工程机械冷却系统智能控制装置设计及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决工程机械在施工作业过程中经常出现的发动机过热、液压传动系统液压油冷却不足、耗能大等问题,本文设计了电液混合驱动冷却系统智能控制装置。本设计将原冷却系统分成发动机冷却系统和液压传动冷却系统,发动机冷却系统采用液力驱动,液压油冷却系统采用电机驱动,由单片机根据检测到的温度信号对两冷却系统进行控制。这种冷却系统可使冷却风扇与发动机分开布置,克服了传统冷却系统的各种弊端,减小了风扇安装时的径向间隙,提高了其容积效率,降低了能耗,并有效解决了发动机和液压传动系统的过热问题。
     发动机冷却系统采用电磁比例溢流阀控制的液压马达驱动冷却风扇和水泵,单片机可以根据冷却液温度和目标冷却液温度调节液压驱动系统中电磁比例溢流阀的电流,进而控制液压油的流量,实现冷却风扇和水泵转速的自动调节;液压油冷却系统利用电机驱动液压油冷却风扇,由单片机根据液压油的温度及设定的液压油温度控制电机转速,实现冷却风扇转速的自动调节。
     发动机冷却控制系统及液压油冷却控制系统主要采用模糊控制理论进行控制,它不需要掌握受控对象的精确数学模型,而根据人工控制规则组织控制决策表,然后由该表决定控制量的大小。课题研究内容主要包括:冷却控制系统整体设计、控制系统硬件设计及选型、控制系统软件设计和控制系统试验。控制系统的硬件设计主要指接口电路设计,软件采用模块化结构进行设计,主要包括主控制模块、中断处理模块、滤波模块、温度采样模块、报警模块等。
     试验表明:该冷却系统控制装置不仅可以有效解决工程机械发动机过热和液压油冷却不足等问题,而且还具有安装灵活、节省燃油、降低噪声、体积小、功率低等优点,符合现代发动机冷却系统的发展趋势。将该冷却系统控制装置在工程机械中推广运用,将会获得较大的经济、社会效益。
In order to solve the over-heat problem of the engine and inadequate cooling of the oil radiator as well as too much consumption of energy etc, we designed the electro-hydraulic mix-drive cooling control system, which divide traditional cooling system into two independent system, the engine cooling system and the oil cooling system. The engine cooling system was driven by hydraulic-oil, while the oil cooling system was driven by electric motor, both of the two cooling system were controlled by a single-chip according to the temperature signal which was detected by sensors. This new cooling system can cooling oil and engine separately, thus overcome many shortages exist in traditional cooling system, at the same time shortened the axial-distance when preparing the installation of the fan and improved its volumetric efficiency, lowed energy consumption of the engine, most importantly it solved the over-heat problem of the engine cooling system and the oil cooling system efficiently.
     The fan and pump of the engine cooling system using hydraulic motor as the original force, the flow-rate of which was controlled by electro-magnetic proportional over-flow valve, the single-chip can regulate the current value according to the coolant temperature and the target temperature, then the flow-rate of the hydraulic oil was controlled, finally the speed of the fan and the pump was controlled automatically. The fan of the oil cooling system was driven by a direct-current motor, the speed of the motor can be regulated by the single-chip which according to the temperature signal of the oil taken by oil sensor and the target temperature, at last the system can modulate the speed of the oil cooling fan automatically.
     The engine and oil cooling control system mainly using fuzzy control theory, in that it no need to find the specific mathematic mode of the control object, according to the control decision table which was organized by people, then from the table the system can decide the value of the control parameters. This research mainly include the following parts: the over-all design of this cooling control system, hardware design and choosing of the control system, software design and tests of this control system. Hardware design of this control system lies in the interface circuit design, while software design mainly include: main control mode design, interruption processing design, filter design, temperature sampling mode design and alarming mode design, etc.
     Test results show that this cooling system control device not only can solve the over heat problem of the construction machinery, but also has many other advantages, such as flexible installation, fuel saving, low nosing, small volumetric, and low power consumption, etc. This kind of cooling system suit the development of modern engine cooling system, after using this kind of control system in construction machinery largely, we will profit more from this device socially and economically.
引文
[1]白驹珩等编.单片计算机及其应用.电子科技大学出版社.1994.12.
    [2]曹巧媛.单片机原理及应用[M].电子工业出版社.1999.
    [3]曹寅昌等.汽车构造.湖北科学技术出版社.1989.
    [4]陈粤初等编.单片机应用系统设计与实践.北京航空航天大学出版社.1993.
    [5]陈志恒,胡宁.汽车电控制技术.高等教育出版社.2003.9.
    [6]程利军.利渤海尔静液压驱动冷却系统简介[J].装载机与维修.2004(7):136-137.
    [7]丁镇生.传感器及传感技术应用.电子工业出版社.1999.
    [8]邓海龙主编.自动检测与转换技术[M].中国纺织出版社.2000:36-39.
    [9]大村清治等.一种电控液驱风扇冷却系统的开发.自动车技术会论文集.1992.23:15-23.
    [10]傅旭光,郭新民,刘永进等.柴油机废气再循环冷却控制系统设计与试验[J].农业机械学报.2006.37(5):36-39.
    [11]郭新民等.汽车发动机智能冷却系统的研究.内燃机工程.2001.1.
    [12]郭新民等.汽车发动机自控电动冷却风扇的发展与研究.内燃机工程.1999.3:15-17.
    [13]郭新民,魏新华,傅旭光等.大型收割机电液混合驱动冷却系统[J].农业机械学报.2006.37(4):65-68.
    [14]郭新民,丁健鲁.自控电动冷却风扇在汽车发动机上的应用[J].内燃机工程.1993.14(1):79-82.
    [15]高镜惠,花松.汽车发动机冷却系统的模糊控制[J].小型内燃机与摩托车.2004.1:30-32.
    [16]何立民.单片机应用系统设计(系统配置与接口技术).北京航空航天大学出版社.2000.
    [17]黄贤武等.传感器实际应用电路设计.电子科技大学出版社.1997:15-20.
    [18]胡汉才编著.单片机原理及其接口技术[M].清华大学出版社(第一版).1996:506.
    [19]蒋开正.汽车发动机冷却系统测控研究与设计.电子科技大学硕士论文.2005.11.
    [20]江太辉,邓展威.DS18B20数字式温度传感器的特性与应用[J].电子技术.2003(12).
    [21]卢广锋,郭新民,孙运柱等.汽车冷却系统水温对发动机性能的影响[J].山东内燃机.2002.1:29-33.
    [22]卢广峰等.汽车发动机冷却系统的发展与现状.农机化研究.2002.2:129-133.
    [23]梁亦铂,王正茂,何涛.全数字式直流电机调速系统的原理及数学模型[J].中小型电机.2001.28(6):18-20.
    [24]雷天觉主编.新编液压工程手册(上册)[M].北京理工大学出版社.1998.12.
    [25]雷天觉主编.新编液压工程手册(下册)[M].北京理工大学出版社.1998.12.
    [26]刘彦儒.微型计算机原理及应用[M].机械工业出版社.1998.7.
    [27]刘地利编著.非电量电测技术.国防科技大学出版社.1990.
    [28]吕杨,刘瑞敏.微型计算机原理、接口及应用[M].重庆大学出版社.2000.1.
    [29]陆远明等.单片机系统的软件抗干扰方法.职大学报.2000.2:59-60.
    [30]李华.单片机实用接口技术.北京航空航天大学出版社.2003.
    [31]李军.检测技术及仪表.中国轻工业出版社.1996.
    [32]罗尔布等.机动车辆驱动电动机的冷却装置.中国专利文件.1987:6-17.
    [33] Manfred.内燃动车的冷却系统.国外内燃机车.1998.4.
    [34]马云峰.数字温度传感器DS18B20的原理与应用[J].电子元器件应用.2002.1:23.
    [35]欧阳联格,胡永华.推土机冷却系统的设计[J].工程机械.2004.(3):21-24.
    [36]潘永雄.新编单片机原理与应用.西安电子科技大学出版社.2003.
    [37]潘新民编.单片微机实际应用系统设计[M].人民邮电出版社.1992.1.
    [38]权龙等.电液比例技术控制发动机冷却风扇的原理及特征.汽车技术.1995.7:10-13.
    [39]曲波.工业常用传感器选型指南[M].清华大学出版社.2002.1.
    [40]孙志良.单片机原理与控制技术[M].机械工业出版社.2001.7.
    [41]沈金德等.单片机接口技术实验指导[M].北京航空航天大学出版社.1993.
    [42]王春荣等.液压传动.吉林科学技术出版社.1994.
    [43]王福瑞.单片微机测控系统设计大全[M].北京航空航天大学出版社.1999.6.
    [44]万福君,张铁柱等.发动机冷却风扇温控系统设计.汽车工程.1999.6:244-246.
    [45] W.H.克劳斯等.汽车燃油系、润滑系和冷却系.机械工业出版社. 1988.
    [46]熊美华.电液比例阀控马达系统分析与仿真研究[D].长安大学硕士学位论文.2004.5.
    [47]胥良.MCS系列单片机的抗干扰[J].煤矿机械.2001.3:52-54.
    [48]肖成永,李健,张建武.发动机冷却系统的建模与仿真[J].计算机仿真,2003.9.20(9):39-42.
    [49]肖永清.电子控制技术在汽车发动机上的应用与发展[J].上海电器技术.2004.2.
    [50]徐灏主编.机械设计手册第二版第五卷(流体传动与控制)[M].机械工业出版社.2003.1.
    [51]徐小林等.汽车发动机电子控制系统.中国铁道出版社.2002.2.
    [52]薛朝妹.温度模糊控制器的设计[J].现代电子技术.2003(12):6-8.
    [53]杨征瑞等.数字式电液比例技术在新型电液调速器研制中的应用.陕西水利发电.1997,9.
    [54]杨宁,单片机与控制技术[M].北京航空航天大学出版社.2005.3.
    [55]杨连生.内燃机设计[M].中国农业出版社.1981.4.
    [56]尹静等.发动机冷却系统驱动方式的现状及发展方向[J].山东内燃机.2003.4:4-6.
    [57]翟丽等.汽车发动机冷却系统的智能控制.汽车电器.2001.1.
    [58]翟丽等.汽车发动机冷却系统的单片机控制.农机化研究.2001.2:24-26.
    [59]张铁柱等.内燃机冷却风扇温度控制液压驱动系统技术研究.内燃机学报.2002.3:93-96.
    [60]张铁柱等.内燃机冷却风扇温度控制液压驱动系统技术研究.内燃机学报.2002.5:273-277.
    [61]张铁柱,张洪信.水冷柴油机最佳冷却液工作温度的试验研究[J].内燃机学报.2004.20(4):377-380.
    [62]张金柱.现代发动机冷却系统的发展趋势[J].山东内燃机.2005(3):6-8.
    [63]周龙保.内燃机学.机械工业出版社.1999.6.
    [64]周祥国.筑路机械液压油温度过高故障浅探.湖南交通科技.2002.6.
    [65]周军.丰田电控液力马达冷却风扇系统的检查.汽车诊所.2001.2.
    [66]周航滋.单片机应用程序设计北京航空航天大学出版社.1991.
    [67]周顺喜.公路建设中存在的问题浅析[J].河南科技.2005.10.
    [68]周新福.工程机械发展报告.2003.5:1.
    [69]张福学.传感器应用及其电路精选.电子工业出版社.1991.1.
    [70]张亮.单片机应用系统的可靠性及抗于扰措施[J].电气开关.2001.5:16-17.
    [71]郑学坚,周斌.微型计算机原理及应用[M].清华大学出版社.1995.8.
    [72]中国机械工业教育协会组编.单片机原理与应用.机械工业出版社.2001.
    [73] Ap Ns,Maire A,Porot P,Menegrazzi P, Souidi F, Devehat C Le, Godeau D, Oliver P, Vinot JB and Vincens. New Components Development for New Engine Cooling System. 543/047/99.
    [74] Carcia C E, et al. Model predictive control [J]. Theory and practice. Automatic. 1989.25(3):335.
    [75] Couetouse H and Gentile. cooling system control in automotive engines. SAE 1992. 07. 88.
    [76] Chad Leher et al. Design and development of a model feedback controlled cooling system for heavy duty diesel truck applications using a vehicleengine cooling system simulation[C]. SAE paper. 2001.01.0336.
    [77] Dallas Corp. DS18B20 Programmable Resolution one-Wire Digital Thermometer.
    [78] Electro-Hydraulic Fan Control System e.g. for IC Engine has Engine, Hydraulic Pump, Hydraulic Lines, Hydraulic Cooling Fan, and Solenoid Controlled Hydraulic Valve and Electronic Control Circuit, and Generates [R]. WPI Acc. 96-320662/199632.
    [79] Fang Linluo. Disturbunce Redponse Techniques for Digital Control System. IEEE Transactions on Industrial Electronics. No.3.1985.
    [80] Finlay IC, Tugwell W, Biddulph T and Marshall RA, The influence of temperature on the performance of a four cylinder 1100cc engine employing a dual cooling system.proceeding of Int. Centre of heat and mass transfer. 1999. p423-431.
    [81] Hamamoto Tohru. Development of the Electronically Controlled Cooling Fan System[C]. SAE Paper. 901710.1990:26-40.
    [82] Hydraulic Drive for Cooling Fan of IC Engine System has Variable Delivery Pump Controlled by Linear Actuator by 3/2 Valve and Proportional Electronic Hydraulic Pressure Limiting Valve [R]. WPI Acc. 95-044131/1995.07.
    [83] Hydraulic System Controlling Cooling of Agricultural Diesel Engine-employs Summed Output of Several Temperature Sensors to Operate Regulator and Priority Valve for Cooling Fan Hydraulic Motor [R]. WPI ACC. 97-365081/199734.
    [84] Hitachi Construction Machinery. Hydraulic Oil Cooling System for Construction Machinery [P]. JP: 2003064720. 2003.03.05.
    [85] Hitachi Construction Machinery. Engine Cooling Device of Construction Machinery [P]. JP: 1143125. 2001.10.10.
    [86] John Feuerstein, E1ectronically Controlled Hydrostatic Fan Drive System for the Internal Combustion Engine [C]. SAE Paper 901586.1990:145-150.
    [87] M.Lapuerta, O.Armas, J.J.Hernández. Diagnosis of DI Diesel combustion from in-cylinder properties of the gas. Applied Thermal Engineering. 19(1999) 513-519.
    [88] McGovern, Kevin M. (Canton, MI), Stretch, etc. Water-Cooled RemoteFan Drive [P]. USA: 6439172. 2002.8.27.
    [89] MahmoudKG, LoibnerE, WieslerB. Simulation-based Vehicle Thermal Management System-concept and Methodology. SAEPaper. 2003. 01. 0276.
    [90] Rao.Guthikonda V. Microprocessors and Micro Computer System [J]. Van Nostrand Reinhold Company. 1982:18-22.
    [91] Roger Clemente. Electric Fan Assembly For Over the Road Trucks. 1989: 10-24.
    [92] Suzuki, Makoto (MIshima, JP). Cooling System and Method for an Internal Combustion Engine [P]. USA: 6571752. 2003.06.03.
    [93] The Internal-Combustion Engine in Theory and Practice. Charles Fayette Taylor.
    [94] Wolfgang P. Weinhold. Engine Ventilation An Automotive Vehicle. American patent. 1993. 12. 4: 23-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700