用于混合气化的生物质烘焙预处理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的持续快速发展,能源需求量日益增加;但是化石能源的广泛应用造成了日益严重的环境问题,而且其储量也有限。生物质能是CO2中性的可再生清洁能源,每年的产量巨大。然而生物质的利用存在着收集运输和储存成本高,磨粉能耗大等缺点。生物质烘焙预处理是一种能够显著改善生物质磨粉性能,提高生物质能量密度和储存性能,降低生物质运输储存成本的合理有效的方法。生物质与煤混合气化不仅有利于生物质的规模化利用,而且更够改善煤的气化特性。
     本文首先对生物质能源的特点、转化利用技术、生物质能利用的情况和政策,生物质利用的预处理方式以及混合气化的研究情况进行了总结。
     接着对农业生物质秸秆进行了烘焙预处理研究。在固定床实验台进行了四种典型的农业生物质秸秆N2氛围下的烘焙预处理试验,终温为200℃、250℃、300℃,加热时间均为30min。热解得到的固体半焦产物能量密度显著提高,对比原始的生物质其可磨性得到明显改善,并且具有了疏水性,便于储存运输和磨粉用于气流床气化。热解气体产物以CO2、CO为主还有少量CH4,并对气体的产生进行了动力学分析。液体产物主要是水分和焦油。随着热解温度升高,液体产物和气体产物量均增加,固体焦的质量产率和能量产率都下降。
     然后分析烘焙预处理的可行性。测量了烘焙预处理产生半焦的热值,求得了预处理过程的能量产率。虽然半焦的热值随烘焙温度的升高而增加,但是其能量产率却下降。生物质在烘焙过程中的吸热量很小,可以有自身的部分燃烧来提供。对250℃,30min条件下的烘焙过程;从固体能量产率、原始生物质和烘焙的固体产物运输储存成本、研磨能耗对比等方面衡量了烘焙预处理的可行性。发现烘焙预处理技术相对未经预处理的有竞争力。
     最后研究了生物质半焦与煤在CO2作为气化剂的气化特性。分别对生物质半焦、神府煤、以及两者按质量1:1的混合物在耐驰热重上以温速率为20℃/min从35℃升温至1200℃进行了气化实验。生物质半焦单独气化反应性比神府煤要好。混合气化反应均好于单独燃料的气化反应。混合气化反应性不仅与生物质种类有关,而且与热解预处理温度有关。混合气化不仅提高了反应性,而且使得最大失重速率发生的温度降低了。大部分的混合气化最终剩余物百分比也降低,最终反应温度低于神府煤。说明协同作用使得混合燃料气化发生在更低温度,且气化速率增加使得气化过程缩短。
As China's sustained and rapid economic development, energy demand is increasing. But extensive use of fossil fuels caused serious environmental problems, and its reserves are limited. Biomass is CO2 neutral and renewable clean energy, the annual products is very huge. However agricultural biomass have some drawbacks such as high moisture content, low energy density and widely distributed, as a result the cost of transport and store are high. Moreover, the raw biomass is poor grindability so that it is difficult to be used in pulverised boiler or entrained flow gasifier. Torrefaction is a mild pyrolysis process carried out at temperature ranging from 200℃to 300℃to dealing with those problems. Co-gasification of biomass and coal is not only beneficial to large-scale use of biomass, but also to improve the characteristics of coal gasification.
     Four samples were heated in a fix-bed at moderate temperature (200,250 and 300℃) under a N2 atmosphere for 30 minutes. The biomass chars after torrefied have a higher energy density and an improvement in the grindability characteristics compared with raw biomass and even have hydrophobic characteristics. The volatiles consist of a condensable fraction and a non-condensable fraction. The former mainly contain water and tar (organic products mainly acetic acid ). The non-condensable products are typically comprised of CO2, CO and a small amount of CH4, even trace of H2. The volatiles increased with the increasing of the torrefaction temperature, on the contrary the solid yield and energy yield all decreased. However, the grindability and energy density of the biomass char have a great improvement. A kinetic study on the generation of main non-condensable gases was accomplished.
     Then the feasibility analysis of torrefaction preprocessing was studied. The heating value of semi-char and energy yields of torrefaction were measured. Although the heating value of semi-char rises with torrefaction temperature increased, but the energy yield decline. Heat required of torretied biomass is very small, can be providing by a small part of biomass combustion. From the solid energy yields, the transport and storage costs, grinding energy consumption, untreated biomass and the solid products under the torrefaction conditions of 250℃, 30min were compared. Found that the pretreatment technology has competitive advantage.
     Finally using TGA,reactivity of biomass semi-char,coal and their blends in CO2 atmosphere was processed. The results showed that, for four biomass chars,the reactivity in CO2 atmosphere has same trend,the reactivity increases with carbon conversion. Different from reactivity of coal in CO2 atmosphere. Co-gasification reactivity is better than separate fuel gasification. Gasification reactivity related with the types of biomass and torrefaction temperature. Note the synergy makes the mixed fuel gasification occurs at a lower temperature, and the gasification rate of increase makes gasification process shorten. This result may be due to higher alkali metal content in biomass char than that in coal.
引文
[1].江泽民.对中国能源问题的思考[J].上海交通大学学报, 2005, 42 (3): 345-359.
    [2].李改莲,王远红,杨继涛,李继红,黄浩,张凯.中国生物质能的利用状况及展望[J].河南农业大学学报, 2004, 38 (1): 100-104.
    [3].赵永清,唐步龙.农户农作物秸秆处置利用的方式选择及影响因素研究——基于苏,皖两省实证[J].生态经济, 2007, (10): 244-246 264.
    [4].孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生能源, 2006, 2006 (2): 78-82.
    [5].张巍巍,曾国勇,陈雪莉,于遵宏.生物质气流床气化前的处理工艺[J].过程工程学报, 2007, 7 (4): 747-750.
    [6].赵辉,周劲松,曹小伟,骆仲泱,岑可法.生物质烘焙预处理对气流床气化的影响[J].太阳能学报, 2008, 29 (12): 1578-1586.
    [7].刘贞先,伊晓路,孙立,许敏,傅军.中国生物质废弃物利用现状分析[J].环境科学与管理, 2007, 32 (2): 104-106.
    [8].邓可蕴. 21世纪我国生物质能发展战略[J].中国电力, 2000, 33 (9): 82-84.
    [9].骆仲泱,周劲松,王树荣,余春江,方梦祥,岑可发.中国生物质能利用技术评价[J].中国能源, 2004, 26 (9): 39-42.
    [10].吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社, 2003.
    [11].刘圣勇,刘小二,王森.不同形态生物质燃烧技术现状和展望[J].农业工程技术(新能源产业), 2007 (04): 23-28.
    [12].张希良,岳立,柴麒敏,张成龙.国外生物质能开发利用政策[J].农业工程学报, 2006, 22 (增1): 4-7.
    [13].李十中.中国生物质能源技术现状与展望[J].太阳能学报, 2006, 2006 (1): 42-46.
    [14].伊晓路,孙立,郭东彦,李铁,彭亮,张卫东.生物质秸秆预处理技术[J].可再生能源, 2005 (2): 31-33.
    [15].王联结,陈建华.木质纤维原料预处理技术的研究现状[J].农业工程技术(新能源产业), 2007 (02): 46-51.
    [16].王晓娟,王斌,冯浩,李志义.木制纤维素类生物质制备生物乙醇研究进展[J].石油与天然气化工, 2007, 36 (6): 452-461.
    [17]. Brian. Rick,Richard. Hotchkiss,Bill. Livingston,Martin. Hall. Technology Status Review of Waste/Biomass Co-Gasification with Coal[A]. In Icemen Fifth European Gasification Conference[C], Norwalk, the Netherlands, 8-10 April, 2002.
    [18].张科达,步学鹏,王鹏,文芳,梁大明,董卫果,杨忠仁.生物质与煤在CO2气氛下共气化特性的初步研究[J].煤炭转化, 2009, 32 (3): 9-12.
    [19]. Pan.Yinggang,Enrique.Velo,Luis.Puigjaner. Pyrolysis of blends of biomass with poor coals[J]. fuel, 1996, 75 (4): 412-418.
    [20]. De Jong, W. A., J,Hein, K. R. G. Coal/biomass co-gasification in a pressurised fluidised bed reactor[J]. Renewable Energy, 1999, 16 (1-4): 1110-1113.
    [21]. Pan, Y. G. V., E,Roca, X,Manya J.J ,Puigjaner, L. Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production[J]. Fuel, 2000, 79 (11): 1317-1326.
    [22]. McLendon , A.P.Luib , R.L.Pineault , S.K.Beer , S.W.Richardson, T. R. High-pressure co-gasification of coal and biomass in a fluidized bed[J]. Biomass and Bioenergy, 2004, 26 (4): 377-388.
    [23]. Filomena.Pinto,Carlos.Franco,M.Dias,I.Gulyurtlua,M.A.A.Matos,I.Cabrita, R. N. A. Fluidised bed co-gasification of coal and olive oil industry wastes[J]. fuel, 2005, 2005 (84): 1635-1644.
    [24]. Soyuz.Priyadarsan,Kalyan.Annamalai,John.M.Sweeten,Mark.T.Holtzapple,Saqib.Mukhtar. Co-gasification of blended coal with feedlot and chicken litter biomass[J]. Proceedings of the Combustion Institute, 2005, 2005 (30): 2973-2980.
    [25].宋新朝,李克忠,王锦凤,董众兵,毕继诚.流化床生物质与煤共气化特性的初步研究[J].燃料化学学报, 2006, 34 (3): 03-08.
    [26].闫秋会,郭烈锦,梁兴,张西民.煤与生物质共超临界水催化气化制氢的实验研究[J].西安交通大学学报, 2005, 39 (5): 454-457.
    [27]. Mar?a.P.Aznar,Miguel.A.Caballero,Jesus.A.Sancho,E.Frances. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant[J]. Fuel Processing Technology, 2006, 87 (5): 409-420.
    [28]. McIlveen-Wright,D.R,Pinto,F.Armesto,etc. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste[J]. Fuel Processing Technology, 2006, 87 (9): 793-801.
    [29]. Li.Zhang,Shaoping.Xu,Wei.Zhao,Shuqin.Liu. Co-pyrolysis of biomass and coal in a free fall reactor[J]. fuel, 2007, 2007 (86): 353-359.
    [30]. Kazuhiro.Kumabe,Toshiaki.Hanaoka,Shinji.Fujimoto,Tomoaki.Minowa,Kinya.Sakanishi. Co-gasification of woody biomass and coal with air and steam[J]. fuel, 2007, 86 (5-6): 684-689.
    [31].王立群,张俊如,朱华东,周浩生,宋旭,王同章.在流化床气化炉中生物质与煤共气化的研究(I)以空气-水蒸气为气化剂生产低热值燃气[J].太阳能学报, 2008, 29 (2): 246-251.
    [32].王立群,宋旭,周浩生,唐恒,王同章.在流化床气化炉中生物质与煤共气化的研究(II)以水蒸气为气化剂生产中热值燃气[J].太阳能学报, 2008, 29 (3): 354-359.
    [33]. Magín.Lapuerta,Juan.J.Hernández,Amparo.Pazo,Julio.López. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions[J]. Fuel Processing Technology, 2008, 2008 (89): 828-837.
    [34]. Jhon.F.Vélez,Farid.Chejne,Carlos.F.Valdés,Eder.J.Emery,Carlos.A.Londo?o. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study[J]. fuel, 2009, 88 (3): 424-430.
    [35]. John.McDaniel. Biomass cogasification at Polk Power Station[R]. Tampa Electric Company, 2002.
    [36]. Antonio.Valero,Sergio.Uso′n. Oxy-co-gasification of coal and biomass in an integratedgasification combined cycle (IGCC) power plant[J]. energy, 2006, 2006 (31): 1643-1655.
    [37]. K.Sjo¨stro¨m,G.Chen,Q.Yu,C.Brage,C.Rose′n. Promoted reactivity of char in co-gasification of biomass and coal: Synergies in the thermochemical process[J]. fuel, 1999, 78 (10): 1189-1194.
    [38]. Robert.C.Browna,Qin.Liua,Glenn.Norton. Catalytic effects observed during the co-gasification of coal and switchgrass[J]. Biomass and Bioenergy, 2000, 18 (6): 499-506.
    [39]. A.-G.Collot,Y.Zhuo,D.R.Dugwell,R.Kandiyoti. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors[J]. fuel, 78 (6): 667-679.
    [40]. B.Arias,C.Pevida,J.Fermoso,M.G.Plaza,F.Rubiera,J.J.Pis. Influence of torrefaction on the grindability and reactivity of woody biomass[J]. Ful Processing Technology, 89 (2008): 169-175.
    [41]. P.C.A.Bergman,A.R.Boersma,J.H.A.Kiel,M.J.Prins,K.J.Ptasinski,F.J.J.G.Janssen. Torrefaction for entrained-flow gasification of biomass[R]. Energy research Centre of the Netherlands, 2005.
    [42]. Jian Deng, G.-j. W., Jiang-hong Kuang, Yun-liang Zhang , Yong-hao Luo,. Pretreatment of agricultural residues for co-gasification via torrefaction[J]. Journal of Analytical and Applied Pyrolysis, 2009, 2009 (86): 331-337.
    [43]. J.Bourgois,R.Guyonnet,Saint-Etienne,France. Characterization and analysis of torrefied wood[J]. Wood Science and Technology, 1988, 22 (1988): 143-155.
    [44]. Mark.J.Prins , K. J. P., Frans J.J.G. Janssen. More efficient biomass gasification via torrefaction[J]. Energy, 2006, 31 (2006): 3458-3470.
    [45]. Mark J. Prins , K. J. P., Frans J.J.G. Janssen. Torrefaction of wood Part 1. Weight loss kinetics[J]. Journal of analytical and applied pyrolysis, 77 (2006): 28-34.
    [46]. Mark J. Prins , K. J. P., Frans J.J.G. Janssen. Torrefaction of wood Part 2. Analysis of products[J]. Journal of analytical and applied pyrolysis, 77 (2006): 35-40.
    [47]. A.Saravanakumar, T. M. H., R.kasturi Bai. Technical and feasibility study of conversion of long-stick wood to charcoal in a partial combustion metal kiln[J]. Energy for Sustainable Development, 2006, 10 (3): 17-25.
    [48]. Felix Fonseca Felfi, C. A. L., Jose Antonio Suárez,Pedro Anibal Beatón. Wood briquette torrefaction[J]. Energy for Sustainable Development, 2005, 9 (3): 19-22.
    [49]. Felix Fonseca Felfi, C. A. L., Jose Antonio Suárez,Pedro Anibal Beatón. Torrefied briquettes: technical and economic feasibility and perspectives in the Brazilian market[J]. Energy for Sustainable Development, 2005, 9 (3): 23-29.
    [50].蒋恩臣,何光设.稻壳、锯末成型燃料低温热解特性试验研究[J].农业工程学报, 2007, 23 (1): 188-191.
    [51].张巍巍,陈雪莉,于遵宏.生物质慢速热解工艺的新探讨[J].环境科学与技术, 2008, 31 (2): 38-42.
    [52].肖军,段菁春,王华,庄新国.生物质与煤共燃研究(I)生物质的低温热解[J].煤炭转化, 2003, 26 (1): 61-66.
    [53].杨昌炎,杨学民,吕雪松,姚建中,林伟刚.分级处理秸秆的热解过程[J].过程工程学报, 2005, 5 (4): 379-383.
    [54].付鹏,胡松,孙路石,向军,陈巧巧,杨涛,张军营.稻草和玉米秆热解气体产物的释放特性及形成机理[J].中国电机工程学报, 2009.01.15, 2009, 29 (2): 113-118.
    [55]. Encinar, J. M. B., F. J.; Bernalte, A.; Ramiro, A.; González, J. F. Pyrolysis of two agricultural residues: Olive and grape bagasse. Influence of particle size and temperature[J]. Biomass and Bioenergy, 1996, 11 (5): 397-409.
    [56]. Osvalda Senneca , S. C., Alfredo Nunziata. Composition of the gaseous products of pyrolysis of tobacco under inert and oxidative conditions[J]. Journal of Analytical and Applied Pyrolysis, 2006.
    [57].肖军,段菁春,王华,庄新国.低温热解生物质与煤共燃的污染性能和经济性能评价[J].再生资源研究, 2003, 2003 (2): 28-33.
    [58].王述洋,谭文英,赵殊,王立娟,刘建,孙仁山.生物质的能量预测及建模[J].东北林业大学学报, 2003, 31 (2): 72-74.
    [59].杨树华,雷廷宙,朱金陵.生物质发热量多元线性回归模型的研究[J].河南科学, 2006, 24 (2): 252-255.
    [60].何芳,徐梁,柏雪源,蔡均猛,易维明.生物质热解过程吸热量[J].太阳能学报, 2006, 27 (3): 237-241.
    [61].陈祎,罗永浩,陆方,段佳.稻秆慢速热解的需热量及动力学分析[J].化工学报, 2008, 36 (1): 44-47.
    [62].段佳,罗永浩,陆方,等.稻秆热解的实验研究[J].动力工程, 2007, 27 (2): 297-300.
    [63].李克忠,张荣,毕继诚.煤和生物质共气化协同效应的初步研究[A]. In第二届全国研究生生物质能研讨会[C],中国广州, 2007.12.12-14.
    [64].黄艳琴,阴秀丽,吴创之,汪丛伟,谢建军,周肇秋,马隆龙,李海滨.稻秆半焦与CO2气化反应特性的研究[J].燃料化学学报, 2009, 37 (3): 289-295.
    [65].米铁,陈汉平,唐汝江,吴创之,马隆龙,等.生物质半焦气化的反应动力学[J].太阳能学报, 2005, 26 (6): 766-771.
    [66]. Ye.D.P,Agnew.J.B,Zhang.D.K. Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies[J]. Fuel, 1998, 77 (11): 1209-1219.
    [67].谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002.
    [68].李爱民,刘连芳,李润东.生物质热解半焦产率及特性的实验研究[J].农业环境科学学报, 2003, 22 (2): 214-216.
    [69].阎维平,陈吟颖.生物质混合物与煤共热解的协同特性[J].中国电机工程学报, 2007, 27 (2): 80-86.
    [70].杨毅栎.煤与生物质共气化的特性研究[D].华北电力大学热能工程2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700