物20与(CH2=CH-CH2)MgBr以1:1的摩尔比反应,分离到了[Mg(H2N-8-C9H6N)Cl(THF)3]Br(24)。
     6、席佛碱HL1、LiBu、YbCl3和Na(OC6H3-But-2-Me-4)按2:2:1:1的摩尔比反应,合成了一个经历正丁基锂加成一个C=N双键过程的席佛碱镱芳氧化物:(3,5-But2-2-(O)C6H2CH=N-8-C9H6N)(3,5-But2-2-(O)C6H2CH(C4H9)--NH-8-C9H6N) Yb (OC6H3-But-2- Me-4) (C7H8)2.5 (25)。配合物经过了元素分析、红外光谱和X-光结构分析表征。
     7、Yb[N(TMS)]3与席佛碱HL1按1:3摩尔比反应得到均配型席佛碱配合物(3,5-But2-2-(O)C6H2CH=N-8-C9H6N)3Yb(C4H8O)4(26),而按1:1摩尔比反应得到了由两个席佛碱偶联的配合物YbL1``2 (28)(L1``2 3-为两个席佛碱通过一个C-C键偶联起来的三负离子)。
     8、我们试图合成席佛碱二价稀土配合物,用Yb(II)[N(TMS)]2与席佛碱HL1按1:3摩尔比在40度反应,却得到均配型三价席佛碱配合物(3,5-But2-2- (O)C6H2CH=N-8-C9H6N)3Yb(C4H8O)4 (26)。配合物经过全面表征。用席佛碱Sm一氯化物21与过量的钠在40度下反应,也没有得到通常的席佛碱二价Sm配合物,而是分离到了一个由三个配体HL1偶联后形成的结构新颖的产物[Na(DME)3] [SmL1`3Na(DME)] (27)(L1`35-为三个席佛碱通过两个C-C键偶联起来的带五个单位负电荷的阴离子) ,配合物经过了元素分析、红外光谱和X-光结构测定。
A series of lanthanide dichloride, chloride, aryloxide and methylcyclopentadienyl complexes supported by bidentate or tridentate Schiff base ligand [( 3,5-But2-2-(OH) C6H2CH=N-8-C9H6N(HL1), 3,5-But2-2(OH)-C6H2CH=N-4-R-C6H4, R= -Cl (HL2), -CH3 (HL3), -F (HL4)] were synthesized and well characterized, including monometallic dichloride, chloride, aryloxide and methyl-cyclopentadienyl, as well as a ytterbium and samarium complexes bearing an unprecedented dimeric or trimeric polyanionic ancillary ligands. The catalytic activity of these complexes in polymerization ofε-caprolactone, guanylation of amines with carbodiimides and cyclotrimerization of phenyl isocyanat respectively was tested. The main results obtained are as follows:
     1. The treatment of salicylaldimine 3,5-But2-2-(OH)C6H2CH=N-8-C9H6N (HL1) and NaH in 1:1 mole ratio in THF yielded the sodium salt of salicylaldimine {(3,5-But2-2-(O) C6H2CH=N-8-C9H6N) Na(THF)}2 (2) in good yield. The complex was characterized by elemental analysis, 1HNMR spectroscopy and X-ray diffraction. The crystal structural analysis of (2) revealed that it had a dimeric structure .
     2. The in situ generated 2 from the treatment of the mixture of NaH with 1 equiv HL1 in THF reacts with 1/3 equiv of LnCl3 (Ln = Sm, Eu) to give the monomeric lanthanide Schiff base complexes (3,5-But2-2-(O)C6H2CH=N-8- C9H6N)3Sm (C6H14) (6) and (3,5-But2-2-(O) C6H2CH= N-8-C9H6N)3 Eu(C4H8O) (C6H14) 0.5(7) in good yield, respectively. The X-ray diffraction analysis showed that the atoms of Sm and Eu were nine-coordinate. The in situ generated [3,5-But2-2 (OH)-C6H2CH=N-4-R-C6H4]Na (R= -Cl (HL2), -CH3 (HL3), -F (HL4) from the treatment of the mixture of NaH with 1 equiv 3,5-But2-2(OH)-C6H2CH=N-4-R-C6H4 (R= -Cl (HL2),-CH3 (HL3),-F (HL4) in THF reactions with 1/3 equiv. of SmCl3 to give the monomeric samarium Schiff base complexes(3,5-But2-2-(O)-C6H2CH= N-4-Cl-C6H4)3Sm(C4H8O) (8),(3,5-But2-2-(O)-C6H2CH =N-4- CH3-C6H4)3Sm (C6H14) 0.5 (9), (3,5-But2-2-(O)-C6H2CH =N-4-F-C6H4)3Sm(C4H8O) (10), respectively. The complexes 8 and 9 were determined by X-ray diffraction. These complexes can catalyze the polymerization ofε-caprolactone, guanylation of amines. The electron-withdrawing group on the Schiff base ligand can increase the activity of samarium complexes: the active sequence is Cl > F > CH3. Bidentate Schiff base complexes exhibited much higher reactivity than the tridentate Schiff base complexes.
     3. The in situ generated 2 from the treatment of the mixture of NaH with 1 equiv HL1 in THF reacts with 1 equiv. of LnCl3 (Ln =Yb, Sm, Eu, Y) to give the lanthanide Schiff base dichloride complexes (3,5-But2-2-(O) C6H2CH=N-8-C9H6N)YbCl2(DME) (11a), (3,5-But2-2-(O) C6H2CH= N-8- C9H6N)SmCl2(DME) (12), (3,5-But2-2-(O) C6H2CH=N-8-C9H6N)EuCl2(DME)(13) and (3,5-But2-2 -(O) C6H2-CH=N-8-C9H6N) YCl2(DME)(14), respectively. The complex 11a was determined by X-ray diffraction. The crystal structure revealed the Complex 11a had a solvated monomeric structure, and the central metal ytterbium atom was seven-coordinated. In contrast, a complex ((3,5-But2-2-(O)C6H2CH= N-8-C9H6N)YbCl3)(Li(DME)3(11b) was prepared when lithium salt from the treatment of the mixture of LiBu with 1 equiv. HL1 in THF was used instead of the sodium salt of HL1 . In anion, the central metal Yb was six-coordinated.
     4. Reaction of 11a, 12, 13 and 14 with NaCH3C5H4 in 1:1 molar ratio, respectively, gave the complexes (3,5-But2-2-(O)C6H2CH=N-8-C9H6N)LnCl (CH3C5H4)(THF)(Ln =Yb(15), Sm (16), Eu(17), Y(18)). The complexes 15, 16, and 17 had been characterized by X-ray diffraction. The structural analysis showed that three complex had isostructural complexes. Reaction of complex 11a with 2 equiv. of Na(OC6H3-But2-2,6) in THF afforded the desired solvent-free ytterbium aryloxide [(3,5-But2-2-(O)C6H2CH= N-8-C9H6N)Yb(OC6H3-But2-2,6)2] (19). Complex 19 can also be prepared by the protolytic exchange reaction of HL1 with (OC6H3-But2-2,6)3Yb in 1:1 molar ratio. The structural analysis showed Yb atoms was five-coordinated distorted trigonal bipyramidal geometry.
     5. The in situ generated 2 from the treatment of the mixture of NaH with 1 equiv 3 in THF reacts with 1 equiv. of LnCl3 (Ln =Yb, Sm, Eu) to give the lanthanide Schiff base chloride complexes {(3,5-But2-2-(O)C6H2CH=N-8-C9H6N)}2LnCl(C4H8O) 3.5 (Ln =Yb(20), Sm(21), Eu(22)), respectively. The complex 20 was determined by X-ray diffraction. Reaction of complex 20 with 1 equiv. of Na(OC6H3-But-2-Me-4) in THF afforded the desired ytterbium aryloxide [(3,5-But2-2-(O)C6H2CH= N-8-C9H6N ) 2Yb(OC6H3-But2-2,6) (THF) 2.5 (21). The structural analysis showed that the coordination geometry around ytterbium atom can be described as a distorted pentagonal bipyramid. Reaction of complex 20 with 1 equiv. of (CH2=CH-CH2)MgBr in THF afforded the [Mg(H2N -8-C9H6N) Cl(THF)3]Br (24).
     6. Reaction of the Schiff base HL1, LiBun, YbCl3 and Na(OC6H3-But-2-Me-4) in 2:2:1:1 molar ratio afforded an unprecedented ytterbium aryloxide (3,5-But2-2-(O) C6H2CH =N-8-C9H6N) (3,5-But2-2-(O) C6H2CH(C4H9) -NH-8-C9H6N)Yb (OC6H3-But-2 -Me-4)(C7H8)2.5 (25). Complex was fully characterized by elemental analysis and X-ray diffraction.
     7. The reaction of Yb[N(TMS)]3 with Schiff base HL1 in 1:3 molar ratio afforded the Schiff base ytterbium (III) complex (3,5-But2-2-(O)C6H2CH= N-8-C9H6N)3Yb(C4H8O)4 (26). However, reaction of Yb[N(TMS)]3 with HL1 in 1:1 molar ratio afforded an unprecedented ytterbium (III) complex YbL1``2(28), in which two Schiff base HL1 were dimerized to form the new ligand H3L1``2 by the reductive coupling reactions of imine groups involving a rare coupling reaction of C=N bond of quinoline ring with imine group of Schiff base ligand.
     8. The reaction of Yb(II)[N(TMS)]2 with Schiff base HL1 in 1:3 molar ratio also afforded the Schiff base ytterbium (III) complex (26). Treatment of complex 21 with excessive metallic sodium produced an unprecedented samarium complex [Na(DME)3][SmL1`3Na(DME)] (27), in which three Schiff base HL1 were trimerized to form the new ligand H5L1`3 by the reductive coupling reactions of imine groups also involving a rare coupling reaction of C=N bond of quinoline ring with imine group of Schiff base ligand.
引文
[1] (a)Wilkinson, G.; Birmingham, J. M. J. Am. Chem. Soc. 1954, 76, 6210. (b) Birmingham, J. M.; Wilkinson, G. J. Am. Chem. Soc. 1956, 78, 42.
    [2] (a) Fischer, E. O.; Fischer, H.; Angew. Chem. 1964, 76, 52. (b) Fischer, E. O.; Fischer, H.; J. Orgnomet. Chem. 1965, 3, 1647. (c) Manastyrskyj, S.; Maginn, R. E.; Dubeck, M. Inorg. Chem. 1963, 2, 904.
    [3] (a) Schumann, H.; Meese-Marktscheffel, J. A.; Esser, L. Chem. Rev. 1995, 95, 865. (b) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295. (h) Roesky, P. W.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 4705. (c) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757. (d) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 4871.
    [4] (a) Brookhart, M., et al., J. Am. Chem. Soc., 1995, 117, 6414. (b) Gibson, V. C., et al., Chem. Commun., 1998, 849. (c) Brookhart, M., et al., J. Am. Chem. Soc., 1998, 120, 4049.
    [5] (a) Nishiura, M.; Hou, Z.; Imamoto, T.; Wakatsuki, Y. Macromolecules 1999, 32, 8245. (b) Hou, Z.; Fujita, A.; Yoshimura, T.; Jesorka, A.; Zhang, Yamazaki.; Wakatsuki, Y. Inorg. Chem. 1996, 35, 7190. (c) Hou, Z.; Fujita, A.; Zhang, Y.; Miyano, T.; Yamazaki, H.; Wakatsuki, Y. J. Am. Chem. Soc. 1998, 120, 754. (d) Hitchcock, P.B.; Lappert, M.F.; Singh, A. Inorg. Synth. 1990, 27, 164. (e) Stevels, W.M.; Ankone, M. J. K.; Dijkstra, P. J.; Feijen, J. Macromolecules 1996, 29, 8296. (f) Stevels, W. M.; Ankone, M. J. K.; Dijkstra, P. J.; Feijen, J. Macromolecules 1996, 29, 6123. (g) Chamberlain, B. M.; Sun, Y.; Hagadorn, J. R.; Hemmesch, E. W.; Young, J. V. G.; Pink, M.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 1999, 32, 2400. (h) Ling, J.; Shen, Z.; Huang, Q. Macromolecules 2001, 34, 7613. (i) Evans, W. J.; Frummond, D. K.; Zhang, H.; Atwood, J. L. Inorg. Chem. 1988, 27, 575. (j) Bradley, D. C.; Ghotra, J. S.; Hart, F. A. J. Chem. Soc. Dalton Trans. 1973, 1021. (k) Herrmann, W. A.; Anwander, R.; Kleine, M.; Scherer, W. Chem. Ber. 1971, 125, 1992. (l) Martin, E.;Dubois, P.; Jerome, R. Macromolecules 2000, 33, 1530. (m) Duchateau, R.; Tuinstra, T.; Brussee, E. A. C.; Meetsma, A.; van Duijnen, P. Th.; Teuben, J. H. Organometallics 1997, 16, 3511. (n) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. Organometallics 1991, 10,2026. (o) Nakayama, Y.; Shibahara, T.; Fukumoto, H.; Nakamura, A.; Mashima, K.; Macromolecules 1996, 29, 8014. (p) Mashima, K.; Nakayama, Y.; Shibahara, T.; Fukumoto, H.; Nakamura, A. Inorg. Chem. 1996, 35, 93. (q) Mashima, K.; Nakamura, A. J. Chem. Soc. Dalton Trans. 1999, 3899. (r) Long, D. P.; Bianconi, P. A. J. Am. Chem. Soc. 1996, 118, 12453. (s) Ferrence, G. M.; McDonald, R.; Takats, J. Angew. Chem. Int. Ed. 1999, 38, 2233. (t) Duchateau, R.; Meetsma, A.; Teuben, J. H. Organometallics 1996, 15, 1656. (u) Duchateau, R.; van Wee, C. T.; Teuben, J. H. Organometallics 1996, 15, 2291. (v) Barbier-Baudry, D.; Bouazza, A.; Brachais, C. H.; Dormond, A.; Visseaux, M.; Macromol. Rapid Commun. 2000, 21, 213. (w) Lee, L. W. M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.; Parvez, M. Organometallics 1999, 18, 2947. (x) Ihara, E.; Koyama, K.; Yasuda, H.; Kanehisa, N.; Kai, Y. J. Organomet. Chem. 1999, 574, 40. (y) Matsuo, Y.; Mashima, K.; Tani, K. Organometallics 2001, 20, 3510.
    [6] Blech, P.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc., Dalton Trans. 1990, 3557.
    [7] Evans,W. J.; Fujimoto,C. H.; Ziller,J. W. Chem. Commun. 1999, 311.
    [8] Yu, L.B.; Yao,Y.,M.; Shen, Q.; Zhang, J.W.; Li,X.; Ye, L. Chin. J. Chem. 2003 , 21 , 442
    [9] (a) Liu,Q. C.; Ding,M. X. J. Organomet. Chem. 1998, 553, 179 (b) Liu, Q. C.; Ding, M. X.; Lin,Y.H.; Yan, X. Polyhedron 1998, 17, 555 .
    [10] Evans,W. J.; Fujimoto,Cy. H.; Ziller,J. W. Polyhedron 2002, 21, 168.
    [11] Anwander,R.; Priermeier,T.; Runte,O. Chem. Commun. 1996, 1385
    [12] Lin,M-H.; RajanBabu,T. V. Org. Lett. 2002 , 4, 1607
    [13] Ovitt,T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072.
    [14] Mascarenhas,C. M.; Miller,S. P.; White,P. S.; Morken,J. P. Angew. Chem. Int. Ed.2001, 40, 601.
    [15] Emslie, D. J. H.; Piers,W. E.; Parvez, M.; McDonald, R. Organometallics 2002, 21, 4226.
    [16] Lauterwasser, F.; Hayes, P. G.; Br?se, S.; Piers, W. E.; Schafer, L. L. Organometallics 2004, 23, 2234.
    [17] Essig,W.; Keogh, D. W.; Scott,B. L.; Watkin, J. G. Polyhedron 2001, 20, 373.
    [18] Gottfriedsen, J.; Spoida, M.; Blaurock, S. Z. Anorg. Allg. Chem. 2008, 634, 514.
    [19] Liu, Q. C.; Ding, M. X.; Lin, Y. H.; Yan, X. J. Organome. Chem. 1997, 548 139.
    [20] Dubé, T.; Gambarotta, S.; Yap, G. Organometallics 1998, 17, 3967.
    [21] Bérubé, C. D.; Gambarotta, S.; Yap, G. P. A. Organometallics 2003, 22, 434.
    [22] Emslie, D. J. H.; Piers, W. E.; MacDonald, R. J. Chem. Soc., Dalton Trans. 2002, 293.
    [23] Yousaf, M.; Liu, Q.C.; Huang ,J.L.; Qian,Y. L.; Chan, A. S-C. Inorg. Chem.Commun. 2000, 3,105
    [24] Patroniak,V.; Stefankiewicz,A. R.; Lehn,J-M.; Kubicki, M.; Hoffmann, M. Eur. J. Inorg. Chem. 2006, 144
    [25] O’Reilly, R. K.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2003,125,8450
    [26] Hu, W. Q.; Sun, X.Li.; Wang, C.; Gao, Y.; Tang, Y.; Shi, L.P.; Xia,W.; Sun, J.; Dai, H. L.; Li, X. Q.; Yao, X. L.; Wang , X. R. Organometallics, 2004,23,1684.
    [1] Taylor, M. D.; Carter, C. P. J. Inorg. Nucl. Chem. 1966, 24, 387.
    [2] Namy, J. L.; Girard, P.; Kagan, H. B. Nouv. J. Chim, 1981, 5, 479.
    [3] Donald, C. B.; Joginder, S. G. J. Chem. Soc., Dalton Trans. 1973, 1021.
    [4]有机化学实验(第三版)高等教育出版社,曾昭琼主编,2006.
    
    [1] Cameron, P. A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 2002, 415
    [2] Solari, E.; De Angelis, S.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Chem. Soc. Daiton. Trans. 1991, 2471
    [3] Fisher, R.; Gorls, H.; Walther, D. Z. Anorg. Allg. Chem. 2004, 630, 1387
    [4] Kasumov,V.T.; K?ksal,F.; K?sɡe o?lu, R. J. Coord. Chem. 2004, 57, 591.
    [5] Michael W.; Essig,W.; Keogh,D. W.; Scott,B.; Watkin, L. J.G. Polyhedron 2001, 20, 373.
    [6] Emslie, D. J. H.; Piers,W. E.; Parvez,M.; McDonald, R. Organometallics 2002, 21, 4226.
    [7] Patroniak, V.; Stefankiewicz, A R.; Lehn, J M.; Kubicki, M.; Hoffmann, M.. Eur. J.Inorg. Chem., 2006, (1): 144.
    [8] Clark,D.L.; Gordon,J.C.; Watkin,J.G.; Huffman,J.C.; Zwick,B.D. Polyhedron 1996, 15, 2279.
    [9] Qi,G.; Lin, Y.; Hu,J.; Shen,Q. Polyhedron 1995, 14, 413.
    [10] Hayashi,T.; Prog. Polym. Sci. 1994, 19, 663.
    [11] Deanin, R. D.; Zhang,Z. B. J. Vinyl Technol. 1984, 6, 18.
    [12] Lewiński, J.; Horeglad, P.; Dranka, M.; Justyniak, I. Inorganic Chemistry, 2004, 43, 5789
    [13] Yu, L.B.; Yao,Y.M.; Shen, Q.;Zhang, J.; Wu, L.; Ling, Y.X. CHIN. J. CHEM. 2003 , 21 , 442 .
    [14] Montaudo,G..; Montaudo, M. S.; Puglisi, C.; Samperi, F.; Spassky, N.; Le Borgne, A.; Wisniewski, M. Macromolecules 1996, 29, 6461.
    [15] Ling, J.; Shen, Z. Q. Macromol. Chem. Phys. 2002, 203, 735.
    [16] Y u, C. P.; Zhang, L. F. ;Shen, Z. Q. J. Mol. Cat. A: 2004, 212, 365
    [17] Wang,H.; Chan,H-S.; Okuda,J.; Xie, Z.W. Organometallics 2005, 24, 3118.
    [18] Zhang, J.; Ma, L.P.; Cai, R.F.; Weng,LH.; Zhou, X.G. Organometallics 2005, 24, 738
    [19] Shen, Q.; Li, H.R.; Yao, C.S.; Yao, YM.; Zhang, L.L.; Yu. K.B. Organometallics 2001, 20, 3070-
    [20] Zhou, X.G.; Zhang, L.B.; Zhu, M.; Cai, R.F.; Weng, L.H. Organometallics 2001, 20, 5700.
    [21] Chisholm, M. H.; Cotton, F. A.; Folting, K.; Huffman, J. C.; Ratermann, A. L.; Shamshoum, E. S. Inorg. Chem. 1984, 23, 4423.
    [22] Zhou,SL.; Wang,S.W.; Yang,G.S.; Li,Q.H.; Zhang, L.J.; Yao,Z.J.; Zhou,Z.K.; Song, H.B. Organometallics 2007, 26, 3755,
    [1] Zhou, L.Y.; Sun, H.M.; Chen, J.L.; Yao, Y.M.; Shen, Q. J. Poly. Sci.: Part A: Poly. Chem. 2005, 43,1778
    [2] Luo, Y.J.; Yao, Y.M.; Shen, Q.; Sun, J.; Wang, L.H. J. Organomet. Chem. 2002, 662,144
    [3] Yu, L.B.; Yao,Y.M.;Shen, Q.; Zhang, X.; Wu,J.; Ye,L.X. Chin. J. Chem. 2003, 21, 442.
    [4] Liu,Q.C.; Ding,M.X. J. Organomet. Chem. 1998, 553, 179,
    [5] Evans, W. J.; Fujimoto,C. H.; Ziller, J. W. Polyhedron 2002, 21, 1683.
    [6] Yousaf, M.; Liu ,Q.C.; Huang, J.L.; Qian,Y.L.; Chan, A.S-C. Inorg. Chem. Commun. 2000, 3,105.
    [7] Liu,Q.C.; Ding,M.X.; Lin,Y.H.; Xing, Y. Polyhedron 1998, 17, 555.
    [8] Patroniak, V.; Stefankiewicz, A R.; Lehn, J M.; Kubicki, M.; Hoffmann, M.. Eur. J. Inorg. Chem., 2006, (1): 144.
    [9] (a) Cai,Y.P.; Ma,H.Z.; Kang, B.S.; Su, C.Y.; Zhang,W.; Sun, J.; Xiong,Y.L. J. Organomet. Chem. 2001, 628,99. (b) Blech,P.; Floriani,C.; Chiesivilla,A.; Guastini,C. J. Chem. Soc., Dalton Trans. 1990, 3557. (c) Schuetz, S.A.; Day,V.W. ; Rheingold, A.L.; Belot,J.A. J. Chem. Soc.Dalton Trans. 2003, 4303. (d) Evans, W.J.; Fujimoto,C.H.; Ziller,J.W. Polyhedron 2002, 21,1683.
    [10] Yao, Y.M.; Shen, Q. ; Zhang,Y.; Xue,M.Q.; J. Sun, Polyhedron 2001, 20, 3201.
    [11] Zhang,Y.; Yao,Y.M.; Luo,Y.J.; Shen,Q.; Cui,Y.; Yu,K.B. Polyhedron 2003, 22,1241.
    [12] Xu, X.P.; Yao,Y.M.; Zhang, Y.; Shen, Q. Inorg. Chem. 2007, 46,3743.
    [13] Deacon,G.B.; Nickle,S.; Mackinnon,P.I.; Tiekink,E.R.T. Aust. J. Chem. 1990, 43,1245.
    [14] Evans, W. J.; Fujimoto, C. H.; Ziller, J. W. Chem. Commun. 1999, 311.
    [15] Wei, P. R.; Stephan, D. W. Organometallics 2003, 22, 601.
    [16] Cameron, P. A.; Gibson, V. C. ; Redshaw, C.; Segal, J. A.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 2002, 415
    [17] Liu, Q.C.; Ding, M.X.; Lin, Y.H.; Xing, Y. J. Organomet. Chem. 1997, 548,139
    [18] Liu, Q.C.; Ding, M.X.; Lin, Y.H.; Xing, Y. Polyhedron 1998, 17,2327.
    [19] Aspinall, H. C. Chem. Rev. 2002, 102, 1807
    [1] Dubé, T.; Gambarotta, S.; Yap, G. Organometallics 1998, 17,3967.
    [2] Bérubé, C. D.; Gambarotta, S.; Yap, G. P. A. Organometallics 2003, 22, 434.
    [3] Emslie,D. J. H.; Piers,W. E.; Parvez,M.; McDonald, R. Organometallics 2002, 21, 4226.
    [4] Solari, E.; De Angelis, S.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Chem. Soc. Daiton. Trans. 1991, 2471.
    [5] Gambarotta, S.; Urso, F.; Floriani, C.; Chiesi-Villa, A.; Guastini ,C. Inorg. Chem. 1983, 22, 3966.
    [6] Gallo, E.; Solari, E.; Re, N.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. 1997, 119, 5144.
    [1] O’Shaughnessy, P. N.; Knight, P. D.; Morton, C.; Gillespie, K. M.; Scott,P. Chem. Commun., 2003, 1770
    [2] Zhou L.Y.; Sheng H.T.; Yao Y.M.; Zhang Y.; Shen Q. J. Organomet. Chem. 2007, 692 ,2990.
    [3] Bérubé, C. D.; Gambarotta, S.; Yap, G. P. A. Organometallics 2003, 22, 434.
    [4] Emslie, D. J. H.; Piers, W. E.; Parvez, M.; McDonald, R. Organometallics 2002, 21,4226.
    [5] Anwander,R.; Priermeier,T.; Runte,O. Chem. Commun. 1996, 1385
    [6] Lin,M-H.; RajanBabu,T. V. Org. Lett. 2002 , 4, 1607
    [7] O’Shaughnessy, P. N.; Knight, P. D.; Morton, C.; Gillespie, K. M.; Scott,P. Chem. Commun., 2003, 1770

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700